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ABSTRACT
Learning a causal structure from observational data is crucial for

data scientists. Recent advances in causal structure learning (CSL)

have focused on local-to-global learning, since the local-to-global

CSL can be scaled to high-dimensional data. The local-to-global

CSL algorithms first learn the local skeletons, then construct the

global skeleton, and finally orient edges. In practice, the perfor-

mance of local-to-global CSL mainly depends on the accuracy of

the global skeleton. However, in many real-world settings, owing

to inevitable data quality issues (e.g. noise and small sample), ex-

isting local-to-global CSL methods often yield many asymmetric
edges (e.g., given an asymmetric edge containing variables 𝐴 and

𝐵, the learned skeleton of 𝐴 contains 𝐵, but the learned skeleton

of 𝐵 does not contain 𝐴), which make it difficult to construct a

high quality global skeleton. To tackle this problem, this paper pro-

poses a Bootstrap sampling based Causal Structure Learning (BCSL)

algorithm. The novel contribution of BCSL is that it proposes an

integrated global skeleton learning strategy that can construct more

accurate global skeletons. Specifically, this strategy first utilizes the

Bootstrap method to generate multiple sub-datasets, then learns

the local skeleton of variables on each asymmetric edge on those

sub-datasets, and finally designs a novel scoring function to es-

timate the learning results on all sub-datasets for correcting the

asymmetric edge. Extensive experiments on both benchmark and

real datasets verify the effectiveness of the proposed method.

CCS CONCEPTS
• Computing methodologies→ Causal reasoning and diag-
nostics.
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1 INTRODUCTION
Learning causal relationships between variables is an importanct

goal in various disciplines, such as medicine, computer science and

bioinformatics [4, 19, 24, 46]. A directed acyclic graph (DAG) or the

structure of a Bayesian network (BN) [31] is one of major means

used to represent causal relationships in complex systems, when a

directed edge𝑋𝑖 → 𝑋 𝑗 in a DAG is interpreted as a direct cause (𝑋𝑖 )

and a direct effect (𝑋 𝑗 ) relationship [3, 16, 45]. Therefore, estimating

a DAG from observational data (called causal structure learning,

CSL) is a critical step for inferring causal relationships between

variables [13, 28, 32, 37].

In recent years, many CSL (i.e. DAG learning) methods have

been proposed [22, 42], which can be mainly divided into global

methods and local-to-global methods. Global methods, such as

PC [35], GES [5] and NOTEARS [48], use conditional independence

(CI) tests, or score functions [17, 39], or continuous optimization

strategies [23, 27, 43, 44] to learn the causal structure of all variables.

However, global CSL has been proven to be NP-hard [6] and its

scalability has become a major problem. Particularly, when the

number of variables in a dataset is large, most existing global CSL

algorithms would suffer from the computational problem.
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Figure 1: Problems faced by existing local-to-global causal
structure learning methods.

To alleviate this problem, the local-to-global CSL methods have

been designed, including GSBN [26], SLL+C/G [30] and GGSL [12],
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which consist of three steps: 1) discovering the local skeleton of each

variable in a dataset. A local skeleton often refers to the set of par-

ents and children (PC) of a target variable in a DAG; 2) splicing each

local skeleton into a global skeleton (undirected graph); 3) orienting

the undirected edges in the global skeleton using independence

tests [17, 36, 45, 47] or score-and-search strategies [5, 8, 18, 34].

Although existing local-to-global CSL methods have made land-

mark advances in both efficiency and accuracy, they still obtain

unsatisfactory CSL performance due to inevitable data quality is-

sues (e.g. noise and small sample). As shown in Fig. 1, data problems

often make CI tests unreliable, further yielding some asymmetric

local skeletons. For instance, in Fig. 1, we assume that the true

causal structure behind the original data 𝐷0 is 𝐶 → 𝐴 → 𝐵 ← 𝐸.

Theoretically, the learned local skeletons of 𝐴 and 𝐵 are symmetric,

i.e., there is an edge between 𝐴 and 𝐵 in both the 𝐴’s local skeleton

(𝐶 − 𝐴 − 𝐵) and the 𝐵’s local skeleton (𝐴 − 𝐵 − 𝐸). However, ow-
ing to data issues, the learned local skeletons of 𝐴 and 𝐵 might be

asymmetric. As shown in Fig. 1, the learned local skeleton of 𝐴 is

𝐶 −𝐴 − 𝐵, but the learned local skeleton of 𝐵 is 𝐵 − 𝐸, which yields

an asymmetric edge 𝐴 ↮ 𝐵. In practice, this situation is ubiquitous

and seriously affects the construction of the global skeleton. As a

result, the learned causal structure is quite different from the true

causal structure behind the data.

Table 1: The number of asymmetric edges on different bench-
mark BNs. Here, 𝐸𝑒 denotes the proportion of edges that
actually exist in the true DAG among all the asymmetric
edges; whereas 𝑁𝑜𝑡𝐸𝑒 denotes the proportion of edges that do
not actually exist in the true DAG among all the asymmetric
edges. Clearly, 𝐸𝑒 + 𝑁𝑜𝑡𝐸𝑒 = 100%.

Bayesian network Alarm Alarm3 Alarm5 Alarm10

The total number of edges 46 149 265 570

Number of asymmetric edges 10 46 76 203

Asymmetric proportion 21.74% 30.87% 28.68% 35.61%

Ee 60.00% 45.65% 27.63% 33.99%

NotEe 40.00% 54.35% 72.37% 66.01%

To illustrate the universality of asymmetric edges learned by the

existing local-to-global CSL algorithms, we perform experiments

on four commonly used benchmark Bayesian networks (BNs), in-

cluding Alarm, Alarm3, Alarm5 and Alarm10
1
. Specifically, we first

utilize these four BNs to generate four synthetic datasets, each

containing 500 samples. Then using these datasets, we run a classi-

cal local skeleton learning algorithm, HITON-PC [1], to learn the

local skeleton of each variable. Finally, we record the number of

asymmetric edges learned by HINTON-PC on these four datasets,

and experimental results are reported in Table 1.

