
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Adaptive Skeleton Construction for Accurate
DAG Learning

Xianjie Guo, Kui Yu*, Lin Liu, Peipei Li, and Jiuyong Li

Abstract—Directed acyclic graph (DAG) learning plays a key role in causal discovery and many machine learning tasks. Learning a
DAG from high-dimensional data always faces scalability problems. A local-to-global DAG learning approach can be scaled to
high-dimensional data, however, existing local-to-global DAG learning algorithms employ either the AND-rule or the OR-rule for
constructing a DAG skeleton. Simply using either rule, existing local-to-global methods may learn an inaccurate DAG skeleton, leading
to unsatisfactory DAG learning performance. To tackle this problem, in this paper, we propose an Adaptive DAG Learning (ADL)
algorithm. The novel contribution of ADL is that it can simultaneously and adaptively use the AND-rule and the OR-rule to construct an
accurate global DAG skeleton. We conduct extensive experiments on both benchmark and real-world datasets, and the experimental
results show that ADL is significantly better than some existing local-to-global and global DAG learning algorithms.

Index Terms—Directed acyclic graph, Causal discovery, Local-to-global structure learning, Local skeleton learning

✦

1 INTRODUCTION

D IRECTED Acyclic Graph (DAG) learning as the foun-
dation of a Bayesian network (BN) plays a vital part

in causal discovery [1], [2], explainable model [3], [4], and
many machine learning applications [5], [6]. In a DAG,
nodes denote variables while edges represent the depen-
dence relationship between the variables [7]. For instance,
an edge X1 → X2 in a DAG represents that X1 is a parent
of X2 and X2 is a child of X1.

Although many algorithms have been proposed for
DAG learning, existing methods still face scalability or inac-
curacy problems [8]. Thus developing accurate and efficient
DAG learning algorithms is one of the research hotspots in
causal discovery and machine learning [9]. Early research
efforts focus on learning an entire DAG at once (i.e. global
DAG learning methods), but almost all those global learning
methods are not scalable to high-dimensional data [10],
[11]. Although recent neural DAG learning provide a new
research line for DAG learning, these algorithms attempt
to learn an entire DAG and they still face computational
issues [12], [13].

To alleviate the computational complexity of existing
global DAG learning methods, a local-to-global approach
has been proposed [14], [15]. The local-to-global approach
first learns a local DAG skeleton of each variable. A local
DAG skeleton often refers to the parents and children of
a variable in a DAG. Then it constructs the global DAG
skeleton using the learned local DAG skeletons, and finally

• X. Guo, K. Yu, and P. Li are with the Key Laboratory of Knowledge Engi-
neering With Big Data of Ministry of Education, Hefei University of Tech-
nology, Hefei 230601, China, also with the School of Computer Science and
Information Engineering, Hefei University of Technology, Hefei 230601,
China; e-mail: xianjieguo@mail.hfut.edu.cn, {yukui,peipeili}@hfut.edu.cn
(*Corresponding author: Kui Yu).

• L. Liu and J. Li are with the UniSA STEM, University of South Australia,
Adelaide 5095, Australia; e-mail: {Lin.Liu,Jiuyong.Li}@unisa.edu.au.

Manuscript received * *, *; revised * *, *.

orients edges in this skeleton. Existing local-to-global learn-
ing approaches can be scaled to high-dimensional data.

However, those local-to-global methods may not ensure
accurate DAG skeleton. In a DAG, if there is an edge
between X1 and X2, X1 should be in the parent and child
(PC) set of X2 and X2 also should be in PC set of X1.
Using this symmetrical property and the learned PC sets
of the two variables, we can determine whether there is an
edge between two variables in a underlying DAG. Due to
data noise or small data samples, in the local DAG skeleton
learning phase, it always appears that X1 (or X2) is in the
learned PC set of X2 (or X1) but X2 (or X1) is not in the
learned PC set of X1 (or X2). In this case, it is hard to
determine whether there is an edge between X1 and X2.

X26

X25

X23

True DAG The found PC

sets of X25 and X23

X23 PC(X25)

X25 PC(X23)

The relationship

between X25 and X23

non-adjacent
X25

X23

AND-rule
PC(X25)={X26}

PC(X23)={X25}

(a) Using the AND-rule, MMHC wrongly considers the
two adjacent variables as two non-adjacent ones.

X23

X22

X4

X15

True DAG

X4 PC(X23)

X23 PC(X4)

The relationship

between X23 and X4

adjacent
X23

X4

The found PC

sets of X23 and X4

OR-rule
PC(X23)={X4, X22}

PC(X4)={X15, X22}

(b) Using the OR-rule, SLL+C wrongly considers the two
non-adjacent variables as two adjacent ones.

Fig. 1. Either the AND-rule or the OR-rule may lead to an inaccurate
DAG skeleton

To tackle this issue, existing local-to-global DAG learn-
ing approaches employ either the AND-rule or the OR-
rule (please see Definitions 3.6 and 3.7 in Section 3) for
constructing DAG skeletons [15], [16]. Specifically, if X1 is

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3265015

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on May 08,2023 at 07:46:59 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

in the learned PC set of X2 but X2 is not in the learned PC
set of X1, using the AND-rule, existing algorithms consider
that X1 and X2 have not an edge between them, whereas
employing the OR-rule, they determine that there is an edge
between X1 and X2. However, simply using either rule,
these existing learning algorithms may learn an inaccurate
DAG skeleton, resulting in inaccurate DAGs.

Fig. 1 gives an example to demonstrate the short-
comings of existing local-to-global DAG learning algo-
rithms. In this example, we first choose the frequently
used ALARM Bayesian network for generating a synthetic
datasetD1000×37 (1000 data samples and 37 variables). Then
using the dataset, we run two well-established local-to-
global algorithms, MMHC using the AND-rule [15] and
SLL+C using the OR-rule [16], as shown in Fig. 1.

Fig. 1(a) shows that using MMHC to learn the PC set of
each variable, X23 is not in the learned PC set of X25 but
the learned PC set of X23 includes X25. To tackle the issue,
MMHC adopts the AND-rule to determine whether there is
an edge between X25 and X23 or not. Thus MMHC wrongly
determines that X25 and X23 are not adjacent. Using SSL+C,
from Fig. 1(b), we find that X4 is in the found PC set of X23

while the found PC set of X4 does not include X23. Using
the OR-rule, the SSL+C algorithm wrongly considers that
there is an edge between X23 and X4.

Based on the observations discussed above, we find that
if MMHC uses the OR-rule in Fig. 1(a) while SLL+C em-
ploys the AND-rule in Fig. 1(b), we will get the satisfactory
results. Thus a question naturally arises: can we use both the
AND-rule and the OR-rule simultaneously and adaptively
determine which rule will be used during constructing a
global DAG skeleton? Motivated by the question, we sum-
marize the shortcomings of existing methods and our main
contributions are shown in Fig. 2. Specifically, in this paper,
our main contributions are as follows.

Local-to-global DAG learning

Missing true edges using

the AND-rule

(increase false negatives)

Adding extra edges using

the OR-rule

(increase false positives)

Adaptively using the AND-rule and the OR-rule

Adaptive DAG Learning (ADL)

More accurate skeleton More exact DAG

Shortcomings

Solution

Strengths

Fig. 2. Shortcomings of existing methods and our main contributions

• We propose a new Adaptive DAG Learning (ADL)
algorithm for accurate local-to-global DAG learning.
The main idea of ADL is that it designs a novel
strategy to adaptively use both the AND-rule and
the OR-rule to construct an accurate global skeleton
using the learned local skeletons.

• We conduct extensive experiments using 11 bench-
mark BN datasets and a real-world dataset, to eval-
uate the proposed algorithm and compare it with
the representative and state-of-the-art local-to-global

and global DAG learning algorithms. Experimental
results have shown that our proposed algorithm
outperforms those algorithms compared.

The remainder of this paper is organized as follows.
Section 2 reviews the related work and Section 3 gives the
notations and definitions. Section 4 describes the proposed
ADL algorithm in detail and Section 5 reports the experi-
mental results. Section 6 summarizes the paper.

2 RELATED WORK

Learning a DAG from observational data is crucial for data
mining and machine learning [17]. In recent years, Many
effective algorithms have been proposed for learning DAGs
from observational data [18], and according to the learning
scale, these algorithms can be divided into two types, global
methods [12], [19] and local-to-global methods [14], [15].

2.1 Global DAG learning algorithms
Traditional global DAG learning algorithms are subdivided
into two types: score-based and constraint-based meth-
ods [17]. Score-based methods use a scoring function to
select the DAG with the best score in the space of DAGs [20],
the space of equivalence classes of DAGs [21], or the space
of node-ordering [19]. The problem of searching for the
best-scored DAG is known to be NP-hard [8]. Fortunately,
when a variable ordering of a DAG is given, the problem of
finding the best-scored DAG consistent with this ordering is
not NP-hard. For instance, the K2 algorithm [22] first takes
a random ordering of variables as an input, and then selects
a DAG that has the largest posterior probability based on
a given dataset. Indeed, if the in-degrees of variables are
bounded to k, then the best-scored DAG can be learned with
the time complexity of O(mk+1), where m is the number of
variables. However, the effectiveness and efficiency of K2
are strongly dependent on the initial ordering of variables,
and an incorrect initial variable ordering can lead to an
incorrectly learned DAG. Recently, Behjati et al. attempted
to derive a high-quality ordering of variables from a given
dataset as an initial input, and proposed two improved K2
algorithms for DAG learning [23], [24].

Constraint-based methods determine the conditional in-
dependence relationship between variables by employing
conditional independence (CI) tests from data and then
construct a DAG that best fits those independence relation-
ships [7]. Common constraint-based algorithms include Pe-
ter and Clark (PC) [25] and Fast Causal Inference (FCI) [26]
algorithms. However, when there are insufficient sample
sizes, the results of CI tests are not reliable, and an error
in these CI tests has a cascading effect in the subsequent
learning process. Accordingly, in practice, the PC and FCI
algorithms may perform poorly. Colombo et al. consider
the effect of mistaken CI tests arising from limited sample
sizes, and point out that the output from the original PC
and FCI algorithms is sensitive to the order in which CI
tests are performed. Therefore, they modify the original PC
and FCI algorithms and create the PC-stable and FCI-stable
algorithms for removing this order dependence [10].

However, traditional global DAG learning methods for-
mulate the DAG learning problem as a combinatorial op-
timization problem and depend on various local heuristics

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3265015

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on May 08,2023 at 07:46:59 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

for enforcing the acyclicity constraint. To avoid the com-
binatorial constraint, recently, Zheng et al. [12] formulate
the DAG learning problem as a continuous optimization
problem and provide a new research line for DAG learn-
ing. In the continuous optimization problem, the DAG is
defined as a weighted adjacency matrix optimized by the
variations of gradient descent. Based on this work, many
continuous optimization based DAG learning methods have
been proposed [13], [27], [28], [29], and they have tried
different types of neural network models, loss functions and
representations of weighted adjacency matrix to improve
their performance.

2.2 Local-to-global DAG learning algorithms

In the global DAG learning algorithms mentioned above,
traditional algorithms attempt to learn an entire DAG and
the search space of DAGs is combinatorial and exponential
with the number of variables, resulting in that learning an
entire DAG at once is computationally infeasible when the
number of variables is large. Likewise, continuous optimiza-
tion based algorithms also face time-consuming issues since
they frequently perform matrix operations, or employ deep
neural network models.

To tackle this problem, local-to-global DAG structure
learning methods have been proposed and consist of three
phases: 1) local DAG skeleton learning; 2) global skeleton
construction using either the AND-rule or the OR-rule; 3)
edge orientation. Specifically, the first step aims to learn
the local skeleton (e.g. PC (parents and children) or MB
(Markov blanket)) of each variable independently, and local
skeleton learning can significantly reduce the potential DAG
search space [30], [31], [32]. Then, the second step utilizes the
learned local skeleton to construct the global skeleton using
either the AND-rule or the OR-rule. The last step is to orient
the undirected edges in the skeleton using CI tests or score
functions [20], [33].

In the past two decades, several local-to-global structure
learning methods have been proposed. For instance, the
GSBN algorithm [34] learns the MB of each variable and
constructs the global skeleton based on the AND-rule. It
uses CI tests to orient edges. The MMHC algorithm [15] first
learns the PC of each variable using CI tests, then constructs
the global skeleton using the AND-rule, and finally uses
a score function to orient edges. SLL+C/G [16] first finds
the MB of each variable using a score-based BN structure
learning algorithm (called SLL), then constructs the global
skeletons using the OR-rule, and finally SLL+C and SLL+G
employ CI tests and score functions to orient edges in the
skeleton, respectively. Instead of finding the PC set of each
variable in advance, the GGSL algorithm [14] first randomly
selects a variable and learns the local DAG structure around
the variable using a score-based BN structure learning al-
gorithm, then gradually expands the learned structure until
the entire structure is learned.

However, just as we discussed in Section 1, simply using
either the AND-rule or the OR-rule for constructing global
skeletons, existing local-to-global learning methods may
learn an inaccurate DAG skeleton, leading to a unsatisfac-
tory DAG.

3 NOTATIONS AND DEFINITIONS

In this section, we will briefly introduce some basic defini-
tions and notations frequently used in this paper (see Table 1
for a summary of the notations).

TABLE 1
Summary of notations

Notation Meanings

D a dataset with m random variables
X the set of m random variables in D
Xi, Xj a single variable in X (i, j = 1, 2, ...,m)
S a conditioning set within X
P a joint probability distribution over X
G a direct acyclic graph over X
Xi ⊥̸⊥ Xj |S Xi and Xj are conditionally dependent given S
Xi ⊥⊥ Xj |S Xi and Xj are conditionally independent given S
MB(Xi) Markov blanket of Xi

PC(Xi) a set of parents and children of Xi

SepSet(Xi, Xj) a separation set of Xi from Xj

P (·|·) conditional probability
skeleton∗ the skeleton of a direct acyclic graph

The definition of conditional independence (and depen-
dence) is given as follows.

Definition 3.1 (Conditional Independence). X1 and X2

are conditionally independent given a variable set S if
P (X1, X2|S) = P (X1|S)P (X2|S); otherwise, X1 and X2 are
conditionally dependent given S.

Definition 3.2 (Bayesian Network). [7] Let P denote the joint
probability distribution over a variable set X of a DAG G. The
triplet <X , G, P> is called a Bayesian network iff <X , G, P>
satisfies the Markov condition: every variable in G is independent
of any subset of its non-descendants conditioning on its parents.

Definition 3.3 (D-Separation). [7] In a DAG G, a path γ is
d-separated (or blocked) by a variable set S⊂X iff 1) γ contains
a chain X1 → X3 → X2 or a fork X1 ← X3 → X2 with the
middle variable X3 ∈ S, or 2) γ contains an inverted fork (or
collider) X1 → X3 ← X2 with X3 /∈ S and X3’s descendants
/∈ S.

Two variables X1 and X2 are d-separated by a variable
set S iff S blocks every path from X1 to X2. In this paper,
we call such a set S a separation set of X1 from X2, denoted
as SepSet(X1, X2).

Definition 3.4 (Faithfulness). [35] Given a BN <X , G, P>,
P is faithful to G when for ∀X1, X2 ∈ X , ∃S ⊆ X \ {X1, X2}
d-separates X1 and X2 in G if X1 ⊥⊥X2|S holds in P.

