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A B S T R A C T

Local causal structure learning aims to discover and distinguish the direct causes and direct effects of a target
variable. However, the state-of-the-art algorithms for local causal structure learning fail to perform well when
dealing with missing data. The general approach is to fill in the missing data using imputation techniques before
learning the local causal structure, but this method suffers from problems such as low accuracy, low efficiency,
and instability. To address these issues, we propose a novel method for local causal structure learning with
missing data, named misLCS. Firstly, we design an iterative data imputation method to obtain the complete
and correct data from the missing data. Then, misLCS adopts a data subset strategy to get a data subset that
variables are closely related to the target variable. Thirdly, within this data subset, misLCS constructs the local
causal skeleton of the target variable using a mutual information-based feature selection method and orients
the direction of edges using conditional independence tests and Meek rules. Finally, misLCS updates the missing
data in preparation for the next iteration. This procedure continues until the direct causes and direct effects
of the target variable have been identified. Our experiments on seven benchmark Bayesian networks and a
real-world bioinformatics dataset, with a number of variables from 11 to 801, demonstrate that our algorithm
achieves better accuracy than the existing local causal structure learning algorithms.
1. Introduction

Discovering causal relationships among a set of random variables
is a significant objective in various scientific fields, including medicine
(Sokolova et al., 2015; Yang et al., 2023), bioinformatics (Foraita et al.,
2020; Triantafillou et al., 2017) and computer science (Khan et al.,
2018; Nogueira et al., 2021). The identification of these relationships
not only reveals the underlying data generation mechanism but also
improves classification and prediction performance. As a result, exten-
sive research (Cai et al., 2018; Yu et al., 2019; Zheng et al., 2018) has
been devoted to learning causal relationships among variables. How-
ever, in real-life scenarios, many algorithms struggle to learn causal
relationships when encountering missing data, or even fail to perform
on incomplete data.

Learning a Bayesian network (BN) structure from observational data
is a popular method to represent causal relationships. A BN structure
often takes the form of a directed acyclic graph (DAG) in which nodes
denote variables and edges denote dependence between variables. In a
causal DAG (e.g. in Fig. 1), for example, the existence of a direct edge:
𝐴 → 𝑇 means that 𝐴 is a direct cause of 𝑇 , 𝑇 is a direct effect of 𝐴.

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
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Therefore, learning the BN structure and determining the directions of
edges are crucial components of causal structure learning.

Lots of causal structure learning methods (Cai et al., 2022) have
been developed over the past few decades. It can be roughly categorized
into two types based on their learning scales: global causal structure
learning and local causal structure learning. The first type of methods,
such as MMHC (Max–Min Hill-Climbing) (Tsamardinos et al., 2006),
BCSL (Bootstrap sampling based Causal Structure Learning) (Guo et al.,
2022), and ADL (Adaptive DAG Learning) (Guo et al., 2023) aims to
learn the causal structure of all variables, and is an NP-hard prob-
lem. When users are only interested in causal relationships around
a given variable and the number of variables is massive, learning
global causal structure is costly and time-consuming, even unrealis-
tic. Local causal structure learning algorithms, such as CMB (Causal
Markov Blanket) (Gao & Ji, 2015), PCD-by-PCD (PCD means Parent,
Children, Descendants) (Yin et al., 2008), ELCS (Efficient Local Causal
Structure) (Yang et al., 2021), etc., are been proposed subsequently.

For example, in bioinformatics (Saeys et al., 2007), with a more
than 10,000 gene expression dataset associated with a specified disease,
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Fig. 1. A causal Bayesian network, the PC of the target variable 𝑇 contains 𝐴, 𝐵, 𝐷,
𝐸, 𝐹 , and 𝐺, which are marked in gray.

researchers are only interested in the genes that cause that disease, and
not interested in the entire causal structure including all genes. Local
causal structure learning methods allow us to identify the direct causes
(parents) and direct effects (children) of any variables of our interest
without learning an entire causal structure including all variables in an
efficient way, especially with high dimensional datasets. In addition,
directly learning the local causal relationships of a target variable
provides an efficient way to estimate the causal effect of two variables
by learning a local causal structure around the two variables without
learning the entire causal structure (Geng et al., 2019).

However, all the pioneering algorithms, such as NOTEAR (Zheng
et al., 2018), ELCS (Yang et al., 2021), etc. are merely applied to
complete data, learning local causal structure with missing data has
not been studied fully. To tackle these challenges, in this paper, we
propose a novel algorithm – misLCS (Local Causal Structure learning
with missing data) to learn local causal structures with missing data.
Firstly, misLCS uses an iterative data imputation method to obtain
complete and correct data. Then, it employs a data subset strategy to
get a subset of variables that are closely related to the target variable.
Finally, it calculates the conditional independence among the obtained
set of variables to determine the direction of edges. The remaining
undirected edge directions are oriented using Meek rules. The main
contributions are summarized as follows.

• We propose the first algorithm to learn local causal structures
with missing data, which can successfully discover and distin-
guish the direct causal and direct effect of the target variable.

• We have conducted extensive experiments on seven benchmark
BNs, and have compared the proposed misLCS with four state-of-
the-art local causal structure learning algorithms to validate the
feasibility and effectiveness.

The remainder of this paper is organized as follows. Section 2
reviews the related work, Section 3 provides the notations and defi-
nitions, Section 4 detailedly presents the proposed misLCS algorithm,
Section 5 reports and discusses the experimental results, and Section 6
summarizes the paper.

2. Related work

Our work focuses on local causal structure learning with missing
data and is related to MB (Markov Blanket) discovering and causal
structure learning.

Given a target variable 𝑇 , the MB discovering algorithm aims to
learn parents, children, and spouse of 𝑇 simultaneously, and it is
an essential part in the skeleton learning during BN structure learn-
ing. The classic methods, such as HITON-MB (Aliferis et al., 2003),
IAMB (Tsamardinos & Aliferis, 2003), MMMB (Tsamardinos et al.,
2003a), and their variants (Tsamardinos et al., 2003b; Yaramakala &
Margaritis, 2005), mainly employ independence tests to find the MB of
a given variable.

Although these methods have achieved excellent performance, MB
discovering does not distinguish the spouse of 𝑇 from its PC (Parents
2

and Children). Variables in MB are not causally interpretable and
still perform poorly when making predictions or classifications. Thus,
algorithms for learning and distinguishing the causal relationships of
variables are subsequently proposed (Cai et al., 2022).

Causal structure learning. Causal structure learning aims at learn-
ing and distinguishing causal relationships among a set of random
variables. According to the scale of learning, causal structure learning
can be categorized into two types: global causal structure learning
and local causal structure learning. The first type of method aims to
learn the causal structure of all variables. The representative algorithms
include GSMB (Margaritis & Thrun, 1999), MMHC (Tsamardinos et al.,
2006), NOTEAR (Zheng et al., 2018), DAG-GNN (Yu et al., 2019),
BCSL (Guo et al., 2022), ADL (Guo et al., 2023) etc. MMHC, for
example, adopts a local-to-global approach, it constructs a skeleton of
a DAG using the learnt MBs or PCs, and then orients the edge of the
learnt skeleton using score-based or constraint-based causal learning
algorithms. However, global causal structure learning algorithms are
time-consuming or even infeasible when the number of variables of a
BN is large. In fact, in many practical scenarios, we are only interested
in distinguishing parents from children of a variable of interest. To
improve efficiency, a series of methods of local causal structure learning
subsequently designed. The representative algorithms include PCD-by-
PCD (Yin et al., 2008), CMB (Gao & Ji, 2015), ELCS (Yang et al., 2021),
etc. PCD-by-PCD first learns the PCD of a target variable, then learns the
PCD of the variables connected to the target variable. Then, PCD-by-
PCD finds the V-structure to orient edges until all parents and children
of the target variable are identified.

Causal structure learning with missing data. The ubiquitous
missing data problem becomes an obstacle to causal structure learning.
There are two common ways to deal with missing data: CC analysis
(Complete-Case analysis, also called list deletion) and TD deletion
(Test-wise Deletion, also called pairwise deletion or available case anal-
ysis). The former completely removes the missing cases from the data
completely, whereas the latter ignores only the case where the variable
required for the current conditional independence test is missing. When
the missing rate is high, adopting the above deletion methods make
the sample significantly reduced. This may cause important information
loss and significant bias in the data analysis or mining. Besides, vari-
ous statistical techniques and machine learning based techniques (Lin
& Tsai, 2020) are employed to perform missing value imputation
and improve the accuracy. Some global causal structure learning al-
gorithms, such as MVPC (Missing Value PC) (Tu et al., 2019) and
MICD (Foraita et al., 2020), are combined data imputation methods
to solve domain-specific problems. MICD (Foraita et al., 2020), for
example, uses multiple imputation and constraint-based algorithms to
learn the global causal structure within incomplete gene data.

3. Notations and definitions

In this section, some basic definitions and notations frequently used
in this paper will be introduced (see Table 1 for a summary of the
notation).

Definition 1 (Conditional Independence (Pearl, 2014)). Given a condi-
tioning set 𝒁, variable 𝑋 is conditionally independent of 𝑌 iff 𝑃 (𝑋 ∣
𝑌 ,𝒁) = 𝑃 (𝑋 ∣ 𝒁).

Definition 2 (Bayesian Network (Pearl, 2014)). A Bayesian Network
(BN) is represented by the triplet – ⟨𝑼 ,G,P⟩ which satisfies the Markov
Condition: each variable in 𝑼 is conditionally independent of variables
in its non-descendant given its parents in G.