From Table 1, we can observe that the number of asymmetric
edges in each dataset accounts for about 21% to 36% of the total

edges. More importantly, both 𝐸𝑒 (the proportion of edges that

actually exist in the true DAG among all the asymmetric edges) and
𝑁𝑜𝑡𝐸𝑒 (the proportion of edges that do not actually exist in the

true DAG among all the asymmetric edges) float up and down 50%.

The problem is that we do not have a suitable method to determine

1
Those benchmark BNs are publicly available at http://www.bnlearn.com/

bnrepository/

whether these asymmetric edges really exist in the true DAG. Exist-

ing local-to-global CSL methods usually adopt the following either

correction methods: 1) all asymmetric edges are considered to exist

in the global structure (e.g. the edge between 𝐴 and 𝐵 is kept in

the final global skeleton in Figure 1), or 2) all asymmetric edges are
removed from the global structure (e.g. the edge between 𝐴 and 𝐵

is removed in the final global skeleton in Figure 1). However, the

first method may cause many false edges to be added if 𝑁𝑜𝑡𝐸𝑒 > 0;

whereas, the second method may delete many true edges if 𝐸𝑒 > 0.

Accordingly, a question naturally arises: can we tackle the lim-

itation of data quality by utilizing data sampling technique [10]

combined with an ensemble learning strategy [2, 15, 21, 49] and

learn a more accurate causal structure? To this end, this paper

proposes a novel Bootstrap [10] based causal structure learning

(BCSL) algorithm for tackling the problem of asymmetric edges. Our
contributions can be summarized as follows.

• The novel contribution of the BCSL algorithm lies in that we

propose a new integrated global skeleton learning strategy

that can reasonably correct the asymmetric edges. Specifically,
we first use the Bootstrap method to sample 𝑁 sub-datasets

from the original dataset, and then learn the local skeleton of

variables on each asymmetric edge again on 𝑁 sub-datasets,

finally design a novel scoring function to determine whether

each asymmetric edge exists or not according to the learning
results on 𝑁 sub-datasets.

• Using ten benchmark BN datasets and a real-world dataset,

we have conducted extensive experiments to compare BCSL

with nine well-established and state-of-the-art CSL algo-

rithms to demonstrate the effectiveness of BCSL.

2 RELATEDWORK
In recent years, many CSL methods have been proposed, and they

are mainly divided into global methods [5, 35, 48] and local-to-

global methods [12, 26, 30].

2.1 Global causal structure learning
Global CSL methods have formulated the CSL problem as com-

binatorial optimization problem [5] and continuous optimization

problem [48]. In the combinatorial optimization problem, existing

global CSL methods are subdivided into two types: score-based and

constraint-based approaches [13]. Score-based algorithms, such as

GES [5] and bnlearn [25], generally use a scoring function to mea-

sure the goodness of fit of different graphs over data, and then use a

search procedure to find the best graph [9]. In contrast, constraint-

based methods, such as PC [35] and PC-stable [7], adopt conditional

independence (CI) tests to first assess whether there is an edge be-

tween two variables, and then orient the edges [36].

To avoid the combinatorial constraint, recently, Zheng et al.

transfer global CSL problem to a continuous optimization problem,

and proposed the NOTEARS [48] algorithm which formulates the

acyclic constraint as a smooth term and solve the problem using

gradient-based numerical methods. NOTEARS is specifically devel-

oped for linear structures, and has been extended to handle non-

linear cases via neural networks [23, 27, 29, 43, 44]. To name a few,

DAG-GNN [43] reconstructs data using variational auto-encoder

and uses an Evidence Lower Bound (ELBO) loss as its loss function.
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GAE [29] abandons the variational part in DAG-GNN, instead, it

takes graph auto-encoder as its generative model and adopts least

square loss. Different from previous methods, aiming at leverag-

ing all the parameters of the neural network in representing the

weighted adjacency matrix, GraN-DAG [23] uses path products of

the weights of its multilayer perceptrons (MLP) generative model to

represent the matrix coefficients. Ng et al. study the asymptotic role

of the sparsity and DAG constraints in the general linear Gaussian

case and other specific cases, and develop a likelihood-based struc-

ture learning method with continuous unconstrained optimization,

called GOLEM [27]. Compared to GOLEM, DAG-NoCurl [44] is an

efficient algorithm, since it is developed based on the graph Hodge

theory [20] and can solve the resultant unconstrained optimization

problem in the DAG space.

However, these global CSL algorithms attempt to learn an entire

causal structure at once, and they would face computational issues

when the number of variables is large.

2.2 Local-to-global causal structure learning
To improve the efficiency of CSL, the local-to-global CSL approaches

are developed, which first learn the local skeleton of each variable in

a dataset independently. Then, those approaches construct a global

skeleton by splicing these learned local skeletons, and finally orient

the undirected edges in the global skeleton using independence

tests [17, 36, 45, 47] or score-and-search strategies[5, 8, 18, 34].

In the past two decades, several local-to-global CSLmethods have

been proposed. For example, GSBN [26] first utilizes the GSMB [26]

algorithm to learn the local skeleton of each variable, then con-

structs the global skeleton, and finally uses CI tests to orient edges.

Compared to GSBN, MMHC [41] learns the local skeleton of each

variable using the MMPC [40] algorithm and uses a score-and-

search strategy to orient edges. SLL+C/G [30] first finds the local

skeleton of each variable using a score-based local CSL algorithm

(called SLL [30]), then constructs the global skeleton by combining

all local skeletons, and finally SLL+C uses CI tests to orient edges

in the global skeleton whereas SLL+G employs a score-and-search

strategy to orient edges. Instead of finding the local skeleton of

each variable in advance, the GGSL algorithm [12] first randomly

selects a variable and learns the local causal structure around the

variable, then gradually expands the learned structure until the

entire causal structure is learned.

However, in many real-world settings, due to data issues (e.g.

noise and small sample), existing local-to-global CSL methods may

produce many asymmetric edges. To resolve these asymmetric edges,
existing methods either assume that all asymmetric edges exist in
the global skeleton or do not exist. In practice, the solution above

may result in the loss of many true edges or the addition of many

false edges in the constructed global skeleton, further leading to

unsatisfactory CSL performance. In this paper, we weaken the im-

pact of data problems on causal structure learning by data sampling

technique combined with ensemble learning strategy.

