2021.09 ~ 现在: 合肥工业大学, 计算机与信息学院, 在读博士 [导师: 💁♂️俞奎教授👍]
2023.10 ~ 2024.10: 新加坡南洋理工大学, 计算与数据科学学院, 访问博士 (CSC) [导师: 💁♂️Han Yu教授👍]
2018.09 ~ 2021.07: 合肥工业大学, 计算机与信息学院, 硕士
2014.09 ~ 2018.07: 安徽师范大学, 计算机与信息学院, 学士
Federated Causally Invariant Feature Learning
Xianjie Guo, Kui Yu, Lizhen Cui, Han Yu, and Xiaoxiao Li
Proceedings of the 39th AAAI Conference on Artificial Intelligence (AAAI'25), 2025.
[CCF A类会议, 录用率约23.40%] 相关下载链接: [PDF][Code][Appendix]
Enhancing Causal Discovery in Federated Settings with Limited Local Samples
Xianjie Guo, Liping Yi, Xiaohu Wu, Kui Yu, and Gang Wang
International Workshop on Federated Foundation Models in Conjunction with NeurIPS 2024 (FL@FM-NeurIPS), 2024.
[顶会Workshop, 优秀学生论文奖, 口头汇报] 相关下载链接: [PDF][Code]
Progressive Skeleton Learning for Effective Local-to-Global Causal Structure Learning
Xianjie Guo, Kui Yu, Lin Liu, Jiuyong Li, Jiye Liang, Fuyuan Cao, and Xindong Wu
IEEE Transactions on Knowledge and Data Engineering (TKDE), 2024.
[CCF A类期刊] 相关下载链接: [PDF][Code][Supplementary Material]
Sample Quality Heterogeneity-aware Federated Causal Discovery through Adaptive Variable Space Selection
Xianjie Guo, Kui Yu, Hao Wang, Lizhen Cui, Han Yu, and Xiaoxiao Li
Proceedings of the 33rd International Joint Conference on Artificial Intelligence (IJCAI'24), 2024.
[CCF A类会议, 录用率约14.00%, (长) 口头汇报] 相关下载链接: [PDF][Code][Appendix]
FedCSL: A Scalable and Accurate Approach to Federated Causal Structure Learning
Xianjie Guo, Kui Yu, Lin Liu, and Jiuyong Li
Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI'24), 2024.
[CCF A类会议, 录用率约23.75%] 相关下载链接: [PDF][Code][Appendix]
Local Causal Structure Learning with Missing Data
Shaojing Sheng, Xianjie Guo, Kui Yu, and Xindong Wu
Expert Systems With Applications (ESWA), 2024.
[SCI一区, 影响因子: 7.5, CCF C类期刊] 相关下载链接: [PDF]
Adaptive Skeleton Construction for Accurate DAG Learning
Xianjie Guo, Kui Yu, Lin Liu, Peipei Li, and Jiuyong Li
IEEE Transactions on Knowledge and Data Engineering (TKDE), 2023.
[CCF A类期刊] 相关下载链接: [PDF][Code][Supplementary Material]
Towards Privacy-Aware Causal Structure Learning in Federated Setting
Jianli Huang, Xianjie Guo (co-first author), Kui Yu, Fuyuan Cao, and Jiye Liang
IEEE Transactions on Big Data (TBD), 2023.
[SCI二区, 影响因子: 7.5, CCF C类期刊] 相关下载链接: [PDF][Code][Supplementary Material]
Causal Feature Selection in the Presence of Sample Selection Bias
Shuai Yang, Xianjie Guo, Kui Yu, Xiaoling Huang, Tingting Jiang, Jin He, and Lichuan Gu
ACM Transactions on Intelligent Systems and Technology (TIST), 2023.
[SCI四区, 影响因子: 7.2] 相关下载链接: [PDF]
A novel data enhancement approach to DAG learning with small data samples
Xiaoling Huang, Xianjie Guo, Yuling Li, and Kui Yu
Applied Intelligence (APIN), 2023.
[SCI二区, 影响因子: 3.4, CCF C类期刊] 相关下载链接: [PDF]
Bootstrap-based Layer-wise Refining for Causal Structure Learning
Guodu Xiang, Hao Wang, Kui Yu, Xianjie Guo, Fuyuan Cao, and Yukun Song
IEEE Transactions on Artificial Intelligence (TAI), 2023.