Definition 3 (Faithfulness (Spirtes et al., 2000)). For a BN – ⟨𝑼 ,G,P⟩,
G is faithful to P if all the conditional independence appear in P are
entailed by G. P is faithful iff there is a DAG G such that G is faithful
to P.
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Table 1
Summary of notations.

Notations Meanings

𝑼 A set of random variables.
𝑽 A subset of 𝑼 .
P A joint probability distribution over 𝑼 .
G A direct acyclic graph over 𝑼 .
DAG Direct acyclic graph.
𝑋 ∼ 𝑍 A single variable in 𝑼 .
𝒁 A conditioning set within 𝑼 .
𝑋 ⟂⟂ 𝑌 ∣ 𝒁 𝑋 and 𝑌 are independent given 𝒁.
𝑋 ⟂̸⟂ 𝑌 ∣ 𝒁 𝑋 and 𝑌 are dependent given 𝒁.
𝑴𝑩𝑇 Markov Blanket of 𝑇 .
𝑷𝑪𝑇 A set of parents and children of 𝑇 .
𝑷 𝑇 A set of parents of 𝑇 .
𝑪𝑇 A set of children of 𝑇 .
𝑼𝑵𝑇 Undistinguished variables in 𝑷𝑪𝑇 .
𝑺𝑷 𝑇 A set of spouses of 𝑇 .
𝑺𝑷 𝑇 {𝑋} A spouses of 𝑇 with regard to 𝑇 ’s child 𝑋.
𝑺𝒆𝒑𝑇 {𝑋} A set that 𝑑-separates 𝑋 from 𝑇 .
𝑺𝒆𝒑𝑇 A set that contains the sets 𝑺𝒆𝒑𝑇 {⋅} of all variables.
𝑪𝑺𝑷 𝑇 A set that contains the candidate spouse sets of all 𝑷𝑪𝑇 variables.
𝑠𝑢𝑏𝐷{𝑇 } A complete data subset with regard to 𝑇 .
𝑠𝑢𝑝𝑒𝑟𝑃𝐶 𝑠𝑢𝑝𝑒𝑟𝑃𝐶 contains the PC of the target variable and the PC of PC

From Definitions 2 and 3, we know that: Markov Condition enable
us to recover P from known G (in the conditional independence),
faithfulness enables us to recover G from P to fully describe P.

Definition 4 (Causal Bayesian Network (Pearl, 2009)). A BN is called
Causal Bayesian Network (CBN) if a directed edge in G has causal
interpretation, that is, 𝑋 → 𝑌 indicates that 𝑋 is a direct cause of 𝑌 .

Definition 5 (Causal Structure Learning). Learning a directed acyclic
graph (DAG) G of a set of variables 𝑼 from observed data, with nodes
denoting variables and edges denoting potential causal relationships
between variables. If the variable 𝑋 is the direct cause of 𝑌 , there
exists a directed edge from node 𝑋 to 𝑌 (Pearl, 2009). Global causal
structure learning aims at learning a causal Bayesian network structure
among variables. Local causal structure learning requires learning only
the direct cause and direct effect of the given target variable.

Definition 6 (V-structure (Pearl, 2014)). There are three variables 𝑋,
𝑌 , 𝑇 forming a V-structure 𝑋 → 𝑇 ← 𝑌 if 𝑇 has two incoming edges
from 𝑋 and 𝑌 , and 𝑋 is not adjacent to 𝑌 . 𝑇 is a collider.

Definition 7 (Causal Sufficiency (Pearl, 2014; Spirtes et al., 2000)).
Causal sufficiency assumes that any common cause of two or more
variables in 𝑉 is also in 𝑉 .

In a BN, 𝑇 is a collider when there are two directed edges from
𝑋 to 𝑇 and from 𝑌 to 𝑇 , respectively, and they form a V-structure. A
V-structure is an essential part of edge-orientating in causal structure
learning.

Definition 8 (D-separation (Pearl, 2014)). A path 𝜋 between 𝑋 and 𝑌
given a set 𝒁 ⊆ 𝑼∖{𝑋, 𝑌 } is blocked, if one of the following conditions
is satisfied: (1) there is a non-collider variable with 𝒁 on 𝜋, or (2)
there is a collider 𝑍 on 𝜋, while 𝑍 and its descendants are not in 𝒁.
Otherwise, 𝜋 between 𝑋 and 𝑌 is unblocked. 𝑋 and 𝑌 are d-separation
given 𝒁 iff each path between 𝑋 and 𝑌 is blocked by 𝒁.

In a faithful BN, 𝑋 and 𝑌 are d-separation given 𝒁, 𝒁 is called the
separation set, i.e., given a separation set 𝒁, 𝑋 and 𝑌 are conditionally
independent, i.e., 𝑋 ⟂⟂ 𝑌 ∣ 𝒁.

There is conditional independence implied by 𝑋 ⟂⟂ 𝑌 ∣ 𝑇 which
is present in graphs like 𝑋 → 𝑇 → 𝑌 , 𝑋 ← 𝑇 ← 𝑌 and 𝑋 ← 𝑇 →
𝑌 . Although they have drastically different causal relations, the class
of graphs that represents the same set of conditional independencies
3

Fig. 2. Meek rules.

together constitutes the Markov equivalence class (MEC) (Vowels et al.,
2022). Graphs belong to the same equivalence class when they have the
same skeleton and the same immoralities (Verma & Pearl, 2022).

Definition 9 (Partially Directed Acyclic Graph (Chickering, 2002)). A
partially directed acyclic graph (PDAG) contains a directed edge for
every edge participating in a V-structure and an undirected edge for
every other uniquely identifying an equivalence class of a DAG.

An edge 𝑋 → 𝑌 is compelled in G if that edge exists in every DAG
that is equivalent to G. If an edge 𝑋 → 𝑌 is not compelled, we say that
it is reversible (Chickering, 2002).

Definition 10 (Completed Partially Directed Acyclic Graph (Chickering,
2002)). The completed PDAG (CPDAG) corresponding to an equiva-
lence class is the PDAG consisting of a directed edge for every com-
pelled edge in the equivalence class, and an undirected edge for every
reversible edge in the equivalence class.

In causal structure learning, some algorithms cannot orient all
edges’ directions even with an exhaustive search. Therefore, some
undirected edges will be retained in a PDAG and we take them as the
CPDAG.

Definition 11 (Markov Blanket (Pearl, 2014)). In a faithful BN, given a
target variable 𝑇 , the Markov blanket (MB) of 𝑇 (𝑴𝑩𝑇 ) is unique and
consists of parents, children, and spouses of 𝑇 .

All other variables in 𝑼∖𝑴𝑩𝑇 ∪ {𝑇 } are conditionally independent
of 𝑇 given 𝑴𝑩𝑇 , i.e., ∀𝑋 ∈ 𝑼∖𝑴𝑩𝑇 ∪{𝑇 }, 𝑋 ⟂⟂ 𝑇 ∣ 𝑴𝑩𝑇 , where 𝑋 ⟂⟂
𝑇 ∣ 𝑴𝑩𝑇 denotes 𝑋 and 𝑇 are conditionally independent conditioning
on 𝑴𝑩𝑇 .

Theorem 1. In a faithful BN (Spirtes et al., 2000), if any variable 𝑋 and
𝑌 are adjacent, 𝑋 ⟂̸⟂ 𝑌 ∣ 𝒁, 𝑋 ∈ 𝑼 , 𝑌 ∈ 𝑼 , 𝒁 ⊆ 𝑼∖{𝑋, 𝑌 }.

Theorem 2. In a faithful BN, if any variables 𝑋, 𝑇 , 𝑌 forming a V-structure
(𝑋 → 𝑇 ← 𝑌 ), then 𝑋 ⟂⟂ 𝑌 ∣ 𝒁, 𝑋 ⟂̸⟂ 𝑌 ∣ 𝒁 ∪ {𝑇 }, 𝒁 ⊆ 𝑼∖{𝑋, 𝑌 , 𝑇 }.

Lemma 1. The PC set of a given target variable 𝑇 is denoted as 𝑷𝑪𝑇 .
Let 𝑋 ∈ 𝑷𝑪𝑇 , 𝑌 ∈ 𝑷𝑪𝑇 . We can get the following two dependence
relationships between 𝑋 and 𝑌 :

(1) 𝑋 ⟂⟂ 𝑌 ∣ ∅, 𝑋 ⟂̸⟂ 𝑌 ∣ {𝑇 } ⇒ 𝑋 and 𝑌 are both parents of 𝑇 (𝑋, 𝑇 ,
𝑌 forms a V-structure, 𝑋 → 𝑇 ← 𝑌 , 𝑇 is a collider).

(2) 𝑋 ⟂̸⟂ 𝑌 ∣ ∅, 𝑋 ⟂⟂ 𝑌 ∣ {𝑇 } ⇒ at least one variable is the child of 𝑇 (the
possible structures are: 𝑋 → 𝑇 → 𝑌 , 𝑋 ← 𝑇 ← 𝑌 , 𝑋 ← 𝑇 → 𝑌 ). If
𝑋 is the parent of 𝑇 , 𝑌 must be the child of 𝑇 .

Meek rules. Meek rules (Ling et al., 2021; Meek, 2013) orient
undirected edges without destroying and introducing new V-structures.
As shown in Fig. 2, specific rules are as follows:

(1) 𝑅1: no new V-structures. Orient 𝑌 − 𝑍 into 𝑌 → 𝑍 whenever
there is a direct edge 𝑋 → 𝑌 such that 𝑋 and 𝑍 are not adjacent.

(2) 𝑅2: preserve acyclicity. Orient 𝑋−𝑍 into 𝑋 → 𝑍 whenever there
is a chain 𝑋 → 𝑌 → 𝑍.