Definition 3.4 establishes a relation between a probability
distribution P and its underlying DAG G. In a BN, the faith-
fulness assumption implies that two variables X1, X2 ∈ X
that are conditionally independent conditioning on a subset
S ⊆ X \ {X1, X2} in P are d-separated with each other by S
in G. Under the assumption, we can use CI tests to find all
dependencies or independencies entailed with a BN.

Therefore, by performing CI tests and identifying d-
separation relationships among random variables, the entire
graph structure can be inferred.

Definition 3.5 (Markov blanket). [7] Under the faithfulness
assumption, the MB of a variable X1 in G, noted as MB(X1), is
unique and consists of parents, children and spouses of X1.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3265015

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on May 08,2023 at 07:46:59 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

In a BN, sometimes the relations between two variables
X1 and X2 learned from data are asymmetric (e.g., the PC
set of X1 includes X2 but X1 is not in the PC set of X2).
To determine whether they are adjacent, the AND-rule and
OR-rule are defined as follows. Clearly the OR-rule is less
strict than the AND-rule.

Definition 3.6 (AND-rule). [31] For a variable X1 to be
adjacent to another variable X2 in a DAG, both of the following
statements hold true: 1) X1 must be in the PC set of X2 found by
a PC learning algorithm, i.e., X1 ∈ PC(X2) and 2) X2 must be
in the found PC set of X1, i.e., X2 ∈ PC(X1).

Definition 3.7 (OR-rule). [31] Two variables X1 and X2 are
considered to be adjacent variables if any of the following holds
true: 1) X1 is in the PC set of X2 found by a PC learning
algorithm, i.e., X1 ∈ PC(X2) or 2) X2 is in the found PC set of
X1, i.e., X2 ∈ PC(X1).

Proposition 3.1. [7], [35] In a BN, if there is an edge between
variables X1 and X2, ∀S ⊆ X \ {X1, X2}, X1 ⊥̸⊥ X2|S holds.

Proposition 3.1 states that if X1 is a parent or a child of
X2, X1 and X2 are not conditionally independent condition-
ing on any variable subsets. Proposition 3.1 is the rationale
of learning the PC set of a variable of all existing PC learning
algorithms.

4 OUR METHOD

4.1 Overview of the ADL algorithm
In this section, we propose the ADL algorithm to
learn a DAG from the dataset D with the variable set
X={X1, X2, · · · , Xm}. As shown in Fig. 3, ADL consists of
three steps, and our novel contributions lie in Step 2.

• Step 1 learns the PC (Parent-Child) set of each vari-
able in X using an existing constraint-based PC
learning algorithm, such as MMPC [36], HITON-
PC [37], and FindPC [38].

• When constructing the global skeleton using the PC
sets obtained in Step 1, existing local-to-global DAG
learning methods may miss the true edges using the
AND-rule, or add the extra edges using the OR-
rule. Instead of simply using either rule, in Step 2,
we have designed a novel adaptive strategy, and it
can simultaneously and adaptively use the AND-rule
and OR-rule to construct an accurate global skeleton.

• Step 3 orients edges in the global skeleton using a
score-and-search strategy [20], [33].

Find the PC set of

each variable

in a dataset

Use the AND-rule

and the OR-rule to

adaptively construct

the global skeleton

 Orient edges in the

skeleton

Step 1 Step 2 Step 3

Adaptive Skeleton Construction

Adaptive DAG Learning

Example Example Example

X1 X2 Xm

Fig. 3. The framework of the ADL algorithm.

4.2 The adaptive skeleton construction strategy

In this section, we will focus on describing the adaptive
skeleton construction strategy of ADL (i.e., Step 2 in Fig. 3).
Let PC(Xi) and PC(Xj) represent the learned PC sets of
Xi and Xj respectively. Suppose, in Step 1 of ADL, we have
learned the PC set of each variable in X={X1, X2, · · · , Xm}.
For each pair of variables Xi and Xj , according to the
learned relations between Xi and Xj , we design the fol-
lowing adaptive strategy to construct a global skeleton, and
this strategy consists of two criteria as follows.

Criterion 1: the learned relations between Xi and Xj are
symmetrical, i.e., Xj ∈ PC(Xi) and Xi ∈ PC(Xj) (or Xj /∈
PC(Xi) and Xi /∈ PC(Xj)) hold. Under this situation, either
the AND-rule or the OR-rule can be used. For example, if
Xj ∈ PC(Xi) and Xi ∈ PC(Xj), based on the AND-rule or
the OR-rule, Xi and Xj are considered as being adjacent in
the true DAG; if Xj /∈ PC(Xi) and Xi /∈ PC(Xj), based on
the AND-rule or the OR-rule, Xi and Xj are determined to
be non-adjacent in the true DAG.

The idea behind Criterion 1 is that if both variables
consider each other as a direct neighbor, there is a high
possibility that these two variables are connected by an edge
in the true DAG; similarly, if neither variable considers the
other to be its direct neighbor, there is a high possibility that
there is no edge between them in the true DAG.

Criterion 2: the learned relations between Xi and Xj are
not symmetrical, that is, Xi ∈ PC(Xj) but Xj /∈ PC(Xi) (or
Xi /∈ PC(Xj) but Xj ∈ PC(Xi)). Let SepSet(Xi, Xj) denote
a conditioning set that makes Xi and Xj conditionally
independent or d-separation. In this case, we discuss this
adaptive strategy in the following two aspects.

Case 1 Case 2

X1

X2

X3

X4

X1

X2

X3

Fig. 4. An example demonstrating how Criteria 2-1 and 2-2 are used.

Criterion 2-1: if (PC(Xi)∩PC(Xj))∩SepSet(Xi, Xj) = ∅,
the OR-rule should be used. For instance, in Case 1 of
Fig. 4, first, X1 is added to PC(X2) and X3 is added
to PC(X1). Then, due to data issues (e.g., noise or small
samples), {X3} may become the set SepSet(X1, X2), i.e.,
X1 ⊥⊥ X2|X3. Therefore, X2 cannot be added to PC(X1),
and we obtain X2 /∈ PC(X1) but X1 ∈ PC(X2). Here,
(PC(X1) ∩ PC(X2)) ∩ SepSet(X1, X2) = ∅ holds. Based on
Criterion 2-1, we use the OR-rule to determine that X1 and
X2 are adjacent, which is consistent with the relationship
between X1 and X2 in the true DAG.

Criterion 2-2: if (PC(Xi)∩PC(Xj))∩SepSet(Xi, Xj) ̸= ∅,
we should apply the AND-rule. For example, in Case 2 of
Fig. 4, when using an existing PC learning algorithm, we
may obtain PC(X1) = {X3, X2}, PC(X2) = {X3, X4}, and
SepSet(X1, X2) = {X3, X4}. In this case, X2 ∈ PC(X1) but
X1 /∈ PC(X2), and (PC(X1)∩PC(X2))∩ SepSet(X1, X2) =
{X3} ̸= ∅ holds. Based on Criterion 2-2, we employ the
AND-rule and determine that X1 and X2 are non-adjacent,

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3265015

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on May 08,2023 at 07:46:59 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

which is consistent with the relationship between X1 and
X2 in the true DAG.

Inspired by the two examples (Case 1 and 2 of Fig. 4)
mentioned above, we propose the following Theorem 4.1
for introducing the idea of Criterion 2.

Theorem 4.1. Suppose all paths between Xi and Xj in G
contain at least one of the following cases: 1) Xi − Xj (e.g.
Xi ← Xj , Xi → Xj). 2) a chain Xi → □ → Xj (or
Xi ← □ ← Xj). 3) a fork Xi ← □ → Xj . Given a
PC learning algorithm for learning PC(Xi) and PC(Xj)) from
D generated by G, if Xi ∈ PC(Xj) but Xj /∈ PC(Xi)
(or Xi /∈ PC(Xj) but Xj ∈ PC(Xi)), the relationship
between Xi and Xj in G is determined as adjacent when
(PC(Xi)∩PC(Xj))∩SepSet(Xi, Xj) = ∅ holds.

Proof. We assume that Xi is not adjacent to Xj , that is,
all paths between Xi and Xj contain at least a chain
Xi → □→ Xj (or Xi ← □← Xj) or a fork Xi ← □→ Xj ,
and we let Xk ∈ X \ {Xi, Xj} be the middle variable.
Thus, Xk ∈ PC(Xi) and Xk ∈ PC(Xj), further, Xk ∈
PC(Xi) ∩ PC(Xj). Since Xi ∈ PC(Xj) and Xj /∈ PC(Xi),
the PC set of Xi learned by a PC learning algorithm is
true, whereas the learned PC set of Xj is false. Clearly,
there is a set S ⊆ PC(Xi) that makes Xi ⊥⊥ Xj |S hold
due to Xj /∈ PC(Xi). According to Definition 3.4, S is
the separation set SepSet(Xi, Xj) that can d-separate Xi

and Xj in G. Based on Definition 3.3, SepSet(Xi, Xj) must
include the middle variable Xk, i.e., Xk ∈ SepSet(Xi, Xj).
Thus, Xk ∈ (PC(Xi) ∩ PC(Xj)) ∩ SepSet(Xi, Xj), and
(PC(Xi) ∩ PC(Xj)) ∩ SepSet(Xi, Xj) ̸= ∅, which is against
the condition ((PC(Xi)∩PC(Xj))∩SepSet(Xi, Xj) = ∅).
Thus, the assumption that Xi is not adjacent to Xj does not
hold, and Xi is adjacent to Xj .
Summarizing: Theorem 4.1 is true. (Q.E.D)

Thus, according to Theorem 4.1, the ideas behind Crite-
rion 2-1 and Criterion 2-2 are as follows.

The idea of Criterion 2-1. Given a PC learning algorithm
for learning the PC sets of Xi and Xj , and for the learned PC
sets, we have Xi ∈ PC(Xj) but Xj /∈ PC(Xi). In this case, if
the length of the shortest path between Xi and Xj in the true
DAG is equal to or greater than 2, it would not be possible to
have a direct edge between Xi and Xj . Otherwise, if there
is an edge between Xi and Xj , the path between Xi and Xj

should satisfy the assumption in Theorem 4.1. Thus, when
Theorem 4.1 holds, the OR-rule is used to determine the
relationship between Xi and Xj .

The idea of Criterion 2-2. When Xi ∈ PC(Xj) but
Xj /∈ PC(Xi), if using the AND-rule, we will assume
that Xi and Xj are non-adjacent in the true DAG.
With this assumption, there must exist a conditioning set
SepSet(Xi, Xj) ⊆ PC(Xi) (or PC(Xj)) that d-separates Xi

and Xj , i.e., Xi ⊥⊥ Xj |SepSet(Xi, Xj). Thus when Xj /∈
PC(Xi) holds, during the learning of PC(Xi), a condition-
ing set SepSet(Xi, Xj) ⊆ PC(Xi) is found and it makes Xi

and Xj independent. By the symmetry rule of conditional
independence tests, when learning the PC set of Xj , if this
found set SepSet(Xi, Xj) ⊆ PC(Xj), Xj and Xi are also
conditional independent. When Xi and Xj are non-adjacent
in the true DAG, but an algorithm finds Xi ∈ PC(Xj), the
explanation is that the set PC(Xj) found by the algorithm

only includes a subset of variables within SepSet(Xi, Xj)
(i.e., ∃S ⊆ PC(Xj) and S ⊂ SepSet(Xi, Xj)) so that this
algorithm cannot find the set SepSet(Xi, Xj) within PC(Xj)
to make Xi and Xj independent. Accordingly, under the
situation that Xi and Xj are non-adjacent in the true DAG, it
is more likely that (PC(Xi)∩PC(Xj))∩SepSet(Xi, Xj) ̸= ∅.
In other words, under the situation of Xi ∈ PC(Xj) but
Xj /∈ PC(Xi), if (PC(Xi) ∩ PC(Xj)) ∩ SepSet(Xi, Xj) ̸= ∅,
the AND-rule should be used to determine the relationship
between Xi and Xj , and Criterion 2-2 is reasonable.

As for Criterion 2, if the relation between Xi and Xj is
represented as Xi → Xk ← Xj , SepSet(Xi, Xj) may be an
empty set, leading to (PC(Xi)∩PC(Xj))∩SepSet(Xi, Xj) =
∅. In this case, both Criterion 2-1 and Criterion 2-2 cannot be
correctly used and it would wrongly determine that there is
an edge between Xi and Xj .

4.3 Detailed descriptions of the ADL algorithm

Algorithm 1 gives more details of ADL, and we describe the
details in the followings.

Step 1 (Line 1 of Algorithm 1). In this step, any up-to-
date PC (parents and children) learning algorithm can be
used to learn the PC set for each variable. In our imple-
mentation, we employ HITON-PC [37], one of the best PC
learning algorithms for this step. Learning a local skeleton
for each variable makes ADL scalable to high-dimensional
data. Based on Proposition 3.1, when learning the PC set of
a target variable (such as X1), the condition set that makes
X1 and non-PC variable of X1 (such as X2) independent
can be obtained. Although there are many such condition
sets, we only record the condition set with the smallest size,
i.e., SepSet(X1, X2) (See Definition 3.3 for details). At the
end of the step, we obtain the PC sets of all variables, PCs=
{PC(X1), PC(X2),· · · , PC(Xm)}.

Algorithm 1 Adaptive DAG Learning (ADL)
Input: D: dataset with the variable set X={X1, X2, · · · , Xm}
Output: G∗: the highest scoring DAG
{Step 1: learn the PC sets of all variables}

1: PCs={PC(X1), PC(X2),· · · , PC(Xm)}
{Step 2: adaptively use the AND-rule and the OR-rule to con-
struct the DAG skeleton}

2: for i = 1, . . . ,m; j = 1, . . . , (i− 1) do
3: if Xj ∈ PC(Xi) and Xi ∈ PC(Xj) then
4: skeleton∗(i, j)=skeleton∗(j, i)=1 {Criterion 1}
5: else if Xj /∈ PC(Xi) and Xi /∈ PC(Xj) then
6: skeleton∗(i, j)=skeleton∗(j, i)=0 {Criterion 1}
7: else {Criterion 2}
8: if (PC(Xi) ∩ PC(Xj)) ∩ SepSet(Xi, Xj) = ∅ then
9: skeleton∗(i, j)=skeleton∗(j, i)=1 {Criterion 2-1}

10: else
11: skeleton∗(i, j)=skeleton∗(j, i)=0 {Criterion 2-2}
12: end if
13: end if
14: end for
{Step 3: orient edges in the skeleton}

15: G∗ greedy search and scoring←−−−−−−−−−−−−−−−−− skeleton∗

16: return G∗

Step 2 (Lines 2-14 of Algorithm 1). Using the learned
PC sets (i.e. PCs), ADL adaptively constructs the DAG
skeleton by the AND-rule and the OR-rule. Here, the

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3265015

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on May 08,2023 at 07:46:59 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

skeleton of a DAG is denoted as skeleton∗(i, j) (an ad-
jacency matrix where i, j ∈ {1, . . . ,m}). Specifically, if
skeleton∗(i, j) = 0, there is no edge between Xi and Xj ,
while if skeleton∗(i, j) = 1, Xi and Xj are considered to be
adjacent in the skeleton.