3 PROPOSED BCSL APPROACH
3.1 Algorithm Overviews
Let V={𝑋1, 𝑋2, ..., 𝑋𝑚 } denote a set of random variables, and 𝐷𝑛×𝑚

denote the input data matrix with 𝑚 variables and 𝑛 samples. P

represents a joint probability distribution over V , and G is a DAG

over V . In a DAG, 𝑋1 is a parent of 𝑋2 and 𝑋2 is a child of 𝑋1 if

there exists a directed edge from 𝑋1 to 𝑋2.

In the section, we propose the BCSL approach to local-to-global

causal structure learning (CSL) with three steps shown in Fig. 2. In

Step 1, BCSL first discovers the local skeleton (i.e. PC set) of each

variable in a dataset. Then, based on the local skeletons obtained in

Step 1, Step 2 of BCSL uses an integrated global skeleton learning

strategy to resolve asymmetric edges for constructing the best global
skeleton. Finally, Step 3 employs a score-and-search strategy to

orient the undirected edges in the global skeleton, and obtains a

Complete Partially DAG (CPDAG), i.e., global causal structure. In

the following section, we provide the details of the three steps.

original 
dataset D0

Bootstrap 
Sampling

Xa Xb

Xd Xf

Xg Xh

select the edges with 
asymmetric local skeletons 

D1

Di

DN

N sub-datasets

Xa XbXXaaXXXX XX

Xd XfXXddXXXX XX

Xg Xh

learn the local skeleton of variables on each 
asymmetric edge again on N sub-datasets

use scoring function AEE(·) to 
estimate whether there are real edges 

between these pairs of variables

reconstruct K edges and obtain 
the best global skeleton K asymmetric edges

Step 2: Integrated global skeleton learning

Step 1: Initial local skeleton learning

Step 3: Global skeleton orientation

original 
dataset D0

V={X1, X2, ... , Xm}

local skeleton learning
X1 Xm

Bayesian score criteria BDeu search procedure hill-climbing

orientation

skeleton hill-climbing PDAG BDeu if the highest scoring?
yes

no

DAG

hill-climbing

Figure 2: The framework of BCSL.

3.2 Detailed Descriptions
3.2.1 Step 1: Initial Local Skeleton Learning. Learning a local skele-
ton for each variable makes BCSL scalable to high-dimensional

data. Given an original dataset 𝐷𝑛×𝑚
0

with the variable set

V={𝑋1, 𝑋2, ..., 𝑋𝑚 }, in Step 1 of Fig. 2, BCSL aims to learn the lo-

cal skeleton (i.e. PC set) of each variable in V using an existing

PC (Parent-Child) learning algorithm. In our implementation, we

employ HITON-PC [1], one of the best PC learning algorithms

for this step. The following Proposition 3.1 is the rationale of the

HITON-PC algorithm.
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Proposition 3.1 ([31]). In a DAG, if there is an edge between
variables 𝑋𝑖 and 𝑋 𝑗 , ∀Z ⊆ V \ {𝑋𝑖 , 𝑋 𝑗 }, 𝑋𝑖 and 𝑋 𝑗 are conditionally
dependent given Z.

Proposition 3.1 states that if𝑋𝑖 is a parent or a child of𝑋 𝑗 ,𝑋𝑖 and

𝑋 𝑗 are not conditionally independent conditioning on any variable

subsets. In other words, if 𝑋𝑖 in the learned PC set of 𝑋 𝑗 , 𝑋 𝑗 must

be in the learned PC set of 𝑋𝑖 .

According to Proposition 3.1, the HITON-PC algorithm can dis-

cover the true PC set of a target variable theoretically by leverag-

ing conditional independence (CI) tests. Let PC(𝑋𝑖 ) represents the
learned PC set of variable 𝑋𝑖 , at the end of the step, we obtain the

local skeleton of all variables, i.e., PC(𝑋1), PC(𝑋2), · · · , PC(𝑋𝑚).
However, as shown in Table 1, HITON-PC (or other existing PC

learning methods) often yields some asymmetric edges due to data

quality issues. For instance, 𝑋𝑖 ∈ PC(𝑋 𝑗 ) but 𝑋 𝑗 ∉ PC(𝑋𝑖 ). In this

case, when constructing the global skeleton, there is an asymmetric
edge 𝑋𝑖 ↮ 𝑋 𝑗 . According to the learned PC set of each variable in

V , BCSL records all asymmetric edges, and we let the number of

asymmetric edges be𝐾 . To determine whether each asymmetric edge
really exists in the true global skeleton, we design an integrated

global skeleton learning strategy as follows.

3.2.2 Step 2: Integrated Global Skeleton Learning. Using the learned
local skeletons (i.e. PC sets) at Step 1, Step 2 is to construct the global

skeleton by splicing all local skeletons. If local skeletons between

variables are symmetric, such as 𝑋𝑖 ∈ PC(𝑋 𝑗 ) and 𝑋 𝑗 ∈ PC(𝑋𝑖 ) (or
𝑋𝑖 ∉ PC(𝑋 𝑗 ) and 𝑋 𝑗 ∉ PC(𝑋𝑖 )), we believe that there is an (or no)

edge between𝑋𝑖 and𝑋 𝑗 . To deal with the asymmetric edges, in BCSL,
we design the integrated global skeleton learning strategy with the

following two novel sub-steps (Steps 2-1 and 2-2) for obtaining a

best global skeleton.

Step 2-1: Learn the local skeletons of variables on each
asymmetric edge again on all sampled datasets. First, based
on Bootstrap method [10], the original dataset 𝐷𝑛×𝑚

0
is sampled

into 𝑁 sub-datasets (𝐷1, 𝐷2, ..., 𝐷𝑁 ). As a common technology in

ensemble learning algorithms [2, 15, 21, 49], Bootstrap is a sampling

method commonly used in the field of machine learning. Given

an original dataset 𝐷𝑛×𝑚
0

, the process of generating a sub-dataset

𝐷𝑛×𝑚
1

through Bootstrap method is as follows:

• Randomly select a sample from 𝐷𝑛×𝑚
0

each time and put it

into 𝐷𝑛×𝑚
1

, and then put the sample back into the original

dataset 𝐷𝑛×𝑚
0

, so that the sample may still be sampled in the

next sampling.