(3) 𝑅3: enforce 3-fork V-structure. Orient 𝑋 − 𝑍 into 𝑋 → 𝑍
whenever there is two chains 𝑋 − 𝑌 → 𝑍 and 𝑋 − 𝑉 → 𝑍 such
that 𝑌 and 𝑉 are not adjacent.
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Fig. 3. Two methods of local causal structure learning with missing data.
Definition 12 (Missing Value Completely at Random (MCAR) (Lin & Tsai,
2020)). The probability of an instance (or case) having a missing value
for an attribute (variable) does not depend on either the known values
or the missing data. That is to say, in a dataset 𝐷𝑚

𝑛 (𝑛 is the number
of instances, 𝑚 is the number of attributes), the missing value in 𝐷𝑗

𝑖
(the 𝑖th instance and 𝑗th attribute) occurs does not depend on any
conditions.

Assuming that the data missing rate is 𝑟, 𝑟𝑎𝑛𝑑(𝑛) is a random integer
randomly selected within the range [0, 𝑛), and 𝑁𝑈𝐿𝐿 represents a
missing value. A missing value completely at random in a 𝐷𝑚

𝑛 dataset
is expressed as Eq. (1).

𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑖 = 1 ∶ 𝑛 ∗ 𝑚 ∗ 𝑟

𝐷𝑚
𝑛 (𝑟𝑎𝑛𝑑(𝑛), 𝑟𝑎𝑛𝑑(𝑚)) = 𝑁𝑈𝐿𝐿

(1)

Algorithm 1 misLCS
Input: missing data 𝑚𝑖𝑠𝐷, target variable 𝑇 , random variable set 𝑼
Output: 𝑷 𝑇 , 𝑪𝑇 , 𝑼𝑵𝑇
1: 𝑐𝑙𝑜𝑛𝑒𝐷 = 𝑚𝑖𝑠𝐷
2: 𝑄𝑢𝑒 ← ∅,𝑽 ← ∅, 𝑠𝑢𝑏𝐷 ← ∅
3: 𝑄𝑢𝑒.𝑝𝑢𝑠ℎ(𝑇 )
4: repeat
5: 𝑋 = 𝑄𝑢𝑒.𝑝𝑜𝑝()
6: if 𝑋 ∉ 𝑽 then
7: 𝑽 = 𝑽 ∪𝑋
8: /*Step 1. iterative missing value imputing*/

𝑠𝑢𝑏𝐷{𝑋} = IMVI(𝑚𝑖𝑠𝐷,𝑋)
9: /*Step 2. LCS which includes local causal skeleton construction and

causal direction identifying*/
𝑷𝑪𝑋 = SkeletonLearning(𝑠𝑢𝑏𝐷{𝑋}, 𝑋)

10: [𝑷𝑋 ,𝑪𝑋 ,𝑼𝑵𝑋 ] = Orienting(𝑠𝑢𝑏𝐷{𝑋},𝑷𝑪𝑋 , 𝑋)
11: /*Step 3. missing data updating*/

𝑚𝑖𝑠𝐷 = MisDataUpdate(𝑼𝑵𝑋 , 𝑐𝑙𝑜𝑛𝑒𝐷,𝑚𝑖𝑠𝐷, 𝑠𝑢𝑏𝐷)
12: 𝑄𝑢𝑒.𝑝𝑢𝑠ℎ(𝑼𝑵𝑋 )
13: end if
14: Using Meek rules to orient the remaining undirected edges.
15: until (1) all parents and children of 𝑇 can be determined, or (2) 𝑄𝑢𝑒 is

empty set, or (3) 𝑽 is equal to 𝑼

4. The proposed method

Existing local causal structure learning algorithms, such as
CMB (Gao & Ji, 2015), cannot learn causal relations from missing
4

data. A common practice is to make the missing data completed and
learn causal relations, as shown in Fig. 3. However, inaccurate data
imputation results and shortcomings of existing local causal structure
learning algorithms lead to more errors in the learnt PC set of a
target variable. misLCS can improve performance in both missing data
imputation and local causal structure learning strategies.

This paper presents the first algorithm to learn local causal struc-
ture with missing data (misLCS), which can effectively discover and
distinguish parents and children of a given target variable. As shown
in Algorithm 1 and the flow chart in Fig. 3, misLCS starts from a target
variable and iteratively imputes missing values for getting a complete
data subset (Step 1 of IMVI (Iterative Missing Value Imputation)), then
constructs the local causal skeleton and orients edges direction based
on the data subset (Step 2 of LCS (Local Causal Structure learning)),
and finally updates the missing values (Step 3 of MisDataUpdate). This
procedure continues until all the parents and children of the target
variable have been distinguished or it is clear that they cannot be
further distinguished. Note that all variables have missing values (the
data missing mechanism is missing completely at random) other than
the target variable. In the following section, we would give the details
of misLCS.

4.1. IMVI subroutine

This section will explain why we design the data subset strategy and
the iterative data imputation method and discuss the details of the IMVI
subroutine.

There are two obstacles, in which the local causal structure learning
cannot be performed in missing data. One is the current strategies
of skeleton learning and causal direction identification not supporting
missing data. The other is that irrelevant variables may hurt the per-
formance of both data imputation and local causal structure learning.
Kuang et al. (2023), non-causal features and spurious correlations are
screened out by CI tests, which reduces the instability of prediction
across unknown test data. We try to restrict the used variables for the
CI test to correlated variables, rather than considering all variables in
BN. 𝑠𝑢𝑝𝑒𝑟𝑃𝐶 is proposed to discover the true PC variables. The 𝑠𝑢𝑝𝑒𝑟𝑃𝐶
is composed of the 𝑃𝐶𝑇 and the PC of the 𝑃𝐶𝑇 , and 𝑀𝐵𝑇 ⊆ 𝑠𝑢𝑝𝑒𝑟𝑃𝐶
holds. Hence, we improve the performance of our method from two
aspects: the removal of irrelevant variables and the improvement of
data imputation strategy.

The data subset strategy is to obtain a data subset without irrel-
evant variables. From Section 3, we are aware that the relationship
between any two variables can be identified by a series of conditional
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Algorithm 2 IMVI
Input: missing data 𝑚𝑖𝑠𝐷, target variable 𝑇
utput: complete data subset 𝑠𝑢𝑏𝐷

1: 𝑠𝑢𝑏𝐷 = ICkNNI(𝑚𝑖𝑠𝐷)
2: repeat
3: 𝑷𝑪 = HITON-PC (𝑐𝑜𝑚𝐷, 𝑇 )
4: 𝑛𝑒𝑖𝑔𝑃𝐶 ← HITON-PC(𝑐𝑜𝑚𝐷,𝑋)|𝑋 ∈ 𝑷𝑪
5: 𝑠𝑢𝑝𝑒𝑟𝑃𝐶 ← 𝑷𝑪 ∪ 𝑛𝑒𝑖𝑔𝑃𝐶
6: 𝑠𝑢𝑏𝐷 ← generate a new incomplete data only containing variables in

𝑇 ∪ 𝑠𝑢𝑝𝑒𝑟𝑃𝐶 and execute the missing value imputation – ICkNNI once
again.

7: until the 𝑠𝑢𝑝𝑒𝑟𝑃𝐶 does not change or achieve stable

Algorithm 3 SkeletonLearning
Input: data subset 𝑠𝑢𝑏𝐷, target variable 𝑇 , threshold 𝛿
Output: 𝑷𝑪𝑇
1: 𝑷𝑪𝑇 ← ∅,𝑺 ← ∅
2: for each variable 𝑋 ∈ 𝑠𝑢𝑏𝐷.𝑣𝑎𝑟𝑠 do
3: if 𝑆𝑈 (𝑇 ,𝑋) > 𝛿 then
4: 𝑺 ← 𝑺 ∪𝑋
5: end if
6: end for
7: Order 𝑺 in descending 𝑆𝑈 (𝑇 ;𝑋)
8: 𝑙𝑒𝑛𝑆 = |𝑺|,𝑷𝑪𝑇 = 𝑺
9: for 𝑖 =∶ 𝑙𝑒𝑛𝑆 do

10: for 𝑗 = 𝑖 + 1 ∶ 𝑙𝑒𝑛𝑆 do
11: 𝑆𝑈 (𝑺(𝑖),𝑺(𝑗)) > 𝑆𝑈 (𝑺(𝑗), 𝑇 )
12: 𝑷𝑪𝑇 ← 𝑷𝑪𝑇 ∖𝑺(𝑗)
13: end for
14: end for

independence judgments and the dependence relationship between
two direct-connected variables will not change when discarding some
variables in a dataset. Removing some variables could simplify the
identified process. Kuang et al. (2023), non-causal features and spu-
rious correlations are screened out by CI tests, which reduces the
instability of prediction across unknown test data. We try to restrict
the used variables for the CI test to correlated variables, rather than
considering all variables in BN. 𝑠𝑢𝑝𝑒𝑟𝑃𝐶 is proposed to discover the
true PC variables. The 𝑠𝑢𝑝𝑒𝑟𝑃𝐶 is composed of the 𝑃𝐶𝑇 and the PC of
the 𝑃𝐶𝑇 , and 𝑀𝐵𝑇 ⊆ 𝑠𝑢𝑝𝑒𝑟𝑃𝐶 holds.

Take Fig. 1 as an instance, 𝐴 is the direct cause of 𝑇 , and the
ependence between 𝑇 and 𝐴 remains whether all other variables are
iscarded or not. Variables 𝐵, 𝑇 , 𝐷 form a V-structure: 𝐵 → 𝑇 ← 𝐷,
hen 𝐿 is discarded, 𝐵 and 𝐷 are conditionally independent given an
mpty set as the condition set, while they are dependent conditioning
n {𝑇 }.