For each pair of variables Xi and Xj , at Lines 3 and 5,
ADL firstly checks whether the learned relations between
Xi and Xj are symmetrical. If so, ADL will apply Criterion
1 to adaptively determine the relationship between Xi and
Xj by using the AND-rule or the OR-rule at Line 3-6.

When the learned relations between Xi and Xj are not
symmetrical, at Lines 8 to 11, ADL uses Criterion 2 to adap-
tively determine whether there is an edge between Xi and
Xj . Specifically, if (PC(Xi)∩PC(Xj))∩SepSet(Xi, Xj) = ∅
holds, ADL uses the OR-rule at Line 9. Otherwise, ADL
uses the AND-rule at Line 11. By adaptively employing
the AND-rule and the OR-rule to determine the relationship
between two variables, the ADL algorithm is able to tackle
the shortcomings of existing local-to-global DAG learning
algorithms.

Step 3 (Line 15 of Algorithm 1). To orient edges in the
DAG skeleton achieved at Step 2, at Line 15, ADL uses a
Bayesian score criterion, BDeu [20], and a search procedure,
hill-climbing [15], [33].

Step 1 Step 2 Step 3True DAG

Case 1

Case 2

A

B

C

E

F

PC(A)={B,C,F}

PC(B)={A,E,C}

PC(C)={B,E}

PC(E)={B,C}

PC(F)={A} asymmetry

A

B

C

E

F

A

B

C

E

F

A B

C

E

PC(A)={C}

PC(B)={C}

PC(C)={A,B}

PC(E)={C}

asymmetry

A B

C

E

A B

C

E

Fig. 5. Two examples of tracing the ADL algorithm.

As shown in Fig. 5, we use two examples to demonstrate
how ADL works.

• Case 1. In Step 1 (Line 1 of Algorithm 1), ADL obtains
the PC set of each variable in X = {A,B,C,E, F}
using the HITON-PC algorithm. However, we find
that there is an asymmetrical relationship, i.e., C ∈
PC(A) but A /∈ PC(C). This is because, based on
Definition 3.3, {B,F} cannot d-separate the path
between A and C . Thus, according to Definition 3.4,
A ⊥̸⊥ C|{B,F} holds, and C is added to the PC set
of A as a false positive. In this case, SepSet{A,C} =
{B,E} since A⊥⊥ C|{B,E} holds according to Def-
initions 3.3 and 3.4. Therefore, (PC(A) ∩ PC(C)) ∩
SepSet{A,C} = {B} ̸= ∅, and based on Criterion 2-
2, A and C are considered to be non-adjacent (Lines
10-11 of Algorithm 1). Then, based on Criterion 1,
ADL constructs the complete global skeleton in Step
2. Finally, in Step 3 (Line 15 of Algorithm 1), by
orienting the undirected edges in the global skeleton,
we get the true DAG.

• Case 2. ADL first finds the PC sets of all variables in
Step 1 (Line 1 of Algorithm 1), but C ∈ PC(E) and

E /∈ PC(C). Clearly, according to Proposition 3.1,
learning the PC set of C encounters an error (i.e. C⊥⊥
E|A) due to data issues (e.g. noise or small samples).
In this case, SepSet{C,E} = {A}. Due to (PC(C) ∩
PC(E)) ∩ SepSet{C,E} = ∅, based on Criterion 2-
1, C and E are determined as adjacent (Lines 8-9
of Algorithm 1). Then according to Criterion 1, the
global skeleton is constructed correctly in Step 2. In
Step 3 (Line 15 of Algorithm 1), based on the true
global skeleton, ADL learns the true DAG by a score-
and-search strategy.

5 EXPERIMENTS

In this section, we conduct experiments to systematically
evaluate the effectiveness of our method. In Section 5.1,
we describe the experiment settings, including comparison
methods, datasets, evaluation metrics, and implementation
details. Section 5.2 and Section 5.3 compare our proposed
algorithm with 12 other DAG learning algorithms on 11
benchmark BN datasets and a real dataset, respectively.

5.1 Experiment setting

5.1.1 Comparison methods.
We compare the ADL algorithm with five representa-
tive local-to-global DAG learning algorithms, including
GSBN1 [34], MMHC2 [15], SLL+C/G3 [16] and GGSL [14],
and seven well-established and state-of-the-art global
DAG learning algorithms, including K24 [22], OBS [19],
Improved-K2 [24], NOTEARS5 [12], DAG-GNN6 [13],
GOLEM7 [28] and DAG-NoCurl8 [29].

5.1.2 Datasets.

TABLE 2
Summary of benchmark BNs

Num. Num. Max In/out- Min/Max Variable
Network Vars Edges Degree |PCset| Domain

Child 20 25 2/7 1/8 2-6
Alarm 37 46 4/5 1/6 2-4
Child3 60 79 3/7 1/8 2-6
Alarm3 111 149 4/5 1/6 2-4

Insurance5 135 284 5/8 1/10 2-5
Alarm5 185 265 4/6 1/8 2-4

Insurance10 270 556 5/8 1/11 2-5
Alarm10 370 570 4/7 1/9 2-4

Pigs 441 592 2/39 1/41 3-3
Gene 801 972 4/10 0/11 3-5

Munin 1041 1397 3/69 1/69 1-15

1. The source codes of GSBN are available at https://github.com/
kuiy/CausalLearner.

2. The source codes of MMHC are available at http://mensxmachina.
org/en/software/probabilistic-graphical-model-toolbox.

3. The source codes of SLL+C/G are available at https://www.cs.
helsinki.fi/u/tzniinim/uai2012.

4. The source codes of K2 are available at https://github.com/
bayesnet/bnt.

5. The implementation is publicly available at https://github.com/
xunzheng/notears.

6. The code is available at https://github.com/fishmoon1234/
DAG-GNN.

7. The code is available at https://github.com/ignavierng/golem.
8. The code is available at https://github.com/fishmoon1234/

DAG-NoCurl.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3265015

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on May 08,2023 at 07:46:59 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

Several benchmark BN datasets. We first evaluate our
algorithm and its rivals on eleven benchmark BNs, using
the datasets provided from existing works [15]. Each BN
consists of two groups data containing 5 datasets with 500,
and 1000 data instances, respectively. The details of the
eleven benchmark BNs are presented in Table 29.

A real dataset. We also compare the proposed method
with its rivals on a real biological dataset, Sachs [39]. Sachs is
a protein signaling network expressing the level of different
proteins and phospholipids in human cells. It is commonly
viewed as a benchmark graphical model with 11 nodes (cell
types) and 17 edges. In our experiments, we utilize the
observational data with 7466 samples.

For the experiments on the synthetic datasets, please see
the Supplementary Material.

5.1.3 Evaluation metrics.
We evaluate the performance of ADL and its rivals from
three aspects: structure errors, structure correctness and
efficiency. The SHD (Structural Hamming Distance) and
Ar F1 metrics as shown below are used to measure structure
error and structure correctness, respectively. The running
time is utilized as the efficiency measure of the algorithms.

• SHD (Structural Hamming Distance) is the sum of
the values of Miss, Extra, Reverse and Undirected,
where Miss is the number of missing edges in the
DAG learned by an algorithm against the true DAG,
Extra is the number of extra edges in the learned
DAG, Reverse is the number of edges with wrong
directions according to the true DAG, and Undirected
is the number of undirected edges in the learned
DAG. In our experiments, we randomly orient the
edges that cannot be oriented by a DAG learning al-
gorithm, thus the value of Undirected is always 0 and
Undirected metric is not shown in the experimental
results. The smaller the value of SHD the better.

• Ar F1= 2∗Ar Precision∗Ar Recall
Ar Precision+Ar Recall . The Ar Precision

denotes the number of correctly predicted arrow-
heads in the output divided by the number of edges
in the output of an algorithm, while the Ar Recall
denotes the number of correctly predicted arrow-
heads in the output divided by the number of true ar-
rowheads in a test DAG. Compared to SHD, Ar F1
not only considers erroneous edges, but also correct
edges. A larger value of Ar F1 is better.

On benchmark BN datasets, for each algorithm, we
report the average results of these metrics over 5 datasets
generated by a BN. In Tables 3-8, the symbol “-” denotes that
an algorithm does not produce results on the corresponding
BN when the running time of the algorithm exceeded 12
hours or there is no enough memory space, and the results
are shown in the format of A ± B, where A represents the
average of these metrics, and B is the standard deviation. In
addition, the best results are highlighted in bold face.

5.1.4 Implementation details.
All experiments were conducted on a computer with Inter
Core i9-10900 3.70-GHz CPU, NVIDIA GeForce RTX 3060

9. Those benchmark BNs are publicly available at http://www.
bnlearn.com/bnrepository/.

GPU and 64-GB memory. The significance level for con-
ditional independence tests is set to 0.01. For continuous
optimization based DAG learning methods (i.e., NOTEARS,
DAG-GNN, GOLEM and DAG-NoCurl), we adopt 0.3 as
the threshold to prune the DAGs obtained from those
methods [28]. K2, OBS, Improved-K2, GSBN, MMHC and
our algorithm are implemented in MATLAB, SLL+C/G and
GGSL are implemented in C++, and NOTEARS, DAG-GNN,
GOLEM and DAG-NoCurl are implemented in PYTHON.

5.2 Results of DAG learning on benchmark data

In this section, we report the experimental results of ADL
and its rivals on 11 benchmark BN datasets. Specifically,
Section 5.2.1, 5.2.2 and 5.2.3 describe the structure errors,
structure correctness and time efficiency, respectively. In Sec-
tion 5.2.4, we compare BIC (Bayesian information criterion)
scores [40] of each algorithm. Finally, we conduct statistical
tests for verifying whether ADL is significantly better than
other methods in Section 5.2.5.

5.2.1 Structure errors.
From Tables 3 and 4, we can see that for almost all bench-
mark datasets with both 500 and 1,000 samples, the ADL
algorithm achieves a lower SHD value than the other algo-
rithms, which indicates the superiority of our method. The
reason is as follows: the adaptive skeleton learning strategy
adopted by ADL enables that ADL can reduce the number
of missing edges and extra edges simultaneously, further
reducing the number of incorrect directed edges.

In the following, we compare ADL to each of its rivals
from four metrics, SHD, Reverse, Miss and Extra.

(1) ADL against K2, OBS and Improved-K2. It can be
seen that the quality of the structures learned by K2 and
OBS is generally worse than that learned by local-to-global
DAG learning methods (especially ADL), and is competitive
with that learned by continuous optimization based DAG
learning methods. Specifically, compared with K2, ADL
reduces the value of SHD by approximately 87% and 92%
on Child with 1,000 samples and Alarm with 1,000 samples,
respectively. Compared with OBS, ADL reduces the value of
SHD by approximately 91% on Alarm with 1,000 samples.
As ordering-based DAG learning methods, K2 and OBS
does not achieve a higher quality of learned structures than
ADL, probably since their performance depend on the order
of nodes given initially. Although OBS constantly updates
the order of nodes in the space of node-ordering and finds
the highest scoring DAG consistent with each ordering, it
only obtains a local optimal solution. Further, as a novel
ordering-based method, Improved-K2 aims to derive a high-
quality ordering of variables from a given dataset as an
initial input. As a result, Improved-K2 significantly reduces
structural errors compared with K2, and is competitive with
local-to-global DAG learning methods.

(2) ADL against GSBN. We can see that for almost
all benchmark datasets with both 500 and 1,000 samples,
ADL is significantly superior to GSBN, since the SHD value
of ADL is much smaller than that of GSBN. Specifically,
compared with GSBN, ADL reduces the value of SHD by
approximately 97% on Pigs with 1,000 samples, and reduces
the values of Reverse and Miss by approximately 90% and

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3265015

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on May 08,2023 at 07:46:59 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

TABLE 3
Summaries of wrongly learned edges (1)

#Sample 500 1000
Network Algorithm SHD (↓) Reverse (↓) Miss (↓) Extra (↓) SHD (↓) Reverse (↓) Miss (↓) Extra (↓)

Child

K2 28.00±5.06 9.60±3.59 10.20±2.98 8.20±1.45 25.60±2.92 6.00±2.04 13.20±5.23 6.40±0.95
OBS 26.20±5.06 6.00±0.71 12.80±3.53 7.40±1.37 21.00±4.13 7.20±2.82 8.60±2.52 5.20±1.86

Improved-K2 13.00±3.25 4.40±1.20 8.20±1.30 0.40±0.55 6.60±0.22 1.40±1.52 4.40±1.34 0.80±0.20
GSBN 14.40±1.14 1.60±0.89 12.80±0.45 0.00±0.00 11.40±0.55 1.60±0.55 9.80±0.45 0.00±0.00

MMHC 9.20±3.70 3.80±1.64 4.40±1.34 1.00±1.00 3.40±0.89 1.00±0.00 2.00±1.00 0.40±0.89
SLL+C 8.00±3.16 2.40±1.82 4.80±1.10 0.80±0.84 5.20±1.30 1.20±0.84 4.00±0.71 0.00±0.00
SLL+G 10.20±2.39 4.00±1.58 5.80±1.30 0.40±0.55 7.80±1.64 3.60±1.14 4.20±0.84 0.00±0.00
GGSL 11.00±2.45 4.80±2.28 5.60±1.14 0.60±0.55 9.40±1.52 4.80±2.59 4.40±1.67 0.20±0.45

NOTEARS 22.20±2.69 6.80±2.37 15.00±4.55 0.40±0.06 22.80±3.25 5.40±2.05 16.60±5.25 0.80±0.20
DAG-GNN 21.80±3.14 8.20±1.24 12.00±1.73 1.60±0.39 22.40±2.72 6.60±2.62 14.80±3.27 1.00±0.30

GOLEM 39.20±3.02 7.80±2.66 13.40±3.15 18.00±3.87 39.20±3.30 4.80±0.53 15.80±4.51 18.60±5.02
DAG-NoCurl 41.20±6.70 10.60±3.83 11.20±2.22 19.40±5.72 41.00±5.66 8.80±1.57 13.60±5.28 18.60±4.87

ADL 5.80±2.59 2.40±2.30 3.20±0.84 0.20±0.45 3.20±0.84 1.00±0.00 2.00±0.71 0.20±0.45

Alarm

K2 51.20±6.34 14.80±2.85 19.00±3.40 17.40±5.70 54.00±4.19 15.00±5.51 17.60±3.50 21.40±3.61
OBS 46.40±4.43 14.80±5.89 16.00±5.45 15.60±3.55 45.40±7.03 17.00±2.04 12.20±2.23 16.20±2.99

Improved-K2 16.60±6.06 1.80±0.57 12.00±0.47 2.80±0.29 9.60±1.53 0.80±0.17 7.80±1.30 1.00±0.26
GSBN 35.20±0.84 11.00±1.00 23.00±1.22 1.20±0.45 29.60±2.07 12.20±1.30 17.40±1.34 0.00±0.00

MMHC 9.40±3.85 2.00±2.92 4.60±0.55 2.80±0.84 7.00±2.92 2.40±2.61 2.40±0.89 2.20±0.84
SLL+C 14.40±1.67 7.00±2.00 5.00±0.71 2.40±0.89 12.20±2.59 8.00±2.55 2.40±0.55 1.80±1.48
SLL+G 15.20±3.70 8.20±5.07 5.00±0.71 2.00±1.00 11.40±3.36 7.40±4.22 2.40±0.55 1.60±1.14
GGSL 18.20±2.28 6.80±3.11 6.00±3.94 5.40±1.82 13.40±2.07 4.60±2.07 6.00±1.73 2.80±1.92