• Repeat the above procedure 𝑛 times to obtain a sub-dataset

𝐷𝑛×𝑚
1

containing 𝑛 samples.

Proposition 3.2 ([10]). Given an original dataset 𝐷𝑛×𝑚
0

, and
generating a sub-dataset 𝐷𝑛×𝑚

1
using Bootstrap method, if 𝑛 →∞,

approximately 36.8% of the samples in 𝐷𝑛×𝑚
0

do not appear in 𝐷𝑛×𝑚
1

.

According to Proposition 3.2, for causal structure learning, gen-

erating sub-datasets through Bootstrap method has the following

advantages:

• Bootstrap method can keep the same sample size for each

sub-dataset, i.e., 𝐷𝑛×𝑚
0

and 𝐷𝑛×𝑚
1

have the same sample size.

• 𝐷𝑛×𝑚
1

has 36.8% samples that are different from 𝐷𝑛×𝑚
0

. The

sample difference increases the diversity of the casual struc-

tures learned from different sub-datasets.

Then, on each sub-dataset, BCSL learns the local skeleton (i.e.

PC set) of variables on each asymmetric edge again. For example,

as shown in Fig. 2, “𝑋𝑎 ↮ 𝑋𝑏 " is an asymmetric edge, thus BCSL
needs to discover the local skeleton (i.e. PC set) of 𝑋𝑎 and the local

skeleton of 𝑋𝑏 again on all sub-datasets.

Step 2-2: use a scoring function to determine whether each
asymmetric edge exists in the global skeleton. For each asym-
metric edge, through combining the local skeleton learning results

from all sub-datasets at Step 2-1, BCSL designs a scoring function,

𝐴𝐸𝐸 (Asymmetric Edge Evaluation), to determine whether this edge

really exists. The detailed design process of scoring function𝐴𝐸𝐸 (·)
is as follows:

Given the 𝑘-th asymmetric edge (𝑘 = 1, 2, ..., 𝐾 ) containing vari-

ables 𝑋𝑔 (𝑔 = 1, 2, ...,𝑚) and 𝑋ℎ (ℎ = 1, 2, ...,𝑚), we use a scoring

function 𝑠𝑐𝑜𝑟𝑒 (𝑔, ℎ, 𝑗, 𝑘) to record whether the learned local skele-

ton of 𝑋𝑔 contains 𝑋ℎ on the 𝑗-th sub-dataset ( 𝑗 = 1, 2, ..., 𝑁 ). If the

learned local skeleton of 𝑋𝑔 contains 𝑋ℎ , then 𝑠𝑐𝑜𝑟𝑒 (𝑔, ℎ, 𝑗, 𝑘) = 1;

otherwise 𝑠𝑐𝑜𝑟𝑒 (𝑔, ℎ, 𝑗, 𝑘) = −1. Similarly, we also record whether

the learned local skeleton of 𝑋ℎ contains 𝑋𝑔 by 𝑠𝑐𝑜𝑟𝑒 (ℎ,𝑔, 𝑗, 𝑘).
Then, the score of the 𝑘-th asymmetric edge on the 𝑗-th sub-dataset

is formalized as

𝐴𝐸𝐸 ( 𝑗, 𝑘)
𝑗=1,2,...,𝑁 ;𝑘=1,2,...,𝐾

= 𝑠𝑐𝑜𝑟𝑒 (𝑔, ℎ, 𝑗, 𝑘) + 𝑠𝑐𝑜𝑟𝑒 (ℎ,𝑔, 𝑗, 𝑘) . (1)

Based on Eq. (1), we can obtain the total score of the𝑘-th asymmetric
edge on all sub-datasets as

𝐴𝐸𝐸 (:, 𝑘)
𝑘=1,2,...,𝐾

=

𝑁∑︁
𝑗=1

𝐴𝐸𝐸 ( 𝑗, 𝑘) . (2)

Finally, we set that if 𝐴𝐸𝐸 (:, 𝑘) > 0, the 𝑘-th asymmetric edge
will be retained in the global skeleton; otherwise, this edge will be

removed.

However, due to the randomness of Bootstrap method, the qual-

ity of sub-datasets obtained by sampling is different each time.

Therefore, we should adjust (increase or decrease) the score of an

asymmetric edge on each sub-dataset according to the quality of this
sub-dataset. In other words, the reliability of the learning results

obtained on the sub-dataset with low data quality is lower, and

we should weaken the score on this sub-dataset. In our method,

BCSL uses F1 score[14] to evaluate the quality of the generated

sub-dataset 𝐷𝑛×𝑚
𝑗

by comparing the local skeleton of a variable

learned on 𝐷𝑛×𝑚
0

with that learned on 𝐷𝑛×𝑚
𝑗

. Specifically, we take

the local skeleton of a variable learned on 𝐷𝑛×𝑚
0

as the standard,

and then calculate the F1 score of the local skeleton of the variable

learned on 𝐷𝑛×𝑚
𝑗

. We think that the higher value of F1 score in-

dicates the higher quality of the sub-dataset 𝐷𝑛×𝑚
𝑗

. BCSL utilizes

a weight matrix𝑊 𝑘
(with 2 rows and 𝑁 columns) to store the F1

scores which are calculated on all sub-datasets for the two vari-

ables 𝑋𝑔 and 𝑋ℎ on the 𝑘-th asymmetric edge, and𝑊 𝑘 (1, 𝑗) and
𝑊 𝑘 (2, 𝑗) denote the F1 score calculated on the 𝑗-th sub-dataset for

variable 𝑋𝑔 and variable 𝑋ℎ , respectively. For instance, let 𝑁 = 6, if
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“𝑋𝑔 ↮ 𝑋ℎ" is the third asymmetric edge and