In addition, some irrelevant variables would reduce the precision
f missing value imputation. For example, some algorithms based on
NN (k Nearest Neighbors) calculate the distance between data cases
o complete the missing values. The fewer irrelevant variables, the
igher the missing value imputation precision. Therefore, the data
ubset strategy could enhance the precision of data imputation as well.

For we do not know which variables are closely related to 𝑇 , we fill
p the all missing values in a data set first, then compute the 𝑠𝑢𝑝𝑒𝑟𝑃𝐶
nd extract a data subset that only contains 𝑠𝑢𝑝𝑒𝑟𝑃𝐶 from the raw data
et. And then we re-impute this incomplete data subset and re-find
he 𝑠𝑢𝑝𝑒𝑟𝑃𝐶. This iterative process ends when variables in 𝑠𝑢𝑝𝑒𝑟𝑃𝐶
o not change anymore. The 𝑠𝑢𝑝𝑒𝑟𝑃𝐶 successfully achieves the goal
f accurately filling in missing data values and precisely identifying
elevant variables.

As shown in Algorithm 2, we improve ICkNNI (Incomplete-Case
Nearest Neighbors Imputation) (Van Hulse & Khoshgoftaar, 2014)

o fill in missing values and use HITON-PC (Aliferis et al., 2003) to
5

ind the PC of a target variable. Remarkably, ICkNNI is an excellent
Algorithm 4 Orienting
Input: data subset 𝑠𝑢𝑏𝐷, parents and children 𝑷𝑪𝑇 , target variable 𝑇
Output: 𝑷 𝑇 ,𝑪𝑇 ,𝑼𝑵𝑇
1: 𝑾 = 𝐷.𝑣𝑎𝑟𝑠
2: /*step 1. find the parents of 𝑇 */

[𝑷 𝑇 ,𝑪𝑇 ,𝑼𝑵𝑇 ] = FindParent(𝑠𝑢𝑏𝐷,𝑾 ,𝑷𝑪𝑇 , 𝑇 )
3: /*step 2. find the children of 𝑇 */

𝑪𝑇 = FindChildren(𝑠𝑢𝑏𝐷,𝑾 ,𝑷𝑪𝑇 ,𝑪𝑇 ,𝑼𝑵𝑇 , 𝑇 )
4: 𝑼𝑵𝑇 ← 𝑼𝑵𝑇 ∖𝑪𝑇

way that allows for the simultaneous use of complete and incomplete
cases to fill in missing values. ICkNNI has extensive applicability and is
not limited by the data missing rate and the data missing mechanism
(i.e., missing completely at random (MCAR), missing at random (MAR),
and not missing at random (NMAR)). It can be effectively used in
various scenarios to fill up missing values. HITON-PC computes the
dependences between the target variable and the rest of the variables
under different conditioning sets and adds the variables with the high
dependences into the PC set of the target variable as much as possible.
It may find some variables incorrectly, but not lose relevant variables.
When the 𝑠𝑢𝑝𝑒𝑟𝑃𝐶 keeps the same as the last iteration, the algorithm
stops and returns the last completed data subset.

In summary, IMVI not only removes the disturbance of irrelevant
variables but also offers a complete data set for local causal structure
learning in the next step.

4.2. LCS subroutine

The main goal of LCS is to discover and distinguish parents and
children given a variable. It includes two steps: skeleton learning and
edge orienting. Next, we will discuss the two steps in detail.

4.2.1. SkeletonLearning
This step discovers the PC of the target variable by FCBF (Fast

Correlation-Based Filter) (Yu & Liu, 2004) and constructs local causal
structures over the learnt PC set.

We had used HITON-PC to learn 𝑠𝑢𝑝𝑒𝑟𝑃𝐶 and LCS could get PC in
the data subset directly. To improve time efficiency of learning the
PC set from the 𝑠𝑢𝑝𝑒𝑟𝑃𝐶 set, we employ a lightweight PC learning
algorithm, FCBF.

Feature selection (Yu et al., 2021) is to identify a subset of features
(predictor variables) from the original features for model building or
data understanding. It aims to find strongly relevant features of a
given variable in a causal (Lee et al., 2020) or non-causal (Yu & Liu,
2004) way. FCBF is a classical mutual information-based and non-
causal method for feature selection, which uses symmetric uncertainty
(abbr. 𝑆𝑈) to identify the PC set of the target variable. And FCBF does
not need to specify the number of selected features in advance and can
guarantee that all true PC would not be dropped.

The symmetric uncertainty formula is shown in Eq. (2). It utilizes
mutual information to compute the correlation between two variables.
𝑆𝑈 (𝑋, 𝑌 ) = 0 indicates that 𝑋 and 𝑌 are independent of each other,
otherwise, they are dependent. Furthermore, the strength of their cor-
relation depends on the value of 𝑆𝑈 . We need to set the threshold 𝛿
in advance to control the size of 𝑺 (the number of potential PC of 𝑇 ).
When 𝑆𝑈 (𝑇 ,𝑋) > 𝛿, 𝑋 is considered as the PC variable of 𝑇 .

𝑆𝑈 (𝑋, 𝑌 ) = 2
[

𝐼𝐺(𝑋, 𝑌 )
𝐻(𝑋) +𝐻(𝑌 )

]

(2)

4.2.2. Orienting subroutine
This step distinguishes parents and children in the learnt PC set by

multiple conditional independence (CI) tests.
Algorithm 4 presents the orienting subroutine. Though the PC of
𝑇 could be obtained after skeleton learning, the direct cause (parent)
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Algorithm 5 FindParent
Input: data subset 𝑠𝑢𝑏𝐷, random variable set 𝑾 , parents and children 𝑷𝑪𝑇 ,

target variable 𝑇
utput: 𝑷 𝑇 ,𝑪𝑇 ,𝑼𝑵𝑇

1: 𝑷 𝑇 ← ∅,𝑪𝑇 ← ∅,𝑼𝑵𝑇 ← ∅
2: 𝑡𝑚𝑝 ← ∅, 𝑐𝑜𝑢𝑛𝑡 = 1
3: for each 𝑋 ∈ 𝑷𝑪𝑇 do
4: for each 𝑌 ∈ 𝑷𝑪𝑇 do
5: if 𝑋 ⟂⟂ 𝑌 ∣ ∅ and 𝑋 ⟂̸⟂ 𝑌 ∣ {𝑇 } then
6: 𝑷 𝑇 ← 𝑷 𝑇 ∪ {𝑋, 𝑌 }
7: else if 𝑋 ⟂̸⟂ 𝑌 ∣ ∅ and 𝑋 ⟂⟂ 𝑌 ∣ {𝑇 } then
8: 𝑡𝑚𝑝 [𝑐𝑜𝑢𝑛𝑡] ← {𝑋, 𝑌 }
9: 𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 + 1
0: end if
1: end for
2: end for
3: for 𝑖 = 1 ∶ 𝑐𝑜𝑢𝑛𝑡 do
4: if 𝑡𝑚𝑝 [𝑐𝑜𝑢𝑛𝑡][1] ∈ 𝑷 𝑇 then
5: 𝑪𝑇 ← 𝑪𝑇 ∪ {𝑡𝑚𝑝 [𝑐𝑜𝑢𝑛𝑡][2]}
6: else if 𝑡𝑚𝑝[𝑐𝑜𝑢𝑛𝑡][2] ∈ 𝑷 𝑇 then
7: 𝑪𝑇 ← 𝑪𝑇 ∪ {𝑡𝑚𝑝 [𝑐𝑜𝑢𝑛𝑡][1]}
8: end if
9: end for
0: 𝑼𝑵𝑇 ← 𝑷𝑪𝑇 ∖𝑷 𝑇 ∖𝑪𝑇

and direct effect (children) have not been distinguished yet. The com-
mon practice is to use the CI test to judge causal-effect relationships
between variables. We determine the edge-orientating order based on
their difficulty degree. The parents can be identified by using the V-
structure and Lemma 1. Additionally, it is possible to identify some of
the children. Whereas finding the children involves the need to find
their separation sets and spouses, which can introduce potential errors
at each step and decrease its accuracy. In comparison to identifying
parents, finding children is generally more challenging. Therefore, in
the orienting subroutine, our algorithm finds the parent first and then
the children.

The FindParent subroutine is shown in Algorithm 5 which aims at
finding the parent of 𝑇 . It makes good use of Lemma 1. That is to say,
or each pair of variables in PC, both of them are stored as parents if
hey satisfied the rule of V structure: 𝑋 ⟂⟂ 𝑌 ∣ ∅ and 𝑋 ⟂̸⟂ 𝑌 ∣ {𝑇 }

(line 3∽6). The pairs of variables meet the one parent and one child
condition: 𝑋 ⟂̸⟂ 𝑌 ∣ ∅ and 𝑋 ⟂⟂ 𝑌 ∣ {𝑇 }, and cannot be distinguished
mmediately. They are recorded to 𝑡𝑚𝑝 (line 7∽9). Finally, traversing
he set 𝑡𝑚𝑝, if one has been confirmed as the parent, the other should
e the child (line 13∽19).