NOTEARS 29.80±3.47 4.60±0.56 20.40±5.66 4.80±1.79 26.80±3.98 4.80±1.61 19.40±2.60 2.60±1.02
DAG-GNN 32.00±2.40 5.00±1.92 16.40±5.40 10.60±2.84 30.20±3.39 6.80±1.97 12.00±2.03 11.40±3.12

GOLEM 64.80±12.91 9.00±3.21 17.40±6.76 38.40±11.66 47.40±3.54 3.60±0.91 19.40±4.31 24.40±3.23
DAG-NoCurl 99.60±9.97 12.40±2.71 14.80±4.61 72.40±19.37 78.20±13.66 11.40±3.54 13.40±4.85 53.40±6.18

ADL 7.20±3.56 1.20±2.17 5.20±1.30 0.80±0.45 4.00±2.35 0.60±1.34 2.80±0.45 0.60±0.89

Child3

K2 77.20±10.77 22.60±8.80 37.80±5.09 16.80±1.94 70.40±12.16 22.20±5.23 30.40±6.08 17.80±2.10
OBS 66.00±12.35 18.20±4.77 33.40±7.67 14.40±3.78 65.00±8.16 24.60±3.70 24.40±7.94 16.00±3.37

Improved-K2 37.80±10.90 8.20±0.35 28.60±7.48 1.00±0.20 32.20±0.20 11.60±4.57 18.20±1.22 2.40±0.10
GSBN 58.00±1.22 12.60±0.55 45.40±1.14 0.00±0.00 50.80±1.10 15.20±0.84 35.20±0.84 0.40±0.55

MMHC 33.80±6.06 10.00±3.39 21.40±1.67 2.40±1.52 27.00±3.08 9.20±1.10 16.40±2.07 1.40±1.14
SLL+C 32.80±4.66 8.80±3.42 19.40±1.52 4.60±2.30 28.00±4.42 8.00±3.08 17.60±2.70 2.40±1.14
SLL+G 32.80±5.31 9.00±2.83 20.60±2.30 3.20±2.17 26.00±5.39 7.00±2.24 17.60±2.70 1.40±1.52
GGSL 41.60±14.19 7.40±3.36 29.80±19.23 4.40±2.97 31.60±16.91 6.60±4.04 22.40±20.66 2.60±2.07

NOTEARS 70.40±6.23 6.60±1.61 61.00±10.80 2.80±0.59 67.60±10.24 5.80±1.52 61.00±18.00 0.80±0.25
DAG-GNN 68.80±6.59 21.60±3.42 40.00±7.92 7.20±2.62 60.80±6.58 16.00±2.46 43.80±16.55 1.00±0.12

GOLEM 121.80±23.87 11.40±2.53 57.40±20.28 53.00±15.08 138.60±25.28 17.40±2.03 48.60±16.77 72.60±18.78
DAG-NoCurl 144.60±18.86 35.20±12.12 35.80±13.23 73.60±16.84 112.20±18.10 43.60±16.87 28.20±6.58 40.40±5.08

ADL 30.80±3.70 9.00±2.83 19.60±2.70 2.20±0.84 24.40±4.34 8.20±1.92 15.80±2.95 0.40±0.55

Alarm3

K2 150.40±24.25 38.20±8.15 69.40±22.24 42.80±16.53 142.20±22.73 37.00±7.53 64.60±24.81 40.60±10.40
OBS 146.00±11.57 35.40±5.47 72.40±9.26 38.20±9.13 138.00±23.56 45.80±17.14 54.00±18.08 38.20±7.21

Improved-K2 93.00±33.14 18.60±2.49 61.60±17.22 12.80±1.01 65.60±8.91 14.20±5.41 47.00±17.30 4.40±1.34
GSBN 115.00±2.00 41.00±2.45 73.20±1.48 0.80±0.84 94.40±4.16 35.80±3.63 58.40±2.41 0.20±0.45

MMHC 56.00±8.43 12.20±4.66 27.40±1.95 16.40±4.83 47.40±9.32 11.00±5.52 23.20±1.30 13.20±3.96
SLL+C 91.40±10.90 25.80±3.56 28.80±2.59 36.80±6.50 76.80±8.87 23.60±3.91 22.00±2.35 31.20±5.93
SLL+G 88.00±8.72 31.60±8.23 31.00±1.58 25.40±4.72 77.60±11.46 35.00±10.70 23.00±1.58 19.60±5.03
GGSL 122.40±6.69 21.20±6.53 61.80±13.52 39.40±8.85 97.80±5.89 15.20±4.97 49.40±5.90 33.20±7.05

NOTEARS 111.40±7.82 8.00±0.87 95.80±15.57 7.60±1.80 109.40±11.51 7.00±1.18 96.80±19.00 5.60±1.95
DAG-GNN 114.60±13.30 13.00±4.34 90.00±20.79 11.60±2.68 113.60±12.18 12.80±3.96 93.40±31.65 7.40±1.72

GOLEM 231.00±34.01 7.00±1.21 115.00±40.53 109.00±38.93 234.00±36.92 13.40±4.97 99.40±37.03 121.20±39.29
DAG-NoCurl 390.40±38.81 29.80±7.78 59.40±19.52 301.20±61.53 231.80±19.95 29.20±4.59 59.60±8.57 143.00±39.40

ADL 41.60±8.71 4.80±4.15 30.20±2.05 6.60±4.22 38.40±5.94 6.80±4.55 26.20±1.79 5.40±1.14

Insurance5

K2 262.80±23.92 52.40±16.49 167.60±45.81 42.80±9.84 275.40±52.43 59.00±14.62 150.80±44.71 65.60±24.08
OBS 235.00±35.80 40.80±11.72 157.20±31.19 37.00±12.61 239.40±17.89 46.40±9.18 145.20±56.90 47.80±10.01

Improved-K2 247.00±27.42 37.00±9.39 193.60±17.23 16.40±2.05 243.20±13.30 61.60±8.23 149.20±14.93 32.40±6.74
GSBN 234.00±4.24 25.80±2.68 194.60±2.97 13.60±1.14 197.80±1.30 25.80±2.17 169.00±1.41 3.00±0.71

MMHC 168.60±8.76 27.80±6.53 118.60±3.58 22.20±4.27 163.80±4.15 44.20±5.50 98.80±1.64 20.80±4.32
SLL+C 204.40±3.65 31.20±4.49 131.20±2.49 42.00±2.45 164.80±12.11 26.00±7.91 110.00±2.00 28.80±4.44
SLL+G 187.20±8.53 30.80±6.22 134.20±2.39 22.20±2.05 159.80±7.36 33.60±7.02 113.00±2.83 13.20±2.77
GGSL 176.00±8.63 23.20±2.59 119.00±13.11 33.80±10.57 148.20±12.66 18.80±3.27 109.60±17.16 19.80±3.83

NOTEARS 258.60±25.91 49.80±5.33 199.80±56.39 9.00±1.20 259.00±22.69 46.20±9.22 202.00±74.59 10.80±2.70
DAG-GNN 268.60±31.69 37.40±6.08 221.80±51.52 9.40±3.64 268.60±19.83 43.60±11.26 213.40±23.39 11.60±4.04

GOLEM 325.20±24.60 40.00±12.30 203.40±80.08 81.80±15.13 325.20±47.35 30.20±11.52 235.80±26.96 59.20±6.88
DAG-NoCurl 728.40±108.83 81.00±29.97 153.60±24.27 493.80±161.14 613.00±52.00 90.00±30.50 131.60±37.55 391.40±47.38

ADL 154.80±6.10 25.60±4.34 118.00±2.45 11.20±1.92 139.40±15.14 36.80±10.38 97.40±3.21 5.20±2.59

Alarm5

K2 263.60±46.52 67.20±19.32 130.40±41.93 66.00±22.54 267.60±21.95 77.00±13.19 117.00±20.25 73.60±9.67
OBS 268.20±45.10 67.00±21.62 137.80±48.14 63.40±9.32 256.00±39.57 71.80±18.30 110.60±21.89 73.60±21.97

Improved-K2 182.00±13.32 29.80±2.86 125.80±24.61 26.40±0.30 133.40±8.77 28.20±2.87 92.60±4.69 12.60±0.90
GSBN 209.00±4.47 72.20±3.27 135.60±0.89 1.20±0.84 182.00±5.10 66.00±4.85 115.40±3.97 0.60±0.55

MMHC 125.20±6.76 24.40±8.17 62.20±1.30 38.60±3.36 96.00±8.28 15.80±8.17 52.80±1.10 27.40±4.04
SLL+C 208.60±18.28 46.00±5.29 61.60±0.89 101.00±15.98 180.80±8.35 42.20±3.70 52.00±2.55 86.60±8.08
SLL+G 173.60±4.28 58.40±10.06 64.60±1.52 50.60±8.11 154.00±14.66 52.60±14.01 54.80±2.77 46.60±3.58
GGSL 226.80±13.75 24.60±3.85 152.60±14.50 49.60±14.05 202.20±11.01 24.80±3.96 118.80±18.94 58.60±11.41

NOTEARS 195.80±34.96 13.40±4.94 174.60±47.97 7.80±2.14 194.00±37.90 13.00±5.08 173.00±23.73 8.00±1.92
DAG-GNN 208.60±25.66 21.80±2.42 167.00±54.08 19.80±2.90 198.40±28.28 22.60±5.16 163.20±29.40 12.60±4.11

GOLEM 389.80±43.71 11.00±2.43 212.60±47.18 166.20±35.88 379.80±72.91 9.80±1.73 225.60±58.64 144.40±55.80
DAG-NoCurl 993.60±81.78 48.60±9.57 100.00±33.09 845.00±143.85 457.20±36.08 44.20±8.39 112.20±31.13 300.80±48.43

ADL 96.00±6.28 11.40±6.66 69.40±2.41 15.20±4.82 80.40±6.88 9.80±5.17 60.20±1.48 10.40±2.19

100% respectively on Pigs with both 500 and 1,000 samples.
On most datasets, the local skeleton of each variable learned
by GSBN has lost many true edges, furthermore, GSBN
employs the AND-rule to construct the global skeleton. As a
result, GSBN avoids learning some extra edge and achieves
a very low the value of Extra, but many true edges are
missing from the learned global skeleton, further leading
to many incorrectly oriented edges in the DAG.

(3) ADL against MMHC. Using both groups of datasets
(with 500 and 1,000 samples respectively), we have the
following observations. The quality of DAG learned by ADL
outperforms those learned by MMHC on all benchmark
datasets, since the value of SHD of ADL is smaller than
those of MMHC. In some large-sized BNs (e.g. Insurance5,

Insurance10, Pigs and Gene), the SHD value of MMHC
is competitive with that of ADL, since they all employ a
score-based strategy to orient edges in the global skeleton.
Specifically, compared with MMHC, ADL reduces the value
of SHD by approximately 43% on Alarm with 1,000 samples,
the value of Reverse by approximately 68% on Alarm10 with
500 samples, and the value of Extra by approximately 80%
on Child with 500 samples. The reason why the missing
edge errors of ADL is higher than that of MMHC on some
datasets (such as Alarm10 with 500 samples) is that if a
variable has many parents, the size of the learned separation
set may be larger than the true separation set in the Step
1 of ADL. According to Lines 8-12 of Algorithm 1, ADL
will prefer to execute Criterion 2-2 instead of Criterion 2-

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3265015

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on May 08,2023 at 07:46:59 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

TABLE 4
Summaries of wrongly learned edges (2)

#Sample 500 1000
Network Algorithm SHD (↓) Reverse (↓) Miss (↓) Extra (↓) SHD (↓) Reverse (↓) Miss (↓) Extra (↓)

Insurance10

K2 509.00±90.42 89.60±16.85 330.60±63.74 88.80±22.81 516.60±79.87 109.60±37.13 290.60±49.41 116.40±32.62
OBS - - - - - - - -

Improved-K2 491.20±40.03 74.40±14.89 365.00±38.78 51.80±1.24 400.80±5.23 71.00±5.94 278.80±8.35 51.00±3.65
GSBN 455.60±6.02 54.00±3.74 374.20±1.79 27.40±1.14 385.80±8.70 55.40±4.45 323.60±3.85 6.80±2.17

MMHC 361.60±6.11 72.00±5.24 235.80±4.32 53.80±4.21 310.20±12.52 68.00±9.03 190.20±5.63 52.00±3.74
SLL+C 430.60±14.67 65.00±9.97 251.80±2.95 113.80±9.76 - - - -
SLL+G 376.00±12.71 69.60±7.13 259.80±3.83 46.60±5.94 - - - -
GGSL 385.80±13.89 32.20±3.96 279.40±29.15 74.20±2.95 353.00±11.75 47.20±8.11 252.80±25.45 53.00±2.32

NOTEARS 499.80±71.18 93.20±16.67 389.80±118.57 16.80±2.86 503.20±95.46 95.00±23.70 391.40±71.74 16.80±4.97
DAG-GNN 501.00±99.66 95.40±31.15 391.20±154.19 14.40±2.45 497.00±47.54 104.80±13.98 381.40±72.16 10.80±2.36

GOLEM 659.00±97.70 81.40±29.07 398.00±157.80 179.60±68.04 663.20±54.34 109.40±24.14 361.20±68.11 192.60±36.97
DAG-NoCurl 2557.80±248.12 158.40±26.26 284.00±56.16 2115.40±272.43 2066.60±186.36 161.00±16.13 310.40±57.45 1595.20±423.12

ADL 332.80±10.06 74.00±8.77 234.20±3.96 24.60±2.07 280.20±7.92 75.80±5.17 190.00±3.08 14.40±3.13

Alarm10

K2 585.60±66.73 118.60±41.47 315.60±83.88 151.40±58.63 545.60±47.48 146.80±51.40 252.00±85.72 146.80±55.10
OBS - - - - - - - -

Improved-K2 417.60±37.14 47.60±1.84 302.00±18.83 68.00±12.24 323.60±17.06 37.00±2.31 232.20±39.46 54.40±14.03
GSBN 457.20±6.61 135.60±5.64 317.20±2.17 4.40±2.61 399.80±6.30 127.80±6.69 270.80±6.53 1.20±0.84

MMHC 320.80±7.16 46.60±7.37 167.00±5.29 107.20±8.64 261.20±12.28 43.00±9.77 142.00±3.54 76.20±5.36
SLL+C - - - - - - - -
SLL+G 436.00±13.13 114.80±10.43 168.80±6.18 152.40±8.20 - - - -
GGSL - - - - 489.60±57.15 23.20±8.65 399.40±68.12 67.00±4.78

NOTEARS 445.40±51.25 27.80±7.97 394.20±133.63 23.40±7.58 441.80±40.89 26.00±7.09 396.40±111.73 19.40±3.19
DAG-GNN 487.80±60.43 27.00±8.62 438.80±146.74 22.00±4.62 482.60±77.38 33.40±7.46 425.80±47.02 23.40±4.40

GOLEM 728.60±63.28 22.60±3.79 451.80±92.62 254.20±47.31 792.00±108.06 26.80±5.63 473.20±152.30 292.00±75.17
DAG-NoCurl 5899.20±537.87 115.80±40.71 304.00±45.68 5479.40±1373.47 1853.60±159.56 88.80±30.75 264.80±77.15 1500.00±157.25