𝑊 3 =

[
0.6 0.7 0.9 1.0 0.8 0.8

0.5 0.9 0.6 0.3 0.7 0.5

]
, (3)

𝑊 3 (2, 4) = 0.3 denotes that the F1 score calculated on 𝐷𝑛×𝑚
4

for variable 𝑋ℎ on “𝑋𝑔 ↮ 𝑋ℎ" is 0.3. Similarly, we also arrange

𝑠𝑐𝑜𝑟𝑒 (𝑔, ℎ, :, 𝑘) and 𝑠𝑐𝑜𝑟𝑒 (ℎ,𝑔, :, 𝑘) into a matrix with 2 rows and 𝑁

columns, and obtain

𝑠𝑐𝑜𝑟𝑒∗ (𝑘)
𝑘=1,...,𝐾

=

[
𝑠𝑐𝑜𝑟𝑒 (𝑔, ℎ, 1, 𝑘) · · · 𝑠𝑐𝑜𝑟𝑒 (𝑔, ℎ, 𝑁 , 𝑘)
𝑠𝑐𝑜𝑟𝑒 (ℎ,𝑔, 1, 𝑘) · · · 𝑠𝑐𝑜𝑟𝑒 (ℎ,𝑔, 𝑁 , 𝑘)

]
. (4)

Thus, if the quality of the generated sub-datasets is considered, the

total score of the 𝑘-th asymmetric edge on all sub-datasets can be

reformulated as

𝐴𝐸𝐸 (:, 𝑘)
𝑘=1,...,𝐾

=

2∑︁
𝑖=1

𝑁∑︁
𝑗=1

[𝑠𝑐𝑜𝑟𝑒∗ (𝑘) ⊙𝑊 𝑘 ]𝑖 𝑗 . (5)

Here, ⊙ is the Hadamard product symbol, and denotes the multi-

plication of the corresponding position elements of two matrices

with the same dimension.

In rare cases,𝐴𝐸𝐸 (·)may be equal to 0, whichmakes it difficult to

determine whether an asymmetric edge exists in the global skeleton.

To further avoid the case that𝐴𝐸𝐸 (·) = 0, BCSL introduces a weight

factor𝑤 to enlarge the influence of the weight matrix𝑊 𝑘
on the

total score 𝐴𝐸𝐸 (·). The weight matrix𝑊 𝑘
processed by the weight

factor𝑤 is marked as
ˆ𝑊 𝑘
, and the formulation is as follows:

ˆ𝑊 𝑘 (1, 𝑗) =
{
𝑊 𝑘 (1, 𝑗) ×𝑤 𝑖𝑓 𝑊 𝑘 (1, 𝑗) >𝑊 𝑘 (2, 𝑗)

𝑊 𝑘 (1, 𝑗) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(6)

ˆ𝑊 𝑘 (2, 𝑗) =
{
𝑊 𝑘 (2, 𝑗) ×𝑤 𝑖𝑓 𝑊 𝑘 (2, 𝑗) >𝑊 𝑘 (1, 𝑗)

𝑊 𝑘 (2, 𝑗) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(7)

The weight factor 𝑤 is initially set to 1.0. When 𝐴𝐸𝐸 (·) = 0, we

only need to enlarge𝑤 by any multiple (for example, 1.5 times or

2 times). “𝑤 > 1.0" means that the score gap of two variables on

an asymmetric edge is further enlarged. Finally, we define the total
score of the 𝑘-th asymmetric edge on all sub-datasets as:

𝐴𝐸𝐸 (:, 𝑘)
𝑘=1,...,𝐾

=

2∑︁
𝑖=1

𝑁∑︁
𝑗=1

[𝑠𝑐𝑜𝑟𝑒∗ (𝑘) ⊙ ˆ𝑊 𝑘 ]𝑖 𝑗 . (8)

Through employing scoring function 𝐴𝐸𝐸 (·) based on Eq. (8),

BCSL can estimate whether 𝐾 asymmetric edges exist in the under-

lying causal structure behind the original dataset 𝐷𝑛×𝑚
0

, and finally

constructs a best global skeleton.

3.2.3 Step 3: Global Skeleton Orientation. Based on the global

skeleton obtained in Step 2, BCSL uses a Bayesian score criteria,

BDeu [17], and a search procedure, hill-climbing [11] to greedily

orient the undirected edges in the global skeleton. Here, the BDeu

score for DAG G learned on dataset 𝐷𝑛×𝑚 is defined as

𝐵𝐷𝑒𝑢 (G, 𝐷𝑛×𝑚 ) = log𝑃 (G) +
𝑚∑︁
𝑖=1

𝑞𝑖∑︁
𝑙=1

[
log

𝛤 ( 𝐻 ′𝑞𝑖 )

𝛤 (𝐻𝑖𝑙 + 𝐻 ′
𝑞𝑖
)
+

𝑟𝑖∑︁
𝑢=1

log

𝛤 (𝐻𝑖𝑙𝑢 + 𝐻 ′
𝑟𝑖𝑞𝑖
)

𝛤 ( 𝐻 ′
𝑟𝑖𝑞𝑖
)

]
,

(9)

where 𝛤 is the Gamma function, 𝑖 is the index over the𝑚 variables, 𝑙

is the index over the 𝑞𝑖 combinations of values of the parents of the

variable 𝑋𝑖 , and 𝑢 is the index over the 𝑟𝑖 possible values (states) of

𝑋𝑖 ; further, 𝐻𝑖𝑙𝑢 is the number of instances on 𝐷𝑛×𝑚 where 𝑋𝑖 has

the 𝑢𝑡ℎ value, and its parents have the 𝑙𝑡ℎ combination of values,

and 𝐻𝑖𝑙 =
∑𝑟𝑖
𝑢=1

𝐻𝑖𝑙𝑢 denotes the total number of instances on

𝐷𝑛×𝑚 where the parents of 𝑋𝑖 have the 𝑙
𝑡ℎ

combination of values;

𝐻 ′ is the equivalent sample size (ESS, also sometimes known as

the imaginary sample size, ISS) and expresses our confidence in

the prior parameters; 𝑃 (G) is the prior probability of a particular

graph structure which is generally assumed to be the same for all

graphs and so can be ignored.