The detail of FindChildren is shown in Algorithm 6. It tries to
dentify the children by searching for the spouse of 𝑇 . The FindChildren
lgorithm first computes the separation set 𝑆𝑒𝑝𝑇 for each variable
n the candidate children set 𝑼𝑵𝑇 (line 2∽10). 𝑌 is the calculated
andidate spouse (line 3∽4) and 𝑍 belongs to 𝑷𝑪𝑇 , if 𝑇 and 𝑌 are
onditionally independence given 𝑍, 𝑍 is the member of 𝑺𝒆𝒑𝑇 (Line
). Therein, 𝑺𝒆𝒑𝑇 {𝑌 } denotes the separation set of 𝑇 with respect
o 𝑌 (similarly hereinafter). Then, the spouse of 𝑇 can be identified
reliminarily based on the candidate spouse 𝑐𝑎𝑛𝑆𝑃𝑇 and separation set
𝑒𝑝𝑇 (line 12∽18). 𝑋 is the candidate child and 𝑌 is the candidate

pouse, if 𝑇 is not conditionally independence given {𝑋} ∪ 𝑺𝒆𝒑𝑇 {𝑌 },
is very likely the spouse of 𝑇 . Thirdly, some wrong spouses could

e filtered (line 19∽23). 𝑋 is the candidate child, if 𝑇 and 𝑋 are not
onditionally independence given 𝑺𝑷 𝑇 {𝑋} ∪ 𝑼𝑵𝑇 ∖{𝑋}, 𝑋 is not the
hild of 𝑇 , and the 𝑺𝑷 𝑇 {𝑋} is set to the empty set. Finally, if 𝑇 has a
pouse about a certain child (line 25), we find the true children.

.3. MisDataUpdate subroutine

As the PC set of 𝑇 are not distinguishable at once, our algorithm
6

akes a variable belonging to 𝑼𝑵𝑇 as a new target variable (line 12
Algorithm 6 FindChildren
Input: data subset 𝑠𝑢𝑏𝐷, random variable set 𝑾 , parents and children 𝑷𝑪𝑇 ,

children 𝑪𝑇 , undistiguished variables 𝑼𝑵𝑇 , target variable 𝑇
utput: 𝑪𝑇

1: 𝑺𝒆𝒑𝑇 ← ∅, 𝒄𝒂𝒏𝑺𝑷 𝑇 ← ∅
2: for each 𝑋 ∈ 𝑼𝑵𝑇 do
3: 𝑷𝑪𝑋 = SkeletonLearning (𝐷,𝑋)
4: 𝒄𝒂𝒏𝑺𝑷 𝑇 {𝑋} = 𝑷𝑪𝑋∖𝑷𝑪𝑇 ∪ {𝑇 }
5: for each 𝑌 ∈ 𝒄𝒂𝒏𝑺𝑷 𝑇 {𝑋} do
6: if 𝑇 ⟂⟂ 𝑌 ∣ 𝑍 for each 𝑍 ∈ 𝑷𝑪𝑇 then
7: 𝑺𝒆𝒑𝑇 {𝑌 } ← 𝑺𝒆𝒑𝑇 {𝑌 } ∪ {𝑍}
8: end if
9: end for
0: end for
1: 𝑺𝑷 𝑇 ← ∅
2: for each 𝑋 ∈ 𝑼𝑵𝑇 do
3: for each 𝑌 ∈ 𝒄𝒂𝒏𝑺𝑷 𝑇 do
4: if 𝑇 ⟂̸⟂ 𝑌 ∣ {𝑋} ∪ 𝑺𝒆𝒑𝑇 {𝑌 } then
5: 𝑺𝑷 𝑇 {𝑋} ← 𝑺𝑷 𝑇 {𝑋} ∪ {𝑌 }
6: end if
7: end for
8: end for
9: for each 𝑋 ∈ 𝑼𝑵𝑇 do
0: if 𝑇 ⟂⟂ 𝑋 ∣ 𝑺𝑷 𝑇 {𝑋} ∪ 𝑼𝑵𝑇 ∖{𝑋} then
1: 𝑼𝑵𝑇 ← 𝑼𝑵𝑇 ∖{𝑋}, 𝑺𝑷 𝑇 {𝑋} ← ∅
2: end if
3: end for
4: for each 𝑋 ∈ 𝑼𝑵𝑇 do
5: if 𝑺𝑷 𝑇 {𝑋} is nonempty then
6: 𝑪𝑇 ← 𝑪𝑇 ∪ {𝑋}
7: end if
8: end for

in Algorithm 1). misLCS will learn their local causal structure, and
then use three Meek rules to infer the edge direction between 𝑇 and
the variables in 𝑼𝑵𝑇 (line 14 in Algorithm 1). But the values in the
newly set target variable are missing initially. The simple way is to take
the last completed value as the true value. While a more reliable way
is to employ the mode value of multiple-time fills as the true value.
Therefore, the MisDataUpdate subroutine is developed to update the
missing value before the next iteration.

The specific practice is as follows: the filled data subset will be
stored in 𝑠𝑢𝑏𝐷 in each iteration. When a missing variable is used
as the new target variable, the mode value of multiple fills for this
target variable is taken as the final value and labeled as the no-missing
variable. That is, let 𝑋 be the missing variable, and instance 1 has a
missing value on 𝑋, there are four stored imputation values: {1, 0, 1,
1}, respectively. Then the mode value of 1 and is taken as the final
value of X and instance 1. 𝑋 is labeled as the non-missing variable.

Take Fig. 1 as an example, suppose that 𝑇 and 𝐺 are regarded as the
target variable, and 𝐵 will be imputed twice. When 𝐵 is set as the target
variable, the mode of the two imputed values is 𝐵’s final values, and 𝐵
is not the missing variable anymore. The purpose of this subroutine is
to ensure that the variable used as the target variable has no missing
values and obtains its more accurate values.

4.4. Tracing

In this subsection, we trace the execution of misLCS based on the
example in Fig. 1. Suppose that we have a dataset for the variable set
𝑼 = {𝑇 ,𝐴, 𝐵,𝐸, 𝐹 ,𝐺,𝐻, 𝐼, 𝐽 , 𝐾, 𝐿,𝑀,𝑁}. The independent relation-
hip between any two variables can be represented by the Bayesian
etwork structure in Fig. 1. In the following, we take 𝑇 as the target

variable and give the execution process of misLCS. Note that the target
variable 𝑇 has no missing values.

(1) Step 1. ICkNNI is used to impute all missing values in the missing
dataset and get a complete dataset. HITON-PC then finds the 𝑠𝑢𝑝𝑒𝑟𝑃𝐶,
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Fig. 4. An example of the execution process of misLCS.

i.e., 𝑠𝑢𝑝𝑒𝑟𝑃𝐶 = {𝐴,𝐵,𝐷,𝐸, 𝐹 ,𝐺,𝐻, 𝐼, 𝐽 , 𝐾, 𝐿,𝑀}. 𝑀 is wrongly added
for the reason of incorrect data imputation and irrelevant variables dis-
traction. IMVI extracts a data subset containing variables in 𝑠𝑢𝑝𝑒𝑟𝑃𝐶∪𝑇
and produces a new missing data subset–𝑠𝑢𝑏𝐷. It will re-impute 𝑠𝑢𝑏𝐷
by ICkNNI and re-find the 𝑠𝑢𝑝𝑒𝑟𝑃𝐶 by HITON-PC. 𝑀 is removed in
the second iteration. This procedure will stop until 𝑠𝑢𝑝𝑒𝑟𝑃𝐶 does not
change. Finally, as shown in Fig. 4(a), it will return the last imputed
data subset that contains variables {𝐴,𝐵,𝐷,𝐸, 𝐹 ,𝐺,𝐻, 𝐼, 𝐽 , 𝐾, 𝐿, 𝑇 }.

(2) Step 2. FCBF is used to find the PC from 𝑠𝑢𝑝𝑒𝑟𝑃𝐶. According
to Algorithm 3, 𝐴,𝐵,𝐷,𝐸, 𝐹 ,𝐺 will be added to 𝑷𝑪𝑇 . Note that, the
𝑆𝑈 (𝐼, 𝑇 ) = 0, hence 𝐼 will not be added to 𝑺. 𝑀 and 𝑁 does not in this
data subset, hence, they will not be calculated. As shown in Fig. 4(b),
𝑷𝑪𝑇 = {𝐴,𝐵,𝐷,𝐸, 𝐹 ,𝐺} (marked in gray).

(3) Step 3. Edge orienting is used to distinguish parents and chil-
dren. First, finding parents. 𝐴 ⟂⟂ 𝐷 ∣ ∅ and 𝐴 ⟂̸⟂ 𝐷 ∣ {𝑇 }, based on
Lemma 1. (1), both 𝐴 and 𝐷 are parents of 𝑇 . 𝐴 ⟂̸⟂ 𝐸 ∣ ∅ and 𝐴 ⟂⟂ 𝐸|{𝑇 },
based on Lemma 1. (2) and 𝐴 is the parent of 𝑇 , 𝐸 is the child of 𝑇 .
Like 𝐸 and 𝐴, 𝐹 is also the child of 𝑇 . Hence, as shown in Fig. 4(c),
𝑷 𝑇 = {𝐴,𝐷}, 𝑪𝑇 = {𝐸, 𝐹 }, 𝑼𝑵𝑇 = 𝑷𝑪𝑇 ∖𝑷 𝑇 ∖𝑪𝑇 = {𝐵,𝐺}.