ADL 242.40±3.05 14.80±9.86 180.60±4.39 47.00±5.24 196.80±8.76 20.20±11.34 149.60±3.05 27.00±5.43

Pigs

K2 495.20±21.35 183.00±14.07 146.20±33.78 166.00±15.97 478.80±54.56 188.20±15.89 111.40±10.57 179.20±41.78
OBS - - - - - - - -

Improved-K2 26.20±5.43 0.60±0.89 11.00±2.86 14.60±4.67 9.60±1.47 0.20±0.45 0.00±0.00 9.40±0.67
GSBN 304.20±10.76 73.40±5.50 219.20±5.89 11.60±3.44 282.20±8.50 65.80±11.03 210.00±9.59 6.40±1.14

MMHC 23.80±6.98 10.60±3.05 0.00±0.00 13.20±4.09 10.40±5.50 6.80±3.56 0.00±0.00 3.60±2.61
SLL+C - - - - - - - -
SLL+G - - - - - - - -
GGSL - - - - - - - -

NOTEARS 558.20±70.86 149.80±57.24 405.60±41.27 2.80±0.79 582.60±86.71 138.80±45.54 437.40±155.98 6.40±1.38
DAG-GNN 592.00±0.00 24.00±0.00 568.00±0.00 0.00±0.00 592.00±0.00 34.00±0.00 558.00±0.00 0.00±0.00

GOLEM 436.60±63.74 258.20±90.11 72.20±13.51 106.20±23.45 356.80±56.83 247.00±79.07 29.80±6.89 80.00±17.12
DAG-NoCurl 1075.20±103.74 207.80±72.35 108.60±32.88 758.80±132.55 584.40±52.82 286.80±56.73 131.20±25.48 166.40±61.29

ADL 17.20±3.96 7.00±1.58 0.00±0.00 10.20±3.96 9.20±3.56 6.20±3.27 0.00±0.00 3.00±1.58

Gene

K2 - - - - - - - -
OBS - - - - - - - -

Improved-K2 - - - - - - - -
GSBN 480.60±11.15 139.40±8.32 328.40±4.16 12.80±1.64 474.20±10.96 135.00±8.75 325.60±2.51 13.60±3.85

MMHC 150.80±6.72 60.80±4.02 45.60±1.82 44.40±3.78 108.60±13.61 54.40±12.05 28.60±4.34 25.60±4.39
SLL+C - - - - - - - -
SLL+G - - - - - - - -
GGSL 246.00±32.85 125.00±36.41 36.00±5.65 85.00±10.74 160.00±30.14 129.20±41.52 2.40±0.54 28.40±6.32

NOTEARS 820.00±132.11 60.20±19.43 756.40±247.62 3.40±0.74 811.80±131.55 51.20±7.33 757.20±273.65 3.40±0.42
DAG-GNN 972.00±0.00 0.00±0.00 972.00±0.00 0.00±0.00 968.00±155.85 1.40±0.23 966.00±293.64 0.60±0.16

GOLEM 1533.20±211.29 152.80±19.41 540.00±200.56 840.40±307.01 554.00±68.99 218.80±45.39 296.40±73.12 38.80±6.86
DAG-NoCurl 7906.00±1190.45 122.40±21.81 255.60±59.73 7528.00±2658.89 1202.40±151.57 356.80±110.88 350.40±77.33 495.20±76.53

ADL 135.80±5.81 58.00±3.81 45.80±2.28 32.00±3.94 103.20±12.11 54.60±13.15 27.80±3.35 20.80±3.56

Munin

K2 - - - - - - - -
OBS - - - - - - - -

Improved-K2 - - - - - - - -
GSBN 1284.60±151.28 4.00±2.35 1262.40±231.24 18.20±5.57 1222.20±189.49 6.00±1.45 1187.20±223.78 29.00±6.31

MMHC 1918.80±131.54 230.60±47.28 1049.00±159.74 639.20±31.33 1727.40±156.77 259.20±41.91 962.20±78.93 506.00±32.17
SLL+C - - - - - - - -
SLL+G - - - - - - - -
GGSL - - - - - - - -

NOTEARS - - - - - - - -
DAG-GNN - - - - - - - -

GOLEM - - - - - - - -
DAG-NoCurl - - - - - - - -

ADL 1390.00±141.12 60.00±4.78 1060.00±153.57 270.00±27.48 1320.80±127.88 100.20±7.87 959.20±98.34 261.40±39.77

1, leading to that some true edges are removed, i.e., more
missing edge errors. However, when the sample size of the
datasets is large (such as 1,000 samples), the missing edge
errors of ADL is almost the same as that of MMHC.

(4) ADL against SLL+C/G and GGSL. Since SLL+C,
SLL+G and GGSL all employ score-based algorithms with
high time and space complexity to learn the local skeleton
of each variable in a dataset, they do not produce the results
on some large-sized networks (such as Alarm10, Pigs and
Gene). We can see that the SHD value of SLL+C, SLL+G
and GGSL is very close, and is all higher than that of ADL.
In some large-sized BNs (e.g. Insurance5, Insurance10, Pigs
and Gene), the SHD value of SLL+G, GGSL is competitive
with that of ADL, since they all employ a score function to
orient undirected edges, which is more effective than using
CI tests. Specifically, compared with GGSL, ADL reduces the
value of SHD by approximately 66% and 70% on Child with
1,000 samples and Alarm with 1,000 samples, respectively.
Compared with SLL+C, ADL reduces the value of Reverse
by approximately 93% on Alarm with 1,000 samples, and
compared with SLL+G, ADL reduces the value of Reverse

by approximately 85% on Alarm3 with 500 samples. On
Child3 with 500 and 1,000 samples, SLL+C, SLL+G and
GGSL achieve a comparable performance against ADL.

(5) ADL against NOTEARS, DAG-GNN, GOLEM and
DAG-NoCurl. NOTEARS is specially designed for linear
cases instead of nonlinear cases. In addition, NOTEARS
adapts convex optimization approaches, its outcome may
fall into local optimal solution. Thus, NOTEARS often
achieves a higher value of SHD, Reverse, Miss and Extra
than ADL in our experimental results. Although DAG-
GNN, GOLEM and DAG-NoCurl can be applied to non-
linear cases by adopting different types of neural network
models, loss functions and representations of adjacency
matrix, their performance is still poor due to the strong
theoretical assumptions. From Tables 3 and 4, we can see
that DAG-GNN often achieves a much larger number of
missing edges than the other algorithms, leading to that it
obtains the inaccurate DAG skeleton and the poor qual-
ity of the final DAG. GOLEM and DAG-NoCurl always
learn many extra edges compared to the other algorithms
on most datasets. Specifically, compared with NOTEARS

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3265015

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on May 08,2023 at 07:46:59 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

and DAG-GNN, ADL reduces the value of SHD by more
than 85% on both Child and Alarm with 1,000 samples.
Compared with NOTEARS, ADL reduces the value of Miss
by approximately 96% on Gene with 1,000 samples, and
compared with DAG-GNN, ADL reduces the value of Miss
by approximately 86% on Child with 1,000 samples. On
Gene with 500 samples, the Extra value of ADL is 96% lower
than that of GOLEM, and 99% lower than that of DAG-
NoCurl.

5.2.2 Structural correctness.
Through the metrics of structural correctness, i.e. Ar F1,
Ar Precision and Ar Recall, Tables 5 and 6 report the qual-
ity of DAG learned by different algorithms. We find that on
most BNs (such as Child, Alarm, Alarm10, Pigs and Gene),
ADL not only achieves fewer structural errors than its rivals
in terms of SHD metric, bust also achieves more structural
correctness than other algorithms in terms of Ar F1 metric.
In addition, on all datasets, ADL is able to maintain the
value of Ar F1, Ar Precision and Ar Recall at consistently
high levels against its rivals.

Specifically, for Ar F1 metric, our method achieves clear
improvements of approximately 65% more than K2 on
Alarm with 1,000 samples, 59% more than OBS on Alarm
with 1,000 samples, 21% more than Improved-K2 on Alarm3
with 500 samples, 56% more than GSBN on Alarm with 500
samples, 10% more than MMHC on Child with 500 samples,
22% more than SSL+C on Alarm5 with 500 samples, 24%
more than SSL+G on Alarm3 with 500 samples, 36% more
than GGSL on Alarm5 with 500 samples, 67% more than
NOTEARS on Child with 1,000 samples, 48% more than
DAG-GNN on Alarm10 with 1,000 samples, 65% more than
GOLEM on Gene with 500 samples, and 70% more than
DAG-NoCurl on Pigs with 1,000 samples. In particular,
DAG-GNN is not scalable to high-dimensional data since
the DAGs learned by DAG-GNN are almost empty graphs
on large-sized networks, such as Pigs and Gene. Compared
with its rivals, ADL obtain higher values of Ar Precision
and Ar Recall on most datasets, since ADL adopts adaptive
strategy to construct more accurate global skeletons, that is,
some missing edges can be restored and some extra edges
are able to be removed.

For Ar Precision metric, our method achieves clear im-
provements of approximately 69% more than K2 on Alarm
with 1,000 samples, 53% more than OBS on Alarm5 with
1,000 samples, 20% more than Improved-K2 on Alarm3 with
500 samples, 45% more than GSBN on Alarm3 with 500 sam-
ples, 16% more than MMHC on Alarm10 with 500 samples,
36% more than SSL+C on Alarm5 with 500 samples, 31%
more than SSL+G on Alarm3 with 500 samples, 39% more
than GGSL on Alarm3 with 500 samples, 50% more than
NOTEARS on Child with 1,000 samples, 43% more than
DAG-GNN on Insurance5 with 500 samples, 72% more than
GOLEM on Alarm3 with 500 samples, and 70% more than
DAG-NoCurl on Pigs with 1,000 samples.

For Ar Recall metric, our method achieves clear im-
provements of approximately 62% more than K2 on Alarm
with 1,000 samples, 48% more than OBS on Alarm3 with
500 samples, 22% more than Improved-K2 on Alarm3 with
500 samples, 60% more than GSBN on Alarm with 500
samples, 10% more than MMHC on Child with 500 samples,

TABLE 5
Comparison of correctly learned edge directions (in %) (1)

#Sample 500 1000
Network Algorithm Ar F1 (↑) Ar Precision (↑) Ar Recall (↑) Ar F1 (↑) Ar Precision (↑) Ar Recall (↑)

Child

K2 25.00±1.49 26.09±4.42 24.00±7.32 27.91±2.33 33.33±5.64 24.00±4.38
OBS 31.11±7.49 35.00±2.66 28.00±2.17 42.55±1.71 45.45±6.76 40.00±1.30

Improved-K2 64.00±2.39 74.11±1.46 56.32±5.36 78.64±6.27 84.00±4.68 73.92±8.45
GSBN 56.96±5.67 86.79±7.57 42.40±4.56 67.66±2.53 89.50±3.52 54.40±2.19

MMHC 72.01±11.57 77.58±11.60 67.20±11.45 90.89±1.92 94.17±3.20 88.00±4.00
SLL+C 77.40±10.52 84.92±11.88 71.20±9.96 86.05±4.69 94.23±4.12 79.20±5.22
SLL+G 68.13±8.25 77.55±9.15 60.80±7.69 75.05±6.09 82.61±5.60 68.80±6.57
GGSL 64.86±9.98 72.97±11.02 58.40±9.21 69.12±7.88 76.57±11.13 63.20±6.57

NOTEARS 22.86±5.02 40.00±5.62 16.00±3.84 23.53±2.85 44.44±2.40 16.00±4.75
DAG-GNN 25.64±2.15 35.71±8.08 20.00±1.16 27.03±1.23 41.67±3.74 20.00±1.34

GOLEM 18.18±1.35 16.67±1.64 20.00±1.83 22.64±1.40 21.43±6.78 24.00±2.83
DAG-NoCurl 13.79±5.47 12.12±5.09 16.00±0.92 14.55±5.33 13.33±8.22 16.00±3.96

ADL 82.40±10.69 87.95±9.99 77.60±11.52 91.27±1.80 94.85±1.79 88.00±2.83

Alarm

K2 28.89±7.95 29.55±6.33 28.26±6.40 29.17±6.06 28.00±6.56 30.43±3.96
OBS 35.16±1.01 35.56±7.38 34.78±7.98 35.42±5.74 34.00±1.38 36.96±7.97

Improved-K2 74.54±4.10 81.23±4.17 68.87±5.80 82.00±2.25 85.90±1.35 78.43±1.38
GSBN 34.17±2.43 49.60±3.08 26.09±2.17 43.92±4.93 57.23±5.35 35.65±4.51

MMHC 87.38±7.37 89.20±7.86 85.65±6.98 89.80±5.92 90.08±6.81 89.57±5.41
SLL+C 76.07±3.73 78.38±4.21 73.91±3.44 77.92±5.29 78.52±6.00 77.39±5.00
SLL+G 73.67±9.94 76.20±9.85 71.30±10.01 79.30±8.59 79.94±7.68 78.70±9.53
GGSL 72.64±4.84 73.58±6.97 72.17±6.77 79.77±3.77 82.98±5.89 76.96±3.64

NOTEARS 57.89±8.38 73.33±7.37 47.83±6.78 61.33±2.00 79.31±2.63 50.00±6.88
DAG-GNN 58.14±4.61 62.50±1.92 54.35±3.69 61.54±4.40 62.22±6.65 60.87±3.67

GOLEM 35.40±1.57 29.85±0.75 43.48±8.01 49.48±2.68 47.06±0.80 52.17±5.89
DAG-NoCurl 26.67±2.91 19.23±2.86 43.48±3.16 33.33±3.94 25.58±4.11 47.83±5.38

ADL 90.35±6.67 95.08±5.89 86.09±7.31 94.90±3.99 97.32±4.82 92.61±3.30

Child3

K2 29.20±4.24 34.48±5.69 25.32±0.70 37.24±0.98 40.91±3.03 34.18±6.68
OBS 40.29±7.24 46.67±4.97 35.44±7.33 41.33±6.07 43.66±1.50 39.24±1.54

Improved-K2 67.11±6.66 77.73±3.30 59.04±5.80 69.44±1.01 75.06±3.74 64.61±4.09
GSBN 37.29±1.86 62.47±2.04 26.58±1.55 46.43±1.36 64.72±2.08 36.20±1.13

MMHC 68.48±6.75 79.32±7.72 60.25±6.04 74.67±2.86 83.45±3.01 67.59±3.18
SLL+C 70.96±5.50 79.25±6.80 64.30±5.09 74.78±4.87 83.74±5.68 67.59±4.62
SLL+G 70.26±5.56 80.23±6.45 62.53±5.26 76.69±5.26 86.58±5.08 68.86±5.49
GGSL 60.87±16.75 79.23±6.92 52.91±20.98 69.95±19.27 85.25±5.06 63.29±23.19

NOTEARS 24.24±3.28 60.00±4.07 15.19±0.93 26.80±1.24 72.22±0.56 16.46±3.88
DAG-GNN 28.80±1.92 39.13±5.80 22.78±3.15 34.48±5.74 54.05±6.28 25.32±4.75

GOLEM 14.29±7.69 14.67±1.45 13.92±8.41 15.38±1.37 13.59±5.55 17.72±1.51
DAG-NoCurl 9.18±1.82 7.69±2.16 11.39±1.50 9.41±1.57 8.79±1.29 10.13±1.64