By alternately performing the search procedure and the scoring

criteria, finally, BCSL achieves a global causal structure (i.e. CPDAG)

with the highest scoring.

4 EXPERIMENTS
In this section, we present a comprehensive set of experiments to

demonstrate the effectiveness of the proposed BCSL method, and

this section is organized as follows. Section 4.1 gives the experi-

mental settings. Section 4.2 and Section 4.3 summarize and discuss

the experimental results on benchmark data and real data, respec-

tively. Finally, we analyze the sensitivity of parameter 𝑁 (number

of sampling) of BCSL in Section 4.4.

4.1 Experiment Setting
4.1.1 Comparison Methods. We compare BCSL against two local-

to-global CSL methods, GSBN [26] and GGSL [12], three well-

established global CSL methods, PC [35], GES [5] and PC-stable [7],

and four state-of-the-art global CSL methods, NOTEARS [48], DAG-

GNN [43], GOLEM [27] and DAG-NoCurl [44].

4.1.2 Evaluation Metrics. We evaluate the performance of BCSL

and its nine rivals from two aspects: structure error and structure

correctness. The 𝑆𝐻𝐷 (Structural Hamming Distance) and 𝐴𝑟_𝐹1

metrics as shown below are used to measure structure error and

structure correctness, respectively.

• 𝑆𝐻𝐷 : the number of total error edges, containing undirected

edges, reverse edges, missing edges and extra edges. The

smaller value of SHD is better.

• 𝐴𝑟_𝐹1= 2∗𝐴𝑟_𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝐴𝑟_𝑅𝑒𝑐𝑎𝑙𝑙
𝐴𝑟_𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝐴𝑟_𝑅𝑒𝑐𝑎𝑙𝑙 . The Ar_Precision metric

denotes the number of correctly predicted arrowheads in the

output divided by the number of edges in the output of an

algorithm, while the Ar_Recall metric represents the number

of correctly predicted arrowheads in the output divided by

the number of true arrowheads in a test DAG. Compared

to SHD, Ar_F1 not only considers erroneous edges, but also

correct edges. The larger value of 𝐴𝑟_𝐹1 is better.

In Table 3, the symbol “-" denotes that an algorithm does not

produce results due to out of memory. Similarly, in Figs. 3 and 4, the
values of SHD and Ar_F1 are less than 0, which means that memory is
exceeded. In addition, in all figures and tables, (↑) means the higher

the better, (↓) means the lower the better, and the best results are

highlighted in bold face.

4.1.3 Implementation Details. All experiments were conducted on

a computer with Inter Core i9-10900 3.70-GHz CPU and 64-GBmem-

ory. PC, GSBN, PC-stable and our algorithm are implemented in

MATLAB, GGSL is implemented in C++, and GES, NOTEARS, DAG-

GNN, GOLEM and DAG-NoCurl are implemented in PYTHON. The
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significance level for CI tests is set to 0.01, the parameter 𝑁 of BCSL

is set to 15, and the weight factor𝑤 of BCSL is initialized to 1.0.

4.2 Benchmark Data
In this section, we evaluate our method and its rivals on ten bench-

mark BNs, using the datasets provided from existing work [41].

Each BN contains three datasets with 500, 1,000 and 5,000 data

instances, respectively. The details of the ten benchmark BNs are

presented in Table 2
2
. In addition, we compare BIC (Bayesian infor-

mation criterion) scores [38] of each algorithm on these datasets.

Table 2: Summary of benchmark BNs

Num. Num. Max In/out- Min/Max Variable

Network Vars Edges Degree |PCset | Domain

Child 20 25 2/7 1/8 2-6

Alarm 37 46 4/5 1/6 2-4

Child3 60 79 3/7 1/8 2-6

Alarm3 111 149 4/5 1/6 2-4

Insurance5 135 284 5/8 1/10 2-5

Alarm5 185 265 4/6 1/8 2-4

Insurance10 270 556 5/8 1/11 2-5

Alarm10 370 570 4/7 1/9 2-4

Pigs 441 592 2/39 1/41 3-3

Gene 801 972 4/10 0/11 3-5

4.2.1 Structure errors. From Fig. 3, we can see that on almost all

benchmark datasets with 500, 1,000 and 5,000 samples, our pro-

posed BCSL algorithm achieves a lower SHD than its rivals, which

indicates the superiority of BCSL. This is because that employing

the integrated global skeleton learning strategy is helpful to re-

duce the number of missing edges and extra edges simultaneously,

and effectively alleviates the problem of asymmetry between local

skeletons. As a result, BCSL obtains a best global skeleton, further

reducing the number of incorrect directed edges.

Compared with the BCSL algorithm, the size of the local skele-

tons learned by GSBN is much small, leading to GSBN misses many

true edges (i.e. having higher SHD values). In most benchmark BNs,

the performance of the PC, GSBN and PC-stable algorithms is close

since they all employ the constraint-based methods to construct the

skeleton and orient edges. However, when the dimensionalities of

BNs become higher (such as Pigs and Gene), the SHD gap between

GSBN, PC and PC-stable becomes larger. With the increase of the

number of nodes in BNs, the performance of GES is significantly re-

duced. For example, on Gene with 1,000 and 5,000 samples, the SHD

value of GES is significantly higher than that of other algorithms.

GGSL achieves a comparable performance against BCSL since they

all use BDeu as a scoring function to orient the undirected edges.

NOTEARS often achieves a much larger number of extra edges

and DAG-GNN often achieves a much larger number of missing

edges than the other algorithms, leading to that they obtain the

inaccurate global skeletons and the causal structures with poor

quality. GOLEM and DAG-NoCurl are designed with strong theo-

retical assumptions, thus they achieve higher SHD values than the

other algorithms on most datasets.

2
Those benchmark BNs are publicly available at http://www.bnlearn.com/

bnrepository/.