Second, finding children. For each undistinguished variables in
𝑼𝑵𝑇 , 𝒄𝒂𝒏𝑺𝑷 𝑇 {𝐵} = 𝑷𝑪𝐵∖𝑷𝑪𝑇 ∖{𝑇 } = {𝐽 ,𝐾,𝐿}, and 𝑺𝒆𝒑𝑇 {𝐽} =
{𝐵}, 𝑺𝒆𝒑𝑇 {𝐾} = {𝐵}, 𝑺𝒆𝒑𝑇 {𝐿} = {𝐵,𝐷}. 𝒄𝒂𝒏𝑺𝑷 𝑇 {𝐺} =
𝑷𝑪𝐺∖𝑷𝑪𝑇 ∖{𝑇 } = {𝐼} and 𝑺𝒆𝒑𝑇 {𝐼} = ∅. 𝑇 ⟂⟂ 𝐽 ∣ {𝐵} ∪ 𝑺𝒆𝒑𝑇 {𝐽},
𝐽 is not the spouse of 𝑇 . Similarly, 𝐾 and 𝐿 are also not spouse of 𝑇 ,
and hence 𝑺𝑷 𝑇 {𝐵} = ∅. While 𝑇 ⟂̸⟂ 𝐼 ∣ {𝐵} ∪ 𝑺𝒆𝒑𝑇 {𝐼}, 𝐽 is the spouse
of 𝑇 , and 𝑺𝑷 𝑇 {𝐺} = {𝐼}. Thus, as shown in Fig. 4(d), 𝐺 is the child
of 𝑇 . 𝑪𝑇 = 𝑪𝑇 ∪ {𝐺} = {𝐸, 𝐹 ,𝐺}. The final unidentified variable is 𝐵,
and we store it into the 𝑄𝑢𝑒 as the next target variable in the last.

(4) Step 4. In this step, the missing values in variables 𝑠𝑢𝑝𝑒𝑟𝑃𝐶 have
been stored. When 𝐵 is the new target variable, MisDataUpdate takes
the imputed values for B as its fixed value and other variables are still
missing. The algorithm will repeat steps 1∽3 to get 𝑷 𝐵 = {𝐽 ,𝐾,𝐿},
as shown in Fig. 4(e). Based on Meek rules, 𝐵 is the parent of 𝑇 . The
parent and children of 𝑇 are all known, as shown in Fig. 4(f), and the
program ends.

4.5. The differences between misLCS and existing local causal structure
learning algorithms

In this section, the main differences between misLCS and existing
local causal structure learning algorithms will be explained from the
following three aspects.

Firstly, during the skeleton learning phase of misLCS, there is an
interleaving execution between missing data imputation and skeleton
learning. This strategy is designed to enhance the precision of miss-
ing value imputation while simultaneously improving the accuracy
of skeleton learning, that is, skeleton learning and data imputation
promote each other.
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Table 2
Summary of benchmark BNs.

Network Num.
Vars

Num.
Edges

Max In/out
Degree

Min/Max
|PCset|

Domain
Range

Child 20 25 2/7 1/8 2–6
Alarm1 37 46 4/5 1/6 2–4
Mildew 35 46 3/3 1/5 3–100
Alarm3 111 149 4/5 1/6 0–3
HailFinder5 280 458 5/18 1/19 0–10
Pigs 441 592 2/39 1/41 3–3
Gene 801 972 4/10 0/11 2–5

Secondly, during the edge orientation phase of misLCS, misLCS
employs a data subset (containing the potential variables belonging to
the skeleton of the target variable) obtained from the earlier skeleton
learning stage to distinguish between parents and children instead of
using all of the data. This approach aims to mitigate the potential
adverse impact of irrelevant variables.

Thirdly, during the edge orientation phase, the sequential order
we employ for edge orientation is to identify parents first and then
children. Specifically, when the target variable is a collider, we deter-
mine its adjacent variables in the PC as the parents. Following this, we
proceed to identify children by assessing condition independence based
on a conditional set containing the target variable or by searching for
the spouse of the target variable.

In conclusion, the interleaving execution between missing data
imputation and skeleton learning, the use of data subset during the edge
orientation phase, and the order of edge orientation are the three main
differences between misLCS and existing algorithms.

5. Experiments

In this section, we compare performance of the misLCS algorithm
against its rivals. This section is organized as follows: Section 5.1
gives the experimental setting, and Sections 5.2 and 5.3 summarizes
and discusses the experimental results on seven benchmark BNs and a
real-world dataset, respectively.

5.1. Experimental setting

5.1.1. Comparision algorihm
We compare our approach misLCS with four state-of-the-are local

causal structure learning algorithms, including PCD-by-PCD (Yin et al.,
2008), MB-by-MB (Wang et al., 2014), CMB (Gao & Ji, 2015), and
ELCS (Yang et al., 2021). As shown in Fig. 3, due to those four
algorithms cannot learn the local causal structure with missing data,
we fill the missing data into complete data using the method of missing
value imputation initially.

5.1.2. Evaluation metric
In the experiments, we evaluate the performance of local causal

structure learning using the following three general metrics.

• 𝑆𝐻𝐷: 𝑆𝐻𝐷 is the number of total error edges, which includes
undirected edges, reverse edges, missing edges, and extra edges.
The smaller value of SHD is better.

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛: the number of true directed edges in the output
(i.e., the variables in the output belonging to the true parents and
children of a target variable in a test DAG) divided by the number
of edges in the output of an algorithm

• 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
√

(1 − 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)2 + (1 − 𝑅𝑒𝑐𝑎𝑙𝑙)2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is same as above and 𝑅𝑒𝑐𝑎𝑙𝑙 is the number of true
directed edges in the output divided by the number of true
directed edges (i.e., the number of parents and children of a target
variable in a test DAG). It means that 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0 is the best case
(perfect precision and recall) while 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =

√

2 is the worst
case. Thus, the lower 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is better.
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Table 3
𝑆𝐻𝐷 on seven BNs using different data sizes and missing rates. 𝑆𝐻𝐷 denotes the total number of error edges, which contain undirected edges,
reverse edges, missing edges, and extra edges. Lower value is better.

Network Algorithm Size = 500 Size = 1000

10% 20% 30% 40% 50% 60% 10% 20% 30% 40% 50% 60%

Child

PCD-by-PCD 3.80 4.33 4.73 4.87 5.93 8.00 3.53 3.93 3.80 5.13 6.73 7.73
MB-by-MB 3.40 3.73 4.07 4.60 4.53 6.00 3.47 3.80 4.20 4.20 5.60 5.13
CMB 3.20 3.87 3.60 4.33 5.33 7.53 4.20 3.33 3.40 4.27 5.80 8.20
ELCS 2.80 3.00 3.13 4.20 4.80 7.13 2.13 2.47 3.53 4.07 5.47 7.13
misLCS 2.87 2.87 2.67 2.40 3.07 3.80 2.80 2.80 2.40 2.40 2.27 3.27

Alarm1

PCD-by-PCD 1.67 2.40 2.73 2.67 3.33 4.07 1.13 1.40 2.27 2.47 3.20 4.00
MB-by-MB 1.60 2.27 2.27 3.07 3.13 4.13 1.93 2.13 2.73 2.87 3.60 4.53
CMB 1.80 2.33 2.80 3.07 3.93 4.53 1.80 1.73 2.07 2.60 3.67 4.53
ELCS 1.53 1.80 2.33 2.27 3.47 4.20 1.27 1.20 1.87 2.53 3.33 4.93
misLCS 1.67 1.93 1.87 1.93 2.00 3.00 1.53 1.47 1.07 1.67 2.27 2.53

Mildew

PCD-by-PCD 23.73 24.13 24.53 25.00 25.67 26.93 20.00 20.73 21.47 23.00 24.53 26.27
MB-by-MB 4.20 4.20 4.20 4.20 4.20 4.20 4.13 4.13 4.33 4.80 4.13 5.20
CMB 4.33 4.60 5.00 5.40 5.93 7.13 6.87 7.73 8.27 9.73 11.27 13.00
ELCS 4.93 5.20 5.60 6.00 6.47 7.60 7.87 8.73 9.33 10.87 12.33 14.07
misLCS 3.33 4.07 5.00 4.93 5.33 4.40 2.53 3.20 3.87 4.73 5.47 5.80

Alarm3

PCD-by-PCD 1.53 2.27 2.20 2.47 2.93 2.73 1.60 1.67 2.27 2.47 2.53 2.87
MB-by-MB 2.73 2.27 3.73 3.27 3.20 3.53 3.53 3.80 3.53 3.13 3.13 4.07
CMB 2.53 3.13 2.87 3.33 3.73 3.60 2.40 2.60 2.20 2.93 3.00 3.73
ELCS 2.40 2.67 2.67 3.33 3.60 3.67 2.20 2.07 2.47 2.87 3.27 3.60
misLCS 1.87 1.53 1.87 2.33 2.33 2.73 1.13 1.40 1.20 1.87 2.07 2.40

HailFinder5

PCD-by-PCD 5.80 5.60 5.33 4.80 5.07 6.00 4.80 4.87 4.87 4.67 4.93 –
MB-by-MB 4.13 4.33 4.13 4.07 4.07 3.53 3.73 3.67 4.00 4.00 4.13 –
CMB – – – – – – 4.07 5.00 4.67 5.27 – –
ELCS 6.67 6.33 6.47 6.00 6.27 – 4.33 5.07 5.27 5.73 5.73 –
misLCS 2.53 2.87 2.47 2.53 2.40 2.80 2.53 2.73 2.40 2.40 2.47 –

Pigs

PCD-by-PCD 0.87 0.93 1.53 1.33 2.47 2.87 0.93 1.93 1.27 1.60 2.53 2.93
MB-by-MB 2.47 2.53 2.80 3.07 3.53 3.47 2.40 1.73 2.07 2.47 2.80 2.93
CMB 1.27 1.47 1.67 2.40 2.40 3.67 1.27 1.53 1.80 2.27 2.73 3.67
ELCS 0.67 0.53 0.67 1.53 2.40 3.73 0.87 1.40 1.47 1.47 3.07 3.87
misLCS 0.93 0.80 1.07 1.13 1.93 3.67 0.73 0.93 1.13 1.47 1.80 2.20