ADL 71.64±4.83 81.80±4.53 63.80±5.34 77.07±4.66 86.41±3.63 69.62±5.52

Alarm3

K2 31.00±2.80 34.43±3.82 28.19±4.22 35.04±1.85 38.40±2.07 32.21±3.04
OBS 31.82±6.61 36.52±7.05 28.19±1.30 35.46±3.03 37.59±2.24 33.56±2.51

Improved-K2 61.57±3.83 71.02±7.24 54.34±7.16 69.21±3.43 78.31±6.61 62.01±5.52
GSBN 30.85±1.87 45.44±2.77 23.36±1.46 45.70±3.21 60.34±3.92 36.78±2.74

MMHC 76.25±4.26 79.35±4.92 73.42±4.07 79.77±4.84 82.73±6.23 77.05±3.66
SLL+C 61.74±4.19 60.23±4.74 63.36±3.84 67.35±3.63 65.47±4.38 69.40±3.34
SLL+G 59.12±5.21 60.32±5.69 57.99±4.88 61.82±7.04 62.63±7.75 61.07±6.51
GGSL 47.83±2.63 52.61±4.62 44.30±4.91 59.81±4.11 63.53±3.17 56.64±5.71

NOTEARS 43.81±1.92 75.41±3.38 30.87±0.95 44.44±7.64 79.31±6.13 30.87±4.95
DAG-GNN 42.01±4.68 65.71±3.19 30.87±1.91 41.51±1.98 69.84±2.20 29.53±1.12

GOLEM 18.49±2.17 18.88±7.74 18.12±5.90 23.13±7.81 21.64±6.15 24.83±4.96
DAG-NoCurl 22.59±4.25 15.60±3.80 40.94±1.33 31.94±3.01 26.18±1.83 40.94±5.48

ADL 83.13±4.27 91.03±5.84 76.51±3.15 83.69±3.74 90.48±3.95 77.85±3.65

Insurance5

K2 29.35±6.46 40.88±6.39 22.89±4.99 31.06±8.40 37.69±1.86 26.41±2.56
OBS 38.84±1.97 53.05±5.28 30.63±2.90 39.57±3.67 50.00±1.09 32.75±5.97

Improved-K2 47.38±2.55 66.28±5.41 36.87±5.16 48.36±6.68 58.52±7.96 41.21±8.28
GSBN 32.87±1.60 61.76±3.05 22.39±1.13 44.38±0.77 75.59±1.24 31.41±0.58

MMHC 58.34±3.25 73.36±3.90 48.45±2.95 57.55±1.74 68.44±1.80 49.65±1.69
SLL+C 50.79±1.40 62.43±1.78 42.82±1.18 60.82±3.82 73.05±5.24 52.11±3.00
SLL+G 52.19±3.17 69.20±4.29 41.90±2.55 58.67±3.21 74.55±3.21 48.38±3.02
GGSL 58.68±2.47 71.61±3.89 49.93±3.88 64.94±4.13 80.14±1.04 54.79±5.64

NOTEARS 19.05±1.57 38.30±2.20 12.68±7.66 19.15±3.72 39.13±8.36 12.68±3.72
DAG-GNN 14.61±1.07 36.11±2.44 9.15±0.93 15.30±5.47 34.15±1.73 9.86±3.55

GOLEM 18.39±4.03 25.31±0.61 14.44±7.68 9.69±1.79 17.59±6.56 6.69±7.47
DAG-NoCurl 11.01±2.07 8.01±1.25 17.61±2.96 15.22±3.31 11.58±1.98 22.18±2.85

ADL 60.87±2.43 79.21±2.47 49.44±2.29 62.95±5.43 78.07±6.35 52.75±4.73

Alarm5

K2 29.18±4.15 33.83±1.31 25.66±8.46 29.22±4.75 32.13±7.16 26.79±5.28
OBS 26.75±3.16 31.94±2.88 23.02±1.00 34.08±3.18 36.84±2.89 31.70±4.12

Improved-K2 59.05±4.83 69.86±7.46 51.14±2.62 66.60±2.04 75.73±1.61 59.44±6.07
GSBN 28.92±1.99 43.79±2.96 21.58±1.50 40.26±2.38 55.65±3.01 31.55±2.01

MMHC 70.45±2.96 73.89±2.80 67.32±3.12 77.84±3.15 81.98±3.34 74.11±3.10
SLL+C 55.33±2.78 51.83±3.48 59.40±2.21 60.50±1.56 57.02±1.57 64.45±1.93
SLL+G 55.02±2.74 56.55±2.31 53.58±3.26 60.39±5.54 61.34±5.38 59.47±5.70
GGSL 40.99±4.32 54.34±4.23 33.13±4.72 51.52±3.79 59.37±2.16 45.81±5.87

NOTEARS 42.98±2.89 79.59±0.87 29.43±4.54 43.29±3.88 79.00±3.38 29.81±4.97
DAG-GNN 40.31±6.59 65.81±5.55 29.06±1.22 42.22±6.44 70.18±3.89 30.19±3.93

GOLEM 17.36±1.15 19.18±6.72 15.85±7.74 13.81±1.50 16.85±0.70 11.70±2.82
DAG-NoCurl 18.35±4.77 11.58±1.37 44.15±7.11 30.36±3.04 24.06±5.73 41.13±8.16

ADL 77.44±2.26 87.42±3.14 69.51±1.82 81.22±2.37 90.63±3.03 73.58±1.89

15% more than SSL+C on Alarm with 1,000 samples, 20%
more than SSL+G on Child with 1,000 samples, 36% more
than GGSL on Alarm5 with 500 samples, 96% more than
NOTEARS on Pigs with 1,000 samples, 68% more than
DAG-GNN on Child with 1,000 samples, 60% more than
GOLEM on Gene with 500 samples, and 64% more than
DAG-NoCurl on Gene with 1,000 samples.

From Tables 5 and 6, we also find that the local-to-
global DAG learning methods using the AND-rule (e.g.
MMHC) can obtain a higher Ar Precision value than other
methods since the algorithms employing the AND-rule can
remove some redundant false directed edges. In contrast,
the local-to-global DAG learning methods using the OR-
rule (e.g. SLL+C) can achieve a higher Ar Recall value

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3265015

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on May 08,2023 at 07:46:59 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

than other methods since the algorithms employing the OR-
rule can recover some missed true directed edges. Further,
by adaptively using the AND-rule and the OR-rule, our
method not only guarantees the high Ar Precision value,
but also ensures the high Ar Recall value, thus our method
can obtain a higher Ar F1 score than its seven rivals.

On the whole, our method is obviously superior to other
algorithms on all sparse networks (such as Child, Alarm,
Child3, Alarm3, Alarm5, Alarm10 and Gene) and most dense
networks (such as Insurance10 and Pigs).

TABLE 6
Comparison of correctly learned edge directions (in %) (2)

#Sample 500 1000
Network Algorithm Ar F1 (↑) Ar Precision (↑) Ar Recall (↑) Ar F1 (↑) Ar Precision (↑) Ar Recall (↑)

Insurance10

K2 31.49±3.20 43.63±2.85 24.64±6.47 33.48±7.99 41.10±4.16 28.24±2.42
OBS - - - - - -

Improved-K2 47.96±3.04 64.14±1.45 38.30±8.02 56.69±1.25 68.35±4.70 48.43±4.74
GSBN 33.40±1.30 61.09±2.27 22.99±0.91 44.51±1.77 73.98±2.39 31.83±1.37

MMHC 53.37±1.36 66.35±1.14 44.64±1.42 61.16±2.03 71.28±2.40 53.56±1.77
SLL+C 49.13±2.03 57.27±2.91 43.02±1.58 - - -
SLL+G 50.42±2.09 66.12±2.95 40.76±1.69 - - -
GGSL 53.54±5.59 69.54±2.85 43.53±7.45 56.02±7.89 71.51±3.96 46.04±9.11

NOTEARS 20.03±0.58 40.44±0.89 13.31±5.84 19.00±6.61 38.67±6.57 12.59±6.43
DAG-GNN 19.05±5.33 39.11±4.71 12.59±6.34 19.16±6.45 38.38±1.35 12.77±5.95

GOLEM 17.25±6.16 22.85±6.75 13.85±2.80 18.24±4.21 22.22±2.20 15.47±1.29
DAG-NoCurl 7.75±1.04 4.78±0.95 20.50±3.67 7.09±1.09 4.62±0.90 15.29±1.81

ADL 54.92±2.08 71.53±2.48 44.57±1.78 61.98±1.27 76.29±1.60 52.19±1.06

Alarm10

K2 28.07±0.99 33.74±6.74 24.04±3.20 33.27±5.83 37.07±7.66 30.18±4.63
OBS - - - - - -

Improved-K2 57.88±5.66 69.88±4.34 49.40±5.61 65.50±7.39 74.89±4.38 58.20±3.65
GSBN 28.33±1.55 45.56±2.29 20.56±1.17 39.38±1.44 57.06±1.90 30.07±1.22

MMHC 65.98±0.81 69.85±0.50 62.53±1.11 71.68±1.98 76.36±2.13 67.54±1.94
SLL+C - - - - - -
SLL+G 50.98±1.69 51.75±1.94 50.25±1.57 - - -
GGSL - - - 36.63±10.56 62.18±8.47 25.96±4.88

NOTEARS 38.75±5.36 74.87±6.43 26.14±1.34 38.79±6.12 76.68±1.73 25.96±8.13
DAG-GNN 29.01±1.52 68.18±4.90 18.42±4.38 30.35±4.83 66.67±5.94 19.65±0.79

GOLEM 20.57±7.62 26.01±6.89 17.02±6.37 14.81±6.97 18.25±6.49 12.46±1.46
DAG-NoCurl 4.78±0.91 2.63±1.08 26.49±1.21 18.35±4.70 12.07±3.11 38.25±4.87

ADL 74.44±1.29 85.84±1.20 65.72±1.38 78.67±1.97 89.45±2.21 70.21±1.93

Pigs

K2 43.56±4.56 42.88±6.78 44.26±4.12 46.81±5.51 44.39±3.18 49.49±2.81
OBS - - - - - -

Improved-K2 86.66±4.86 86.52±5.68 86.81±4.85 87.63±5.87 87.26±6.43 88.00±4.66
GSBN 61.33±1.50 77.89±2.00 50.57±1.25 64.51±1.60 81.44±2.46 53.41±1.32

MMHC 97.13±0.82 96.07±1.12 98.21±0.52 98.55±0.75 98.26±0.91 98.85±0.60
SLL+C - - - - - -
SLL+G - - - - - -
GGSL - - - - - -

NOTEARS 9.73±1.56 20.11±6.28 6.42±1.38 4.52±3.69 10.56±3.82 2.87±1.95
DAG-GNN 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

GOLEM 43.02±5.73 41.85±6.49 44.26±5.17 51.17±5.73 49.14±7.96 53.38±1.81
DAG-NoCurl 30.21±6.42 22.30±2.38 46.79±6.38 28.71±7.87 27.91±6.86 29.56±5.12

ADL 97.97±0.38 97.15±0.64 98.82±0.27 98.70±0.56 98.45±0.60 98.95±0.55

Gene

K2 - - - - - -
OBS - - - - - -

Improved-K2 - - - - - -
GSBN 61.92±1.22 76.81±1.33 51.87±1.12 62.67±1.16 77.49±1.50 52.61±0.96

MMHC 89.11±0.50 89.16±0.55 89.05±0.50 91.60±1.28 91.74±1.14 91.46±1.45
SLL+C - - - - - -
SLL+G - - - - - -
GGSL 81.28±3.22 79.33±1.89 83.33±4.69 85.42±6.89 84.35±4.54 86.52±8.15

NOTEARS 26.20±3.43 71.23±3.45 16.05±5.98 27.56±4.02 75.23±2.56 16.87±6.52
DAG-GNN 0.00±0.00 0.00±0.00 0.00±0.00 1.02±0.56 83.33±7.59 0.51±0.13

GOLEM 24.96±2.15 22.01±1.19 28.81±6.68 54.33±5.87 64.15±6.22 47.12±5.64
DAG-NoCurl 2.64±1.15 1.40±0.61 22.43±3.91 25.47±3.85 23.81±2.63 27.37±4.03

ADL 89.96±0.43 90.61±0.48 89.32±0.47 91.85±1.28 92.18±1.13 91.52±1.44

Munin

K2 - - - - - -
OBS - - - - - -

Improved-K2 - - - - - -
GSBN 16.90±2.57 85.62±5.17 9.38±1.95 24.94±3.25 85.36±6.74 14.60±2.85

MMHC 9.90±0.86 11.96±1.27 8.45±1.57 15.06±2.21 18.70±3.44 12.60±1.91
SLL+C - - - - - -
SLL+G - - - - - -
GGSL - - - - - -

NOTEARS - - - - - -
DAG-GNN - - - - - -

GOLEM - - - - - -
DAG-NoCurl - - - - - -

ADL 27.64±3.37 45.63±4.57 19.83±2.33 32.25±2.89 48.35±4.51 24.19±3.57

5.2.3 Time efficiency.
Table 7 shows that ADL is significantly faster than K2, OBS,
Improved-K2, SLL+C, SLL+G, GGSL, NOTEARS, DAG-
GNN, GOLEM and DAG-NoCurl on most datasets (espe-
cially high-dimensional datasets), and is competitive with
the GSBN and MMHC algorithms. On most datasets, the
local-to-global DAG learning algorithms (such as MMHC
and ADL) are much more efficient than the global DAG
learning algorithms (such as K2 and NOTEARS). In addi-
tion, we can see that K2, OBS, Improved-K2, SLL+C, SLL+G

and GGSL are not scalable to high-dimensional datasets,
thus they do not produce the results on Insurance10,
Alarm10, Pigs, Gene and Munin networks with both 500 and
1,000 samples. In practice, only through GPU acceleration
can continuous optimization based DAG learning methods
(i.e., NOTEARS, DAG-GNN, GOLEM and DAG-NoCurl) be
scalable to high-dimensional datasets.

The main time cost of local-to-global DAG learn-
ing algorithms lies in the local skeleton learning phase.
GSBN, MMHC and ADL use more efficient constraint-based
PC/MB learning algorithms to learn the local skeletons,
whereas SLL+C/G and GGSL adopt more inefficient score-
based PC/MB learning algorithms to discover the local
skeleton of each variable. As a result, on all datasets with
both 500 and 1,000 samples, GSBN, MMHC and ADL are
generally faster than SLL+C/G and GGSL. Although ADL
uses a similar orientation strategy to MMHC in Step 3 of
ADL, the HITON-PC algorithm [37] employed by ADL is
more efficient than the MMPC algorithm [36] employed by
MMHC on benchmark BN datasets. Secondly, we have also
deeply optimized the ADL codes to make ADL faster than
MMHC on many BNs.

GSBN employs the GS algorithm [34] to learn the local
skeleton of each variable in a dataset, and the time cost of
GS is linear with the size of the learned local skeletons. In
contrast, ADL employs the HITON-PC algorithm [37] to
learn the local skeletons, and the efficiency of HITON-PC
is exponential with the size of the learned local skeletons.
However, in practice, ADL is faster than GSBN since the
local skeleton size of variables on most BNs is small. In
particular, on Pigs BN, ADL is slightly slower than GSBN
since there are several variables with a large size of local
skeletons. OBS is always slower than K2 since OBS uses
an exhaustive approach to find the highest scoring DAG
by constantly updating the order of nodes, and none of
them can be scalable to high-dimensional data (such as
Pigs, Gene and Munin) due to the frequent running of
scoring functions. Since DAG-NoCurl is designed based
on the graph Hodge theory [41] and solves the resultant
unconstrained optimization problem, it is more efficient
than other continuous optimization based DAG learning
methods (i.e., NOTEARS, DAG-GNN and GOLEM).