4.2.2 Structural correctness. Fig. 4 reports the quality of causal

structures learned by BCSL and its rivals in terms of the Ar_F1

metric. We find that BCSL not only achieves less structure errors

than its rivals in terms of SHD, bust also is superior to the other

nine algorithms on Ar_F1 on almost all datasets, especially on Child

and Alarm10. Compared with its rivals, BCSL obtains high values

of Ar_Precision and Ar_Recall (i.e. high value of Ar_F1) on most

datasets, since BCSL adopts the integrated global skeleton learning

strategy to construct more accurate global skeleton, that is, some

missed edges are restored and some extra edges are removed.

In addition, we find that the performance of continuous opti-

mization methods (such as NOTEARS, DAG-GNN, GOLEM and

DAG-NoCurl) is generally worse than that of combinatorial opti-

mization methods (such as PC, GSBN, PC-stable, GGSL and BCSL)

on most benchmark datasets in terms of SHD and Ar_F1. This is be-

cause that the causal structures learned by continuous optimization

methods contain many extra edges and reverse edges.

In summary, our method is obviously superior to other algo-

rithms on both sparse network (such as Child, Alarm, Child3,

Alarm3, Alarm5, Alarm10 and Gene) and dense network (such

as Insurance5 and Pigs).

4.2.3 The BIC score of each algorithm. We are unable to reasonably

evaluate how good the learned causal structures are as probability

models, if only using the structure evaluation metrics, SHD and

Ar_F1. In this section, to evaluate the proximity of the learned causal

structure to the real probability distribution, we compare the BIC

(Bayesian information criterion) score [38] of each algorithm shown

in Table 3. The higher the BIC score, the higher the fitting degree

between a learned causal structure and a dataset. As a commonly

used information-theoretic score, the BIC score can avoid over-

fitting by balancing the goodness of fit with the dimensionality of

the learned structure given the limited data.

From Table 3, we can see that BCSL improves the learning scores

by a significant margin over other algorithms on all datasets with

500, 1,000 and 5,000 samples. GGSL achieves a comparable perfor-

mance against BCSL on some datasets (such as Child3 and Gene)

since it employs the score-based method to learn the local causal

structures and the same scoring function (BDeu score) as BCSL to

orient edges. Although existing neural CSL approaches (NOTEARS,

DAG-GNN, GOLEM and DAG-NoCurl) have used different types

of neural network models, loss functions and representations of ad-

jacency matrix to improve their performance, but they still achieve

lower BIC scores since the causal structures learned by these algo-

rithms contain many extra edges and reverse edges.

4.3 Real Data
The interpretability of biology data is of significance. Here we

apply BCSL to a bioinformatics dataset [33] for the discovery of a

protein signaling network based on expression levels of proteins

and phospholipids. This is a widely used dataset for research on

graphical models, with experimental annotations accepted by the

biological research community.

The ground truth graph contains 11 nodes and 17 edges. In

the experiments, we use 𝑛 =7466 observed samples for training.

Among all methods in the experiments, BCSL achieves the best
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(a) 500 samples

(b) 1000 samples

(c) 5000 samples

Figure 3: SHDs of BCSL and its nine rivals on all benchmark datasets with 500, 1,000 and 5,000 samples. Note that the values of
SHD and Ar_F1 are less than 0, which means that memory is exceeded.

performance with SHD 10. GSBN has an SHD 14, GGSL has an SHD

16, and NOTEARS, DAG-GNN and GOLEM all have an SHD 18.

The performance of other methods are much worse perhaps due

to strong theoretical assumptions. The results are summarized in

Table 4. Besides SHD, we also incorporate the results of Ar_F1,

Ar_Precision and Ar_Recall, and we find that BCSL achieves higher

values of Ar_F1 and Ar_Precision than its rivals. Although GES

achieves a high Ar_Recall, it also learns many extra edges. In addi-

tion, we also observe that the performance of continuous optimiza-

tion approaches is comparable to that of the traditional methods on

real data, whereas generally worse than that of traditional methods

on benchmark data.

4.4 Parameter sensitivity analysis
In step 2-1 of BCSL (see Section 3.2.2 for details), we need to deter-

mine the number of sub-datasets (i.e. 𝑁 ) generated by Bootstrap

sampling in advance. In this section, we study the sensitivity of the

parameter 𝑁 in our proposed BCSL method.

Specifically, on 10 benchmark BN datasets with 500, 1,000 and

5,000 samples, we perform BCSL by varying the value of parameter

𝑁 from 5 to 100, and the experimental results are plotted in Fig. 5.
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(a) 500 samples

(b) 1000 samples

(c) 5000 samples

Figure 4: Ar_F1s of BCSL and its nine rivals on all benchmark datasets with 500, 1,000 and 5,000 samples. Note that the values of
SHD and Ar_F1 are less than 0, which means that memory is exceeded.

In Fig. 5, (a), (b) and (c) show the variation curve of SHD, and (d),

(e) and (f) show the variation curve of Ar_F1. From the experimental

results, we have the following three observations.

(1) On the large-sized networks (such as Pigs and Gene), the

influence of 𝑁 on the experimental results is relatively small.

In contrast, on the small-sized networks (such as Child and

Alarm), the parameter 𝑁 has a relatively large effect on the

experimental results.

(2) For most benchmark BNs, with the increase of the sample

size, the influence of 𝑁 on the experimental results becomes

smaller.

(3) When 𝑁 ⩾ 15, the fluctuation of SHD and A_F1 metrics will

be very small on almost all benchmark BNs.

Thus, in our experiments, the parameter 𝑁 of BCSL is set to 15 on

all benchmark BN datasets.