Gene

PCD-by-PCD 2.33 1.80 3.13 3.40 3.27 3.87 1.93 2.80 3.33 4.07 4.33 4.13
MB-by-MB 4.13 3.73 4.47 4.20 5.07 4.67 4.00 4.27 4.00 3.80 3.80 4.73
CMB 1.47 1.73 2.73 2.40 3.60 4.20 1.60 2.20 3.07 3.40 3.60 3.67
ELCS 0.67 1.40 2.27 2.40 2.60 3.60 1.47 1.67 2.20 2.80 3.40 3.80
misLCS 0.67 0.87 0.80 1.80 2.33 2.93 0.53 0.60 1.40 1.60 1.87 2.53
5
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5.1.3. Implementation detail
PCD-by-PCD, MB-by-MB, CMB, and ELCS algorithms are imple-

mented by ourselves in MATLAB (https://github.com/kuiy/CausalL
earner). ICkNNI is also implemented by ourselves in MATLAB. In
the experiments, 𝐺2-test with the significance level of 0.01 is uti-
lized to measure the conditional independence between variables. The
threshold 𝛿 is preset to 0.05 in FCBF for selecting potential PC of 𝑇 .

ll experimental results are conducted on Windows 10 with Intel(R)
9-10900F, 2.80 GHz CPU, and 16 GB memory. These experimen-
al settings ensure that our results are reliable and can be easily
eproduced.

.2. Benchmark BNs dataset

This paper first uses seven benchmark BNs with low to high dimen-
ionality to evaluate misLCS against its rivals. The number of variables
f these BNs ranges from 20 to 801. Each BN has two groups of data:
ne group contains three data sets with 500 data samples, and the other
ne contains three data sets with 1000 data samples. A brief description
f the seven benchmark BNs are listed in Table 2.

We carefully use seven BNs to generate synthetic datasets with dif-
erent missing rates (ranging from 10% to 60%). And the data missing
etting is: the target variable is not missing, and the missing mechanism
f the remaining variables is missing completely at random (MCAR, see
efinition 12). Especially, misLCS randomly select five variables in a
N as target variables. Then each algorithm is run on those synthetic
ata sets to learn the local causal structure of five variables. And we
ompute the average performance of five target variables as the final
erformance of each algorithm.
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.2.1. Experiments results of misLCS and its rivals
In Tables 3–5, values in those table represent the average result,

nd we use ‘−’ to denote that a method does not generate results with
the corresponding BN due to the total running times of five variables
on three data sets exceeding more than two-days, and the best results
are highlighted in boldface type. Based on our experimental results, we
make the following observation.

Table 3 presents the total number of error edges for seven BNs.
When the data sample is 500 and the missing rate is higher than 30%,
misLCS consistently outperforms the other four algorithms in terms of
𝑆𝐻𝐷, except for the Mildew dataset which requires a large number of
data samples due to its large domain ranges. In cases where the data
sample is 1000 and the missing rate is higher than 20%, misLCS also
outperforms the other four algorithms. Specifically, for datasets such as
Alarm3, HailFinder5, and Gene, misLCS consistently achieves the best
𝑆𝐻𝐷 performance. It is worth noting that MB-by-MB performs poorly
with only 500 data samples due to the lack of sufficient samples for
learning, especially for the Mildew dataset. Overall, misLCS exhibits
superior performance compared to the other four algorithms, as it
achieves the lowest total number of learning error edges.

Table 4 displays the precision of causal structure learning on seven
BNs. It shows that in datasets such as Mildew, HailFinder5, and Gene,
the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 of misLCS is consistently higher than the other four
algorithms. For the remaining datasets, there are only a few cases where
the missing rate is slightly below the optimal value. In the Pigs dataset,
misLCS is only outperformed by PCD-by-PCD when the missing rate is
60% and data samples are 500. Therefore, misLCS exhibits the highest
precision among the five algorithms.

Table 5 gives the calculated distance which considers both precision
and recall together. We figure out the percentage of the best values for
all algorithms. There are 42.86%, 27.38%, 19.05%, 3.57%, 2.38% for
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Table 4
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 on seven BNs using different data sizes and missing rates. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 denotes the accuracy of learning edges. Higher value is better.

Network Algorithm Size = 500 Size = 1000

10% 20% 30% 40% 50% 60% 10% 20% 30% 40% 50% 60%

Child

PCD-by-PCD 0.49 0.43 0.39 0.43 0.36 0.25 0.50 0.48 0.54 0.39 0.27 0.28
MB-by-MB 0.67 0.68 0.51 0.51 0.38 0.16 0.62 0.61 0.53 0.54 0.32 0.37
CMB 0.64 0.53 0.60 0.61 0.43 0.31 0.32 0.61 0.66 0.50 0.38 0.26
ELCS 0.62 0.57 0.61 0.48 0.44 0.34 0.71 0.67 0.55 0.54 0.41 0.34
misLCS 0.60 0.53 0.63 0.73 0.61 0.58 0.61 0.59 0.67 0.67 0.65 0.54

Alarm1

PCD-by-PCD 0.89 0.71 0.62 0.69 0.64 0.57 0.97 0.90 0.73 0.71 0.60 0.54
MB-by-MB 0.84 0.74 0.72 0.60 0.55 0.47 0.78 0.70 0.67 0.59 0.52 0.42
CMB 0.73 0.70 0.59 0.56 0.54 0.40 0.73 0.73 0.69 0.61 0.50 0.43
ELCS 0.85 0.82 0.73 0.78 0.53 0.48 0.89 0.83 0.79 0.62 0.53 0.40
misLCS 0.88 0.82 0.77 0.80 0.68 0.58 0.81 0.84 0.94 0.78 0.68 0.64

Mildew

PCD-by-PCD 0.15 0.14 0.14 0.13 0.12 0.11 0.17 0.16 0.15 0.14 0.13 0.12
MB-by-MB 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.07 0.20 0.06 0.30 0.02
CMB 0.30 0.28 0.23 0.21 0.19 0.15 0.26 0.23 0.22 0.20 0.16 0.14
ELCS 0.18 0.17 0.14 0.13 0.13 0.11 0.14 0.13 0.11 0.10 0.09 0.08
misLCS 0.63 0.54 0.47 0.42 0.45 0.59 0.70 0.62 0.52 0.48 0.40 0.46

Alarm3

PCD-by-PCD 0.45 0.33 0.44 0.39 0.33 0.40 0.54 0.55 0.40 0.42 0.38 0.36
MB-by-MB 0.49 0.58 0.41 0.41 0.45 0.37 0.42 0.38 0.47 0.53 0.47 0.33
CMB 0.44 0.36 0.40 0.37 0.34 0.32 0.51 0.46 0.56 0.48 0.44 0.35
ELCS 0.49 0.49 0.52 0.41 0.40 0.30 0.51 0.56 0.54 0.54 0.48 0.34
misLCS 0.45 0.56 0.46 0.41 0.47 0.45 0.62 0.58 0.60 0.52 0.46 0.49

HailFinder5

PCD-by-PCD 0.48 0.39 0.36 0.37 0.54 0.47 0.55 0.58 0.42 0.42 0.31 –
MB-by-MB 0.27 0.26 0.32 0.31 0.27 0.39 0.43 0.41 0.43 0.43 0.43 –
CMB – – – – – – 0.55 0.41 0.46 0.40 – –
ELCS 0.45 0.32 0.31 0.40 0.41 – 0.54 0.52 0.40 0.30 0.26 –
misLCS 0.66 0.62 0.73 0.67 0.59 0.57 0.72 0.70 0.76 0.74 0.71 –

Pigs

PCD-by-PCD 0.84 0.81 0.73 0.77 0.55 0.52 0.82 0.67 0.77 0.74 0.55 0.53
MB-by-MB 0.63 0.63 0.60 0.53 0.48 0.45 0.66 0.74 0.68 0.63 0.58 0.51
CMB 0.74 0.69 0.69 0.53 0.50 0.49 0.73 0.71 0.68 0.60 0.53 0.45
ELCS 0.85 0.88 0.85 0.72 0.50 0.46 0.85 0.73 0.76 0.75 0.48 0.45
misLCS 0.89 0.91 0.82 0.82 0.63 0.46 0.92 0.89 0.88 0.76 0.63 0.65

Gene

PCD-by-PCD 0.51 0.63 0.47 0.38 0.39 0.36 0.50 0.52 0.49 0.39 0.33 0.41
MB-by-MB 0.37 0.44 0.37 0.36 0.36 0.44 0.40 0.35 0.41 0.43 0.43 0.35
CMB 0.71 0.68 0.58 0.63 0.44 0.38 0.67 0.66 0.56 0.50 0.48 0.49
ELCS 0.87 0.76 0.69 0.58 0.60 0.46 0.67 0.73 0.65 0.59 0.53 0.55
misLCS 0.87 0.86 0.82 0.62 0.64 0.54 0.88 0.88 0.68 0.63 0.60 0.55
Fig. 5. Crucial difference diagram of the Nemenyi test for 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 /𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 of local causal structure learning algorithms.
misLCS, ELCS, PCD-by-PCD, CMB, MB-by-MB, respectively. It signifies
that the misLCS is more likely to get the best results.

To further analyze the significant difference between misLCS and
its rivals on seven BNs, we perform the Nemenyi test, which states
that the performance of two algorithms is significantly different if the
corresponding average ranks differ by at least one critical difference
(CD). Fig. 5 provides the CD diagrams of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒, where
the average rank of each algorithm is marked along the axis (lower
ranks to the right). We observe that misLCS is the only method that
achieves the lowest rank in all experimental results. This result provides
strong evidence of the superior performance of misLCS in local causal
structure learning with missing data.