From Table 7, we also find that the running time of
an algorithm is not always positively correlated with the
sample size of a dataset. For example, 1) the running time of
NOTEARS and DAG-NoCurl on Pigs with 1,000 samples
is faster than that on Pigs with 500 samples since the
running time of NOTEARS and DAG-NoCurl depends only
on the number of iterations; 2) the running time of GGSL
on Insurance10 with 1,000 samples is faster than that on
Insurance10 with 500 samples since the running time of
GGSL is related to the local skeleton size of the variable
initially randomly selected; 3) the running time of K2 on
Alarm with 500 samples is slower than that on Alarm with
1,000 samples since the efficiency of this algorithm is highly
dependent on the given initial node ordering.

5.2.4 BIC score of each algorithm.
Just using the structure evaluation metrics, SHD and Ar F1,
it is not clear how good the DAGs are as probability models.
The ultimate evaluation of the accuracy of a learned DAG

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3265015

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on May 08,2023 at 07:46:59 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

TABLE 7
Running time (in second) of ADL and its rivals.

#Sample Network K2 OBS Improved-K2 GSBN MMHC SLL+C SLL+G GGSL NOTEARS DAG-GNN GOLEM DAG-NoCurl ADL

500

Child 0.22±0.02 4.55±0.44 0.34±0.04 0.21±0.01 0.14±0.01 0.93±0.82 0.68±0.46 1.48±0.93 7.47±1.12 94.91±10.74 46.70±7.52 0.63±0.06 0.12±0.01
Alarm 1.52±0.15 42.46±3.59 1.83±0.21 0.47±0.01 0.34±0.02 1.94±0.33 1.34±0.24 5.71±1.03 19.08±1.60 193.22±30.32 60.90±7.79 3.29±0.41 0.23±0.02
Child3 3.51±0.30 249.39±38.73 5.11±0.47 1.01±0.01 0.73±0.02 6.96±2.29 3.40±0.50 19.62±12.62 20.57±2.72 281.09±29.54 82.53±10.01 2.72±0.30 0.47±0.02
Alarm3 23.96±1.86 3107.95±292.12 28.18±2.26 2.95±0.06 2.01±0.04 23.21±5.71 18.59±4.55 128.19±26.64 81.64±6.72 574.82±50.81 209.18±19.66 20.29±2.27 1.02±0.02

Insurance5 48.57±3.64 7877.24±1262.50 57.03±5.18 3.71±0.05 3.51±0.14 52.22±7.32 39.49±4.91 358.25±24.32 404.97±66.61 647.30±77.08 224.99±26.76 47.51±4.93 2.05±0.15
Alarm5 118.44±18.95 975.05±104.26 138.42±25.37 7.73±0.20 5.14±0.12 121.60±29.04 93.86±9.25 731.55±174.42 404.60±32.82 848.45±125.59 499.40±54.42 98.63±9.29 2.56±0.06

Insurance10 538.45±59.44 - 569.17±66.28 13.95±0.12 13.39±0.25 441.18±236.44 392.27±206.93 2945.78±22.96 2308.24±192.04 1389.93±228.23 1258.58±208.44 247.13±31.51 7.70±0.37
Alarm10 2192.35±166.57 - 2191.00±180.91 48.00±3.75 20.07±0.36 - 1686.52±360.97 - 3082.26±324.61 1900.76±289.14 3427.69±245.22 1085.39±80.65 9.81±0.21

Pigs 7172.24±637.11 - 6339.35±569.32 46.26±1.95 33.41±0.18 - - - 10808.95±1547.54 2522.60±339.98 3874.82±445.96 1163.99±145.15 48.84±2.43
Gene - - - 770.45±18.48 108.79±11.54 - - 13888.01±2159.52 28051.44±2493.65 5984.02±829.85 16061.95±1419.09 5293.93±565.65 46.37±2.89

Munin - - - 410.37±4.65 451.46±7.39 - - - - - - - 38.48±0.27

1000

Child 0.25±0.03 5.44±0.80 0.39±0.05 0.27±0.00 0.19±0.02 1.57±0.47 1.31±0.38 2.66±0.70 6.93±0.54 209.98±34.21 50.51±7.45 0.63±0.07 0.14±0.01
Alarm 1.22±0.14 49.89±5.72 1.67±0.28 0.63±0.03 0.36±0.01 2.90±0.23 1.88±0.08 8.54±1.21 13.32±1.34 360.95±43.62 63.15±7.65 5.58±0.85 0.25±0.00
Child3 3.95±0.59 303.71±40.83 5.88±1.21 1.38±0.05 0.88±0.04 8.23±3.57 6.02±2.56 19.20±9.67 25.75±2.78 569.01±86.01 88.03±10.85 3.30±0.35 0.59±0.02
Alarm3 26.61±4.36 3567.20±562.17 31.92±6.87 4.10±0.19 2.12±0.03 28.24±4.27 22.19±2.58 138.14±25.50 88.36±11.05 1034.86±136.86 217.99±28.06 20.07±1.82 1.18±0.03

Insurance5 60.49±6.06 9968.35±1178.93 70.51±8.31 4.75±0.06 4.28±0.10 80.19±5.61 61.68±4.73 452.75±23.89 213.93±19.91 1288.04±198.91 243.84±21.82 40.40±3.74 2.56±0.10
Alarm5 140.97±12.27 1176.19±109.11 160.82±17.54 10.18±0.07 5.44±0.12 126.09±24.80 106.43±20.22 685.92±122.14 332.25±37.73 1718.73±173.78 530.30±86.09 61.46±6.95 2.88±0.05

Insurance10 636.74±56.34 - 693.56±71.46 17.47±0.55 14.94±0.19 - - 1738.23±315.86 1221.33±205.15 2414.10±274.93 1114.13±90.37 199.92±19.15 8.54±0.08
Alarm10 2543.79±282.04 - 2345.07±237.47 56.79±1.03 20.56±0.15 - - 6614.82±518.54 1797.46±172.95 3533.80±460.40 3364.58±474.81 534.57±49.27 10.76±0.11

Pigs 8287.27±912.45 - 8100.89±874.02 52.09±1.59 37.59±0.87 - - - 6290.18±640.83 4767.97±536.00 4084.71±493.38 284.05±22.31 52.21±2.09
Gene - - - 774.33±55.12 130.50±1.16 - - 16251.11±4156.89 14627.13±1066.64 9586.93±1561.57 15729.75±2249.87 3480.01±413.64 52.24±0.56

Munin - - - 702.38±10.41 689.72±9.53 - - - - - - - 49.98±0.79

is how close it represents the true probability distribution,
thus we compare the BIC (Bayesian information criterion)
score [40] of each algorithm shown in Table 8. As a com-
monly used information-theoretic score, BIC score can avoid
over-fitting by balancing the goodness of fit with DAG
dimensionality given the available data.

As we can see from Table 8, ADL improves the learning
scores by a significant margin over other algorithms on most
datasets. In the edge orientation step, as both MMHC and
SLL+G use a search strategy similar to ADL to find the op-
timal structure, so they achieve a comparable performance
against ADL on some datasets (such as Child3, Insurance5
and Insurance10). The BIC scores of OBS and Improved-
K2 are competing with that of ADL on most datasets, since
OBS employs a systematic search of ordering space to find
the highest scoring DAG consistent with each ordering and
Improved-K2 can obtain a high-quality ordering of variables
as an initial input of K2.

5.2.5 Statistical Tests.
To give a comprehensive performance comparison between
ADL with its rivals, the Friedman test and Nemenyi test [42]
are performed.

We first perform the Friedman test at the 0.05 signifi-
cance level under the null-hypothesis, which states that the
performance of all algorithms is the same on all datasets
(i.e., the average ranks of all algorithms are equivalent).
Then, we perform the Nemenyi test, which states that the
performance of two algorithms is significantly different
if the corresponding average ranks differ by at least one
critical difference (CD). Note that we only perform these
tests on the datasets where all algorithms can run the results.

Figs. 6(a) and (b) provide the CD diagrams, where
the average rank of each algorithm is marked along the
axis (lower ranks to the right). For the SHD metric, we
observe that ADL achieves a comparable performance
against MMHC, SLL+G, SLL+C, Improved-K2 and GGSL,
and it is significantly better than the other algorithms.
For Ar F1 metric, we note that ADL significantly outper-
forms GSBN, OBS, NOTEARS, DAG-GNN, K2, GOLEM and
DAG-NoCurl, and it achieves a comparable performance
against the other algorithms. On the whole, ADL is the only
algorithm that achieves the lowest rank value on both the
SHD and Ar F1 metrics.

CD=5.27

13 12 11 10 9 8 7 6 5 4 3 2 1

1 ADL
2.5 MMHC

3.63 SLL+G
4.08 SLL+C

5 Improved-K2
6.08 GGSL
7.08 GSBN

8.08NOTEARS
8.54DAG-GNN
9.17OBS
10.92K2
12.08GOLEM
12.83DAG-NoCurl

(a) SHD metric

CD=5.27

13 12 11 10 9 8 7 6 5 4 3 2 1

1.08 ADL
2.75 MMHC

3.5 SLL+C
4.33 SLL+G
4.42 Improved-K2

5 GGSL
8.5 GSBN

8.92OBS
9NOTEARS
9.08DAG-GNN
10.17K2
11.83GOLEM
12.42DAG-NoCurl

(b) Ar F1 metric

Fig. 6. Comparison of ADL against its rivals with the Nemenyi test. (the
lower the rank value, the better the performance.)

5.3 Results of DAG learning on real data
In this section, we compare our proposed algorithm with K2,
OBS, Improved-K2, GSBN, MMHC, SLL+C, SLL+G, GGSL,
NOTEARS, DAG-GNN, GOLEM and DAG-NoCurl on a
real dataset Sachs [39] (Sachs is described in Section 5.1.2),
and experimental results are summarized in Table 9.

From Table 9, we can obtain the following observations.
1) Our proposed method achieves the best results on

all metrics (i.e., Ar F1, Ar Precision, Ar Recall, SHD,
Reverse, Miss and Extra).

2) The existing DAG learning algorithms do not perform
well on real data, only our method improves the F1
metric by more than 50%.

3) Continuous optimization based DAG learning methods
usually learn a worse structure than other algorithms,
this is probably because such methods are usually
designed for specific scenarios or with strong assump-
tions.

4) The local-to-global DAG learning methods (i.e., ADL,
GSBN, MMHC, SLL+C, SLL+G and GGSL) outperform
the global DAG learning methods, since the local-to-
global methods can use the local skeleton learning
algorithms to construct an accurate global skeleton.

On the whole, by employing the adaptive skeleton con-
struction strategy, our proposed method not only achieves
a good performance on the benchmark datasets, but also
obtains the best results on the real dataset.

6 CONCLUSION

This paper focuses on the issue of local-to-global DAG struc-
ture learning. Existing methods construct the skeleton of a
DAG by simply using either the AND-rule or the OR-rule,

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3265015

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on May 08,2023 at 07:46:59 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

TABLE 8
Learning BIC scores for different DAG learning algorithms on different datasets.

#Sample Network K2 OBS Improved-K2 GSBN MMHC SLL+C SLL+G GGSL NOTEARS DAG-GNN GOLEM DAG-NoCurl ADL

500

Child -7.096280E+03 -7.049930E+03 -6.853100E+03 -7.249940E+03 -6.664490E+03 -6.681860E+03 -6.673250E+03 -7.151060E+03 -7.429350E+03 -9.149990E+03 -7.501080E+03 -1.396654E+04 -6.648140E+03
Alarm -5.983980E+03 -5.921090E+03 -5.920050E+03 -7.176670E+03 -5.970760E+03 -5.950140E+03 -5.932080E+03 -6.912380E+03 -7.779360E+03 -1.339617E+04 -9.019570E+03 -3.050004E+04 -5.914840E+03
Child3 -2.169417E+04 -2.151504E+04 -2.054698E+04 -2.195435E+04 -2.049381E+04 -2.063815E+04 -2.055745E+04 -2.202312E+04 -2.351920E+04 -2.597515E+04 -2.384051E+04 -2.842927E+05 -2.047510E+04
Alarm3 -2.043430E+04 -2.042601E+04 -2.028200E+04 -2.201467E+04 -2.081604E+04 -2.117098E+04 -2.070433E+04 -2.597413E+04 -2.301917E+04 -2.321901E+04 -2.813889E+04 -9.659642E+07 -2.067156E+04

Insurance5 -4.470477E+04 -4.373956E+04 -4.371751E+04 -4.826884E+04 -4.521122E+04 -4.543234E+04 -4.425777E+04 -4.940019E+04 -5.113285E+04 -5.094571E+04 -5.366885E+04 -4.300718E+07 -4.497184E+04
Alarm5 -3.481331E+04 -3.457681E+04 -3.442752E+04 -3.741840E+04 -3.528747E+04 -3.727844E+04 -3.584899E+04 -4.709139E+04 -3.891680E+04 -3.915974E+04 -4.765098E+04 -4.578304E+04 -3.504698E+04

Insurance10 -8.988036E+04 - -8.910902E+04 -9.709363E+04 -9.063090E+04 -9.269465E+04 -8.900159E+04 -1.051684E+05 -1.035574E+05 -1.032492E+05 -1.066020E+05 -5.604573E+07 -9.084952E+04
Alarm10 -7.073688E+04 - -6.921966E+04 -7.425935E+04 -6.978447E+04 - -6.944316E+04 - -7.657934E+04 -8.004505E+04 -9.006527E+04 -5.695415E+08 -6.921624E+04

Pigs -1.963104E+05 - -1.918651E+05 -2.016526E+05 -1.814861E+05 - - - -2.171722E+05 -2.201938E+05 -1.937926E+05 -2.885710E+05 -1.814518E+05
Gene - - - -2.603939E+05 -2.412176E+05 - - -2.516894E+05 -2.895122E+05 -3.198638E+05 -3.016782E+05 -2.965350E+06 -2.409292E+05

Munin - - - -1.661008E+05 -3.445156E+05 - - - - - - - -1.522743E+05

1000

Child -1.357099E+04 -1.344080E+04 -1.317795E+04 -1.365749E+04 -1.279651E+04 -1.287878E+04 -1.287143E+04 -1.318454E+04 -1.449615E+04 -1.489761E+04 -1.522671E+04 -1.785008E+04 -1.278792E+04
Alarm -1.123319E+04 -1.111250E+04 -1.096420E+04 -1.285909E+04 -1.073996E+04 -1.091783E+04 -1.082789E+04 -1.248335E+04 -1.238930E+04 -4.598914E+04 -1.512684E+04 -6.281176E+04 -1.070551E+04
Child3 -4.198156E+04 -4.108299E+04 -3.970753E+04 -4.177459E+04 -3.967251E+04 -4.000545E+04 -3.976949E+04 -4.169372E+04 -4.597845E+04 -4.635923E+04 -4.632711E+04 -1.125884E+05 -3.968904E+04
Alarm3 -3.898577E+04 -3.860234E+04 -3.846657E+04 -4.040642E+04 -3.851964E+04 -3.860444E+04 -3.857278E+04 -4.440421E+04 -4.491321E+04 -4.581132E+04 -5.185772E+04 -6.006728E+04 -3.837307E+04

Insurance5 -8.465015E+04 -8.323304E+04 -8.334992E+04 -9.170055E+04 -8.553144E+04 -8.540811E+04 -8.584046E+04 -9.124499E+04 -9.719328E+04 -1.011746E+05 -1.059536E+05 -1.697343E+06 -8.484530E+04
Alarm5 -6.564761E+04 -6.501115E+04 -6.511653E+04 -6.893632E+04 -6.513066E+04 -6.703756E+04 -6.516028E+04 -7.940382E+04 -7.594617E+04 -7.614681E+04 -9.049469E+04 -1.643380E+06 -6.498929E+04

Insurance10 -1.757178E+05 - -1.699400E+05 -1.837972E+05 -1.702013E+05 - - -2.011592E+05 -1.942892E+05 -1.950971E+05 -1.972078E+05 -1.547118E+07 -1.698724E+05
Alarm10 -1.330759E+05 - -1.290558E+05 -1.368523E+05 -1.290445E+05 - - -1.628922E+05 -1.532749E+05 -1.569444E+05 -1.809160E+05 -1.747659E+05 -1.286983E+05

Pigs -3.787895E+05 - -3.490657E+05 -3.925541E+05 -3.487431E+05 - - - -4.359147E+05 -4.541037E+05 -3.649772E+05 -4.084042E+05 -3.487228E+05
Gene - - - -5.107311E+05 -4.638813E+05 - - -4.700560E+05 -5.844175E+05 -6.311532E+05 -5.971217E+05 -6.821043E+05 -4.635984E+05

Munin - - - -3.070276E+05 -4.323130E+05 - - - - - - - -2.782613E+05

TABLE 9
Results on the real Sachs dataset. (↓ means that the lower, the better

while ↑ denotes the higher, the better.)