5 CONCLUSION
In this paper, we first show that existing local-to-global CSL meth-

ods learn many asymmetric edges during the global skeleton con-

struction phase. Then, we design a novel integrated global skeleton

learning strategy to deal with the problem of asymmetric edges. Fi-
nally, based on this strategy, we propose the BCSL method to learn

663



Bootstrap-based Causal Structure Learning CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Table 3: Learning BIC scores for different causal structure learning algorithms on different datasets

#Sample Network PC GSBN GES PC-stable GGSL NOTEARS DAG-GNN GOLEM DAG-NoCurl BCSL

500

Child -17126.13 -7157.42 -11871.12 -17126.13 -6818.25 -7434.11 -9416.23 -7501.08 -13966.54 -6660.14
Alarm -7749.98 -7111.18 -31342.93 -7895.60 -7268.30 -7641.32 -14717.05 -9019.57 -30500.04 -6193.17
Child3 -95391.17 -22264.25 -62097.57 -95391.17 -21094.46 -23406.10 -26122.99 -23840.51 -284292.69 -20524.77
Alarm3 -29764.12 -22065.98 -112485.67 -43659.48 -25909.82 -22764.42 -23312.90 -28138.89 -96596419.39 -20795.35

Insurance5 -69649.69 -48848.03 -651104.89 -64975.10 -46684.98 -50765.96 -51841.46 -53668.85 -43007178.97 -44782.63
Alarm5 -72632.90 -37585.42 -348376.11 -75512.80 -53322.08 -39736.90 -39650.32 -47650.98 -45783.04 -35179.68

Insurance10 -134218.70 -96994.05 -32323647.14 -124676.50 -106275.37 -102485.58 -103351.77 -106601.95 -56045725.56 -90561.04
Alarm10 -115601.63 -74389.27 -200561073.49 -118882.53 - -77549.73 -81193.40 -90065.27 -569541457.84 -69220.62
Pigs -215632.86 -200784.12 -89772641.37 -236789.18 - -217172.24 -229766.65 -193792.61 -288571.04 -181294.69
Gene -318754.52 -261953.07 -306535.16 -331220.36 -252344.40 -291898.26 -321726.68 -301678.21 -2965350.17 -242951.41

1000

Child -19184.43 -13609.48 -42434.19 -19184.43 -12886.44 -14812.84 -14984.35 -15226.71 -17850.08 -12679.66
Alarm -11761.58 -12806.19 -47340.05 -12773.70 -13459.85 -12224.10 -47636.07 -15126.84 -62811.76 -10863.40
Child3 -84242.01 -41916.01 -61444.10 -161872.91 -40055.84 -46516.78 -46323.37 -46327.11 -112588.40 -39774.90
Alarm3 -38954.12 -40286.81 -86653.44 -39310.73 -43578.02 -45034.98 -45935.51 -51857.72 -60067.28 -38399.79

Insurance5 -97337.08 -91695.78 -451821.99 -94375.61 -89973.08 -98589.66 -100922.76 -105953.59 -1697342.56 -84233.33
Alarm5 -67930.14 -69038.10 -211754.12 -68237.99 -77208.56 -76893.24 -76574.09 -90494.69 -1643380.47 -64973.07

Insurance10 -190420.98 -183756.50 -2873632.40 -191916.47 -207067.20 -196635.30 -195132.57 -197207.79 -15471176.67 -167954.90
Alarm10 -138212.16 -137284.95 -12205684.77 -142747.41 -171752.19 -152146.15 -157045.74 -180916.02 -174765.89 -128268.30
Pigs -385678.97 -393163.23 -4806476.87 -389176.89 - -436163.99 -455894.32 -364977.16 -408404.24 -348484.86
Gene -499024.49 -511325.58 -1771793755.57 -517541.21 -471147.00 -575523.96 -635810.84 -597121.67 -682104.32 -463194.22

5000

Child -62738.14 -62978.58 -77437.75 -62738.14 -65670.54 -73748.94 -72967.94 -75449.73 -73518.40 -61746.14
Alarm -49288.62 -52922.32 -160831.02 -49439.83 -48784.59 -58598.72 -58386.28 -66946.32 -86952.88 -48777.28
Child3 -198055.73 -197034.98 -374244.35 -198025.38 -192114.84 -227468.27 -225140.79 -225740.64 -218429.26 -189172.16
Alarm3 -180275.86 -180419.48 -401687.85 -183077.17 -182965.87 -218952.60 -207282.74 -219265.50 -196666.01 -176155.05

Insurance5 -390174.49 -404798.20 -3274020.49 -395408.03 -448108.43 -467543.34 -466804.73 -466424.25 -499922.64 -383047.90
Alarm5 -310183.69 -310160.90 -889463.18 -310540.42 -336318.03 -373133.36 -363502.07 -383958.90 -335712.48 -298738.43

Insurance10 -789515.31 -800858.50 -9471924.23 -796845.48 -866841.94 -939225.10 -931651.19 -943201.41 -2069982.03 -777071.81
Alarm10 -615260.78 -615356.93 -36998846.00 -618783.86 - -737458.40 -702486.54 -794689.13 -670961.04 -589827.95
Pigs -1674401.02 -1813881.97 -1835053.56 -1674401.02 - -2186094.18 -2100834.83 -1750940.27 -1916146.16 -1674260.41
Gene -2216702.44 -2303722.11 -35335084.76 -2223339.88 - -2825816.71 -3076358.62 -2759648.51 -2590280.49 -2214672.05
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Figure 5: Sensitivity analysis of parameters 𝑁 of BCSL on different benchmark BN datasets.

Table 4: Results on protein signaling network: comparison
of the predicted graphs with respect to the ground truth.

Method SHD (↓) Ar_F1 (↑) Ar_Precision (↑) Ar_Recall (↑)
PC 39 0.2540 0.1739 0.4706

GSBN 14 0.3571 0.4545 0.2941

GES 29 0.4364 0.3158 0.7059
PC-stable 39 0.2540 0.1739 0.4706

GGSL 16 0.2857 0.3636 0.2353

NOTEARS 18 0.2143 0.2727 0.1765

DAG-GNN 18 0.1600 0.2500 0.1176

GOLEM 18 0.2143 0.2727 0.1765

DAG-NoCurl 23 0.1818 0.1875 0.1765

BCSL 10 0.5517 0.6667 0.4706

a more accurate causal structure. Experiments have shown that

the proposed BCSL outperforms two existing local-to-global CSL

algorithms and seven global CSL algorithms in terms of the quality

of causal structure learning. In addition, our proposed integrated

global skeleton learning strategy can also be integrated to most

existing local-to-global CSL algorithms. Therefore, in future, we

could consider designing BCSL as a unified framework to improve

the performance of most existing local-to-global CSL algorithms.
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