In summary, misLCS not only improves the accuracy of missing
data imputation, but also outperforms the four state-of-art local causal
structure learning algorithms from above the analysis. These results
validate that misLCS is a promising approach for local causal structure
learning with missing data.
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5.2.2. Why misLCS is effective?
In this section, we analyze the reason why misLCS is effective from

the following two aspects. First, we evaluate the effectiveness of the
iterative method missing value imputation. Second, we evaluate the
accuracy of skeleton learning.

(1) Comparison of iterative and non-iterative missing value imputa-
tion.

For evaluating the performance of missing value imputation, we
use the 𝑃𝐶𝑃 (the Percentage of Correct Prediction) that is shown in
Eq. (3). 𝑃𝐶𝑃 is an accurate metric to evaluate the difference between
real values and predicted values in missing value imputation.

𝑃𝐶𝑃 = 100 ×
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑖𝑡𝑜𝑛𝑠

(3)

We compare the iterative missing value imputation with the non-
iterative way on seven BNs within different missing rates (10%, 30%,
50%) and samples (500, 1000). The results of 𝑃𝐶𝑃 are shown in
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Table 5
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 on seven BNs using different data sizes and missing rates.

Network Algorithm Size = 500 Size = 1000

10% 20% 30% 40% 50% 60% 10% 20% 30% 40% 50% 60%

Child

PCD-by-PCD 0.86 0.96 1.01 0.92 0.96 1.09 0.85 0.93 0.78 0.97 1.05 0.95
MB-by-MB 0.82 0.81 0.94 0.96 1.08 1.27 0.70 0.66 0.85 0.82 1.09 1.03
CMB 0.68 0.74 0.66 0.66 0.85 0.92 1.01 0.62 0.53 0.72 0.86 0.97
ELCS 0.68 0.68 0.65 0.78 0.82 0.90 0.51 0.58 0.73 0.68 0.79 0.86
misLCS 0.86 0.84 0.79 0.69 0.79 0.83 0.85 0.84 0.73 0.70 0.73 0.86

Alarm1

PCD-by-PCD 0.28 0.53 0.60 0.52 0.60 0.75 0.23 0.23 0.45 0.43 0.60 0.61
MB-by-MB 0.30 0.48 0.51 0.68 0.74 0.88 0.36 0.43 0.49 0.55 0.68 0.84
CMB 0.44 0.49 0.62 0.66 0.70 0.89 0.46 0.39 0.45 0.54 0.72 0.72
ELCS 0.31 0.33 0.44 0.38 0.68 0.76 0.24 0.22 0.30 0.52 0.64 0.85
misLCS 0.44 0.50 0.50 0.51 0.67 0.86 0.44 0.38 0.25 0.46 0.67 0.78

Mildew

PCD-by-PCD 0.92 0.94 0.94 0.95 0.99 1.00 0.90 0.89 0.92 0.92 0.94 0.95
MB-by-MB 1.41 1.41 1.41 1.41 1.41 1.41 1.37 1.37 1.29 1.38 1.22 1.40
CMB 1.09 1.10 1.13 1.14 1.17 1.19 1.00 1.01 1.02 1.03 1.07 1.09
ELCS 1.27 1.27 1.29 1.30 1.29 1.30 1.26 1.25 1.27 1.28 1.28 1.30
misLCS 0.62 0.78 0.90 0.98 1.04 0.94 0.54 0.66 0.79 0.89 1.08 1.05

Alarm3

PCD-by-PCD 0.84 1.03 0.91 0.89 1.04 0.93 0.80 0.75 0.92 0.92 0.95 1.00
MB-by-MB 0.87 0.80 1.02 0.92 0.92 1.02 0.91 0.94 0.89 0.77 0.85 1.02
CMB 0.95 1.06 0.92 0.98 1.06 1.04 0.86 0.89 0.76 0.82 0.91 1.02
ELCS 0.85 0.85 0.78 0.92 1.00 1.09 0.78 0.73 0.75 0.75 0.85 1.00
misLCS 0.94 0.79 0.96 1.00 0.99 0.99 0.72 0.77 0.68 0.87 1.00 0.95

HailFinder5

PCD-by-PCD 0.77 0.88 0.91 0.92 0.78 0.95 0.81 0.79 0.90 0.87 1.04 –
MB-by-MB 1.15 1.18 1.13 1.12 1.09 1.06 0.94 0.98 0.92 0.93 0.91 –
CMB – – – – – – 0.63 0.89 0.76 0.83 – –
ELCS 0.89 1.04 1.11 0.97 0.94 – 0.72 0.80 0.90 1.07 1.10 –
misLCS 0.80 0.90 0.69 0.75 0.82 0.97 0.73 0.74 0.70 0.70 0.71 –

Pigs

PCD-by-PCD 0.23 0.30 0.39 0.33 0.71 0.81 0.23 0.45 0.29 0.34 0.61 0.65
MB-by-MB 0.53 0.53 0.61 0.75 0.79 0.95 0.53 0.41 0.46 0.56 0.64 0.80
CMB 0.33 0.44 0.46 0.70 0.72 0.77 0.38 0.33 0.39 0.54 0.64 0.75
ELCS 0.15 0.12 0.19 0.32 0.72 0.81 0.16 0.30 0.26 0.26 0.72 0.77
misLCS 0.22 0.17 0.28 0.29 0.57 0.88 0.19 0.26 0.19 0.39 0.60 0.56

Gene

PCD-by-PCD 0.89 0.69 0.85 1.03 0.92 1.07 0.78 0.81 0.76 1.01 0.98 0.88
MB-by-MB 1.02 0.97 0.97 1.01 0.96 0.86 0.99 1.02 0.97 0.92 0.95 1.03
CMB 0.47 0.49 0.58 0.49 0.84 1.01 0.51 0.43 0.56 0.67 0.67 0.69
ELCS 0.23 0.38 0.44 0.60 0.58 0.79 0.53 0.31 0.46 0.48 0.61 0.62
misLCS 0.29 0.29 0.35 0.72 0.78 0.92 0.21 0.20 0.58 0.69 0.76 0.85
Fig. 6. The performance of missing value imputation of the iterative method and the non-iterative method.
Fig. 6. We observed that the iterative method consistently outper-
formed the non-iterative method in terms of 𝑃𝐶𝑃 values. The iterative
method’s superior performance shows that it is more accurate than the
non-iterative method in missing value imputation. It means that the
10
iterative method can provide more accurate data for the local causal
structure learning.

(2) Comparison of local skeleton learning between misLCS and
HTION-PC.
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Fig. 7. Comparison of the local skeleton learning between misLCS and HITON-PC.
Fig. 8. True DAG of the protein signaling network and the learned local causal structure by misLCS (with the data missing rate of 10%).
During the skeleton learning process, misLCS aims to find the PC
of the target variable. It has been proved that under certain assump-
tions (such as Causal Faithfulness Assumption and Causal Sufficiency
Assumption), HITON-PC is capable of correctly learning the PC of
any target variable (Yu et al., 2021). To quantitatively measure the
distinction between misLCS and HITON-PC in skeleton learning, we use
the 𝐴𝑟𝑟𝑃 as our evaluation metric.

• 𝐴𝑟𝑟𝑃 : the number of true positives in the output (i.e., the vari-
ables in the output belonging to the true PC of a target variable
in a test DAG) divided by the number of variables in the output
of an algorithm.

Fig. 7 presents a precision comparison of skeleton learning between
misLCS and HITON-PC. On the seven BNs with varying missing rates
(ranging from 10% to 60%) and samples (500, 1000), the 𝐴𝑟𝑟𝑃 value
of misLCS consistently exceeds that of HITON-PC. This indicates that
misLCS attains a notably higher accuracy in skeleton learning.

5.3. Real-world dataset

In addition to benchmark BN dataset, the performance on real-
world datasets is also essential. We adopt a widely used bioinformatics
11
dataset (Sachs et al., 2005) for the discovery of a protein signaling
network based on the expression level of proteins and phospholipids.
In this paper, a total of 7466 samples, 11 cell types, and 20 directed
edges are utilized. And the true DAG of the protein signaling network
is shown in Fig. 8(a).

We consider the ‘‘Mek’’ variable as the target variable to learn its
local causal structure. From Fig. 8(b), we observe that misLCS is able
to correctly learn the direct effects of ‘‘Mek’’ under the data missing
rate of 10%. We further show in Fig. 9 a comparison of misLCS with
the other four local causal structure learning algorithms under MCAR
settings. We observe that misLCS achieves a better performance on
𝑆𝐻𝐷, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, and 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 within different missing rates (ranging
from 0% to 60%).

6. Conclusion and future work

A novel local causal structure learning algorithm with missing
data (misLCS) has been proposed in this paper, which improves the
performance in distinguishing parents from children of a target variable
of interest. misLCS designs the iterative data imputation method and
data subset strategy to get a complete and correct data subset. And it
constructs and identifies the causal direction of the target variable by
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Fig. 9. Results on a real-world dataset: comparison of local causal structure learning with missing rates ranging from 0% to 60%.
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applying feature selection and conditional independence tests. Exten-
sive experimental results on seven benchmark BNs and a real-world
bioinformatics dataset demonstrate that misLCS not only solves the
problems in local causal structure learning with missing data but also
achieves better performance in accuracy. In future, we would focus
on: (1) designing a new missing data imputation method to enhance
its accuracy, and (2) extending the idea of misLCS to global causal
structure learning.
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