Method Ar F1 (↑) Ar Precision (↑) Ar Recall (↑) SHD (↓) Reverse (↓) Miss (↓) Extra (↓)
K2 24.24% 25.00% 23.53% 19 6 7 6

OBS 27.59% 33.33% 23.53% 15 6 7 2
Improved-K2 40.00% 46.15% 35.29% 15 3 8 4

GSBN 35.71% 45.45% 29.41% 14 4 8 2
MMHC 43.75% 46.67% 41.18% 14 4 6 4
SLL+C 41.38% 50.00% 35.29% 14 3 8 3
SLL+G 35.71% 45.45% 29.41% 14 4 8 2
GGSL 28.57% 36.36% 23.53% 16 4 9 3

NOTEARS 21.43% 27.27% 17.65% 18 4 10 4
DAG-GNN 16.00% 25.00% 11.76% 18 3 12 3

GOLEM 21.43% 27.27% 17.65% 18 4 10 4
DAG-NoCurl 18.18% 18.75% 17.65% 23 4 10 9

ADL 55.17% 66.67% 47.06% 10 3 6 1

which seriously deteriorates DAG learning quality. To alle-
viate this problem, we propose a new local-to-global DAG
structure learning algorithm, ADL. ADL can adaptively use
the AND-rule and the OR-rule to construct the skeleton
of a DAG for accurate DAG learning. Experiments have
shown that the proposed ADL algorithm outperforms five
existing local-to-global DAG learning algorithms and seven
global DAG learning algorithms in terms of the quality
and efficiency of DAG learning. In addition, the idea of
adaptive skeleton learning of ADL can be embedded in
other local-to-global DAG learning algorithms. Therefore,
future work may consider expanding the adaptive skele-
ton learning strategy to a framework that can effectively
improve the performance of existing local-to-global DAG
learning algorithms.

ACKNOWLEDGMENTS

This work was supported in part by the National Key
Research and Development Program of China (under grant
2021ZD0111801), in part by the Australian Research Council
(under grants DP200101210, DP230101122).

REFERENCES

[1] Y. Zeng, S. Shimizu, R. Cai, F. Xie, M. Yamamoto, and Z. Hao,
“Causal discovery with multi-domain LiNGAM for latent factors,”
in Proceedings of International Joint Conference on Artificial Intelli-
gence, 2021, pp. 2097–2103.

[2] R. Cai, J. Qiao, K. Zhang, Z. Zhang, and Z. Hao, “Causal discovery
with cascade nonlinear additive noise model,” in Proceedings of
International Joint Conference on Artificial Intelligence, 2019, pp. 1609–
1615.

[3] C. Zhang, H. Zhang, W. Xie, N. Liu, K. Wu, and L. Chen, “Where
to: Crowd-aided path selection by selective Bayesian network,”
IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 1,
pp. 1072–1087, 2021.

[4] K. Zhang, M. Gong, P. Stojanov, B. Huang, Q. Liu, and C. Gly-
mour, “Domain adaptation as a problem of inference on graphical
models,” Advances in Neural Information Processing Systems, vol. 33,
pp. 4965–4976, 2020.

[5] P. Cui, Z. Shen, S. Li, L. Yao, Y. Li, Z. Chu, and J. Gao, “Causal
inference meets machine learning,” in Proceedings of ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
2020, pp. 3527–3528.

[6] M. Prosperi, Y. Guo, M. Sperrin, J. S. Koopman, J. S. Min, X. He,
S. Rich, M. Wang, I. E. Buchan, and J. Bian, “Causal inference
and counterfactual prediction in machine learning for actionable
healthcare,” Nature Machine Intelligence, vol. 2, no. 7, pp. 369–375,
2020.

[7] J. Pearl, Probabilistic reasoning in intelligent systems. Elsevier, 2014,
vol. 88, no. 3.

[8] M. Chickering, D. Heckerman, and C. Meek, “Large-sample learn-
ing of Bayesian networks is NP-hard,” Journal of Machine Learning
Research, vol. 5, 2004.

[9] B. Huang, K. Zhang, J. Zhang, J. D. Ramsey, R. Sanchez-Romero,
C. Glymour, and B. Schölkopf, “Causal discovery from heteroge-
neous/nonstationary data.” Journal of Machine Learning Research,
vol. 21, no. 89, pp. 1–53, 2020.

[10] D. Colombo, M. H. Maathuis et al., “Order-independent
constraint-based causal structure learning.” Journal of Machine
Learning Research, vol. 15, no. 1, pp. 3741–3782, 2014.

[11] S. M. Lee and S. B. Kim, “Parallel simulated annealing with a
greedy algorithm for Bayesian network structure learning,” IEEE
Transactions on Knowledge and Data Engineering, vol. 32, no. 6, pp.
1157–1166, 2020.

[12] X. Zheng, B. Aragam, P. K. Ravikumar, and E. P. Xing, “Dags
with no tears: Continuous optimization for structure learning,”
Advances in Neural Information Processing Systems, vol. 31, pp. 9472–
9483, 2018.

[13] Y. Yu, J. Chen, T. Gao, and M. Yu, “DAG-GNN: DAG structure
learning with graph neural networks,” in International Conference
on Machine Learning. PMLR, 2019, pp. 7154–7163.

[14] T. Gao, K. Fadnis, and M. Campbell, “Local-to-global Bayesian
network structure learning,” in International Conference on Machine
Learning. PMLR, 2017, pp. 1193–1202.

[15] I. Tsamardinos, L. E. Brown, and C. F. Aliferis, “The max-min hill-
climbing Bayesian network structure learning algorithm,” Machine
Learning, vol. 65, no. 1, pp. 31–78, 2006.

[16] T. Niinimaki and P. Parviainen, “Local structure discovery in
Bayesian networks,” in Proceedings of Conference on Uncertainty in
Artificial Intelligence. AUAI Press, 2012, pp. 634–643.

[17] M. J. Vowels, N. C. Camgoz, and R. Bowden, “D’ya like DAGs? A
survey on structure learning and causal discovery,” ACM Comput-
ing Surveys (CSUR), 2021.

[18] K. Zhang, B. Schölkopf, P. Spirtes, and C. Glymour, “Learning
causality and causality-related learning: some recent progress,”
National Science Review, vol. 5, no. 1, pp. 26–29, 2018.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3265015

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on May 08,2023 at 07:46:59 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

[19] M. Teyssier and D. Koller, “Ordering-based search: a simple and
effective algorithm for learning Bayesian networks,” in Proceedings
of Conference on Uncertainty in Artificial Intelligence, 2005, pp. 584–
590.

[20] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning
Bayesian networks: The combination of knowledge and statistical
data,” Machine Learning, vol. 20, no. 3, pp. 197–243, 1995.

[21] D. M. Chickering, “Optimal structure identification with greedy
search,” Journal of Machine Learning Research, vol. 3, no. Nov, pp.
507–554, 2002.

[22] G. F. Cooper and E. Herskovits, “A Bayesian method for the
induction of probabilistic networks from data,” Machine Learning,
vol. 9, no. 4, pp. 309–347, 1992.

[23] S. Behjati and H. Beigy, “An order-based algorithm for learning
structure of Bayesian networks,” in Proceedings of International
Conference on Probabilistic Graphical Models. PMLR, 2018, pp. 25–
36.

[24] ——, “Improved K2 algorithm for Bayesian network structure
learning,” Engineering Applications of Artificial Intelligence, vol. 91,
p. 103617, 2020.

[25] P. Spirtes and C. Glymour, “An algorithm for fast recovery of
sparse causal graphs,” Social Science Computer Review, vol. 9, no. 1,
pp. 62–72, 1991.

[26] P. Spirtes, C. Meek, and T. Richardson, “Causal inference in the
presence of latent variables and selection bias,” in Proceedings of
Conference on Uncertainty in Artificial Intelligence, 1995, pp. 499–506.

[27] M. Zhang, S. Jiang, Z. Cui, R. Garnett, and Y. Chen, “D-vae: A
variational autoencoder for directed acyclic graphs,” Advances in
Neural Information Processing Systems, vol. 32, 2019.

[28] I. Ng, A. Ghassami, and K. Zhang, “On the role of sparsity and
DAG constraints for learning linear DAGs,” Advances in Neural
Information Processing Systems, vol. 33, pp. 17 943–17 954, 2020.

[29] Y. Yu, T. Gao, N. Yin, and Q. Ji, “DAGs with no curl: An efficient
DAG structure learning approach,” in International Conference on
Machine Learning. PMLR, 2021, pp. 12 156–12 166.

[30] K. Yu, X. Guo, L. Liu, J. Li, H. Wang, Z. Ling, and X. Wu,
“Causality-based feature selection: Methods and evaluations,”
ACM Computing Surveys (CSUR), vol. 53, no. 5, pp. 1–36, 2020.

[31] X. Guo, K. Yu, L. Liu, F. Cao, and J. Li, “Causal feature selection
with dual correction,” IEEE Transactions on Neural Networks and
Learning Systems, 2022.

[32] X. Guo, K. Yu, F. Cao, P. Li, and H. Wang, “Error-aware Markov
blanket learning for causal feature selection,” Information Sciences,
vol. 589, pp. 849–877, 2022.

[33] J. A. Gámez, J. L. Mateo, and J. M. Puerta, “Learning Bayesian
networks by hill climbing: efficient methods based on progressive
restriction of the neighborhood,” Data Mining and Knowledge Dis-
covery, vol. 22, no. 1, pp. 106–148, 2011.

[34] D. Margaritis and S. Thrun, “Bayesian network induction via local
neighborhoods,” Advances in Neural Information Processing Systems,
vol. 12, 1999.

[35] P. Spirtes, C. N. Glymour, R. Scheines, and D. Heckerman, Causa-
tion, prediction, and search. MIT press, 2000.

[36] I. Tsamardinos, C. F. Aliferis, and A. Statnikov, “Time and sample
efficient discovery of Markov blankets and direct causal relations,”
in Proceedings of ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 2003, pp. 673–678.

[37] C. F. Aliferis, I. Tsamardinos, and A. Statnikov, “HITON: a novel
Markov Blanket algorithm for optimal variable selection,” in
AMIA Annual Symposium Proceedings, vol. 2003. American Medi-
cal Informatics Association, 2003, p. 21.

[38] X. Wu, B. Jiang, K. Yu, H. Chen et al., “Accurate Markov bound-
ary discovery for causal feature selection,” IEEE Transactions on
Cybernetics, vol. 50, no. 12, pp. 4983–4996, 2019.

[39] K. Sachs, O. Perez, D. Pe’er, D. A. Lauffenburger, and G. P. Nolan,
“Causal protein-signaling networks derived from multiparameter
single-cell data,” Science, vol. 308, no. 5721, pp. 523–529, 2005.

[40] J. Suzuki, “Learning Bayesian belief networks based on the mini-
mum description length principle: basic properties,” IEICE Trans-
actions on Fundamentals of Electronics, Communications and Computer
Sciences, vol. 82, no. 10, pp. 2237–2245, 1999.

[41] X. Jiang, L.-H. Lim, Y. Yao, and Y. Ye, “Statistical ranking and
combinatorial Hodge theory,” Mathematical Programming, vol. 127,
no. 1, pp. 203–244, 2011.

[42] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” The Journal of Machine Learning Research, vol. 7, pp. 1–30,
2006.

Xianjie Guo received the B.S. degree from An-
hui Normal University, Wuhu, China, in 2018.
He is currently pursuing the Ph.D. degree with
the School of Computer Science and Informa-
tion Engineering, Hefei University of Technology,
Hefei, China.

His current research interests include causal
discovery and federated learning.

Kui Yu (Member, IEEE) received the Ph.D. de-
gree in computer science from the Hefei Univer-
sity of Technology, Hefei, China, in 2013.

From 2015 to 2018, he was a Research Fellow
of computer science with the University of South
Australia, Adelaide, SA, Australia. From 2013
to 2015, he was a Post-Doctoral Fellow with
the School of Computing Science, Simon Fraser
University, Burnaby, BC, Canada. He is currently
a Professor with the School of Computer Sci-
ence and Information Engineering, Hefei Univer-

sity of Technology. His main research interests include causal discovery
and machine learning.

Lin Liu received the B.S. and M.S. degrees
in electronic engineering from Xidian University,
Xi’an, China, in 1991 and 1994, respectively,
and the Ph.D. degree in computer systems en-
gineering from the University of South Australia,
Adelaide, SA, Australia.

She is currently a Professor with the University
of South Australia, Adelaide, SA, Australia. Her
research interests include data mining, machine
learning, causal inference, and bioinformatics.

Peipei Li received the B.S., M.S., and Ph.D.
degrees from the Hefei University of Technology,
in 2005, 2008, and 2013, respectively. She was a
Research Fellow at the Singapore Management
University, from 2008 to 2009. She was a student
intern at Microsoft Research Asia from August
2011 to December 2012. She is currently an
Associate Professor with the Hefei University of
Technology, China. Her research interests are in
data mining and knowledge engineering.

Jiuyong Li (Member, IEEE) received the Ph.D.
degree in computer science from Griffith Univer-
sity, Brisbane, QLD, Australia, in 2002.

He is currently a Professor with the University
of South Australia, Adelaide, Australia. His main
research interests include data mining, causal
discovery and inference, and bioinformatics. His
research work has been supported by eight Aus-
tralian Research Council Discovery projects and
many industry and government projects.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3265015

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on May 08,2023 at 07:46:59 UTC from IEEE Xplore. Restrictions apply.