[EI期刊] 相关下载链接: [PDF][Code]
Bootstrap-based Causal Structure Learning
Xianjie Guo, Yujie Wang, Xiaoling Huang, Shuai Yang, and Kui Yu
Proceedings of the 31st ACM International Conference on Information & Knowledge Management (CIKM'22), 2022.
[CCF B类会议, 长文, 录用率约21.6%] 相关下载链接: [PDF][Code]
Causal Feature Selection With Dual Correction
Xianjie Guo, Kui Yu, Lin Liu, Fuyuan Cao, and Jiuyong Li
IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2022.
[SCI一区, 影响因子: 10.2, CCF B类期刊] 相关下载链接: [PDF][Code][Supplementary Material]
Error-aware Markov blanket learning for causal feature selection
Xianjie Guo, Kui Yu, Fuyuan Cao, Peipei Li, and Hao Wang
Information Sciences (INS), 2022.
[SCI一区, 影响因子: 8.1, CCF B类期刊] 相关下载链接: [PDF][Code]
Accelerating Learning Bayesian Network Structures by Reducing Redundant CI Tests
Wentao Hu, Shuai Yang, Xianjie Guo, and Kui Yu
2021 IEEE International Conference on Big Knowledge (ICBK), 2021.
[EI会议] 相关下载链接: [PDF]
Improving Gradient-based DAG Learning by Structural Asymmetry
Yujie Wang, Shuai Yang, Xianjie Guo, and Kui Yu
2021 IEEE International Conference on Big Knowledge (ICBK), 2021.
[EI会议] 相关下载链接: [PDF]
Causality-based Feature Selection: Methods and Evaluations
Kui Yu, Xianjie Guo, Lin Liu, Jiuyong Li, Hao Wang, Zhaolong Ling, and Xindong Wu
ACM Computing Surveys (CSUR), 2020.
[SCI一区, 影响因子: 23.8] 相关下载链接: [PDF][Code][Supplementary Material]
硕士研究生国家奖学金 [排名: 3rd / 15] (2020.11)
博士研究生国家奖学金 [排名: 1st / 6] (2024.09)
安徽省优秀毕业生称号 (2021.05)
合肥工业大学优秀毕业生称号 (2021.05)
2021年度安徽省计算机学会优秀硕士论文奖 (2021.12)
2022年度安徽省优秀硕士学位论文奖 (2022.12)
2023年度国家留学基金委公派留学奖学金 (2023.08)
2023年度安徽省新时代育人质量工程项目-研究生学术创新: 面向医疗数据的联邦因果发现 (No. 2023xscx012), 申报负责人
2024年度安徽省新时代育人质量工程项目-研究生“创新创业之星”
FL@FM-NeurIPS'24 优秀学生论文奖 (2024.10)
面向隐私保护数据的联邦因果关系推断算法研究 (No. 62376087), 2024.01-2027.12
项目骨干; 经费:51万元
国家自然科学基金面上项目
跨媒体因果推断与可信机器学习 (No. 2021ZD0111801), 2021.12-2025.11
子课题骨干; 经费:180万元
科技部科技创新2030-“新一代人工智能”重大项目
常识知识学习与因果分析 (No. 2020AAA0106100), 2020.11-2024.10
课题骨干; 经费:180万元
科技部科技创新2030-“新一代人工智能”重大项目
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Neural Networks and Learning Systems
ACM Transactions on Knowledge Discovery from Data
IEEE Transactions on Signal and Information Processing over Networks
IEEE Transactions on Emerging Topics in Computational Intelligence
Machine Learning
Neurocomputing
Applied Intelligence
International Journal of Machine Learning and Cybernetics
The Journal of Supercomputing
Intelligent Automation and Soft Computing
CMC-Computers Materials & Continua
Neural Processing Letters
International Conference on Machine Learning (ICML'25), PC Member
International Conference on Learning Representations (ICLR'25), PC Member
Association for the Advancement of Artificial Intelligence (AAAI'24-25), PC Member
International Joint Conference on Artificial Intelligence (IJCAI'24), PC Member
The International Workshop on Federated Learning in the Age of Foundation Models (FL@FM-NeurIPS'23), PC Member
The International Workshop on Federated Foundation Models for the Web 2024 (FL@FM-TheWebConf'24), PC Member
The International Workshop on Trustworthy Federated Learning in Conjunction with IJCAI 2023 (FL-IJCAI'23), PC Member
The International Workshop on Federated Learning and Foundation Models (FL@FM-ICME'24), PC Member