
JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2020 1

Bootstrap-based Layer-wise Refining for Causal
Structure Learning

Guodu Xiang, Hao Wang, Kui Yu*, Xianjie Guo, Fuyuan Cao, and Yukun Song

Abstract— Learning causal structures from observational data
is critical for causal discovery and many machine learning tasks.
Traditional constraint-based methods first adopt conditional
independence (CI) tests to learn a global skeleton layer by
layer and then orient the undirected edges to obtain a causal
structure. However, the reliability of these statistical tests largely
depends on the quality of data samples. In real-life scenarios,
the presence of data noise or limited samples often makes
many CI tests unreliable at each layer in the skeleton learning
phase, leading to an inaccurate skeleton. As the number of
layers increases, the inaccurate skeleton will continue to impair
the skeleton construction of subsequent layers. Furthermore, an
unreliable skeleton hampers the skeleton orientation procedure,
resulting in an unsatisfactory causal structure. In this paper, we
propose a Bootstrap-based Layer-wise Refining (BLR) algorithm
for causal structure learning, which includes two new procedures
to solve the above problems. First, BLR utilizes a novel layer-wise
skeleton refining procedure to construct the global skeleton layer
by layer based on the bootstrap sampling. Second, BLR employs
a collective skeleton orientation procedure that incorporates
scoring techniques to collectively orient the global skeleton. The
experimental results show that BLR outperforms the state-of-
the-art methods on the benchmark Bayesian Network datasets.

Impact Statement—Discovering causal relationships between
various phenomena helps us understand how the world works
and how events are generated. However, correctly identifying
causal relationships between variables remains a significant
challenge. Our proposed method for learning causal structures
provides a new way to solve this problem based on ensemble
learning. We use a layer-wise refining strategy to obtain a
reliable skeleton and then orient it using scoring techniques.
Our algorithm outperforms current state-of-the-art methods in
accuracy and stability on multiple datasets. This approach is
expected to play an important role in causal inference in social
sciences, biomedicine, natural language processing, and more.

Index Terms—Causal structure learning, Directed acyclic
graph, Layer-wise refining, Bootstrap sampling.

I. Introduction

CAUSAL structure learning aims to discover a reliable
directed acyclic graph (DAG) from observational data.

This work is supported by the National Key Research and Development
Program of China (under grant 2021ZD0111801) and National Natural
Science Foundation of China (under Grants 62376087 and 62176082).

Guodu Xiang, Hao Wang, Kui Yu, Xianjie Guo and Yukun Song are
with the Key Laboratory of Knowledge Engineering with Big Data of
Ministry of Education, Hefei University of Technology, Hefei 230601,
China, and also with the School of Computer Science and Information
Engineering, Hefei University of Technology, Hefei 230601, China; e-mail:
xgd600600@mail.hfut.edu.cn, jsjxwangh@hfut.edu.cn, yukui@hfut.edu.cn,
xianjieguo@mail.hfut.edu.cn, and Yukun Song@mail.hfut.edu.cn (*Corre-
sponding author: Kui Yu).

Fuyuan Cao is with the School of Computer and Information Technology,
Shanxi University, Taiyuan 030006, China; e-mail: cfy@sxu.edu.cn.

A DAG can well describe the causal relationships between
variables since a directed edge X1 → X2 in a DAG implies
that X1 is the cause of X2 and X2 is the effect of X1 [1],
[2], [3]. Causal structures have been widely used in various
fields, such as biology [4], medical imaging [5], [6], machine
learning [7], [8], [9], [10] and many others[11], [12], [13],
[14]. Although numerous causal structure learning methods
have been proposed in the past few decades, constraint-based
methods have an important role in many scenarios, such as
learning high-dimensional sparse graphs [15].

Existing constraint-based methods (such as the PC algo-
rithm [16]) determine whether there exists an edge between
two variables in a graph by performing conditional indepen-
dence (CI) tests. Specifically, constraint-based methods mainly
consists of three steps: Step 1 learns a graph skeleton using CI
tests; Step 2 identifies all possible v-structures in the skeleton;
Step 3 orients the remaining undirected edges as many as
possible using the Meek’s rules [17]. When conducting CI
tests, if two variables are conditionally independent given
a set of variables, we call this set the separation set. The
v-structure is a special structure composed of three nodes
and two directed edges (such as Xi → W ← Xj defined
in Definition 3.2), which can be identified firstly based on
the learned skeleton and the separation set. Previous studies
[18], [19] have demonstrated that constraint-based methods
can correctly recover edges in graphs when the sample size
tends to infinity. However, in real-world applications, data
is often limited or contains noise, which may make existing
constraint-based methods learn an incorrect causal structure.
This can be illustrated in the following two aspects.

Firstly, in the skeleton learning phase, small samples or
data noise may produce wrong CI results leading to unreliable
skeletons when constructing skeletons layer by layer with the
size of the separation set. Inaccurate CI tests in each layer can
falsely delete edges and cause cascading errors in subsequent
skeleton construction. For example, as shown in Fig. 1 (a),
the accurate conditional independence relationships between
variables in the true DAG with: X2 ⊥ X5, X2 ⊥ X4|{X3},
and X1 ⊥ X3|{X2, X4, X5}. The process of deleting edges
layer by layer according to the separation set size is shown
in Fig. 1 (b), where l represents the layer size, such as l= 0
denoting the first layer and the size of separation set is 0. If
we assume that the wrong CI results X1⊥X2|{X3} at l= 1
and X3 ⊥X4|{X1, X5} at l = 2 are produced (i.e., X1 and
X2, X3 and X4, are both wrongly considered as conditional
independence), then edges X1−X2 and X3−X4 are mistakenly
deleted from the skeleton respectively. Then at l = 3, the
adjacent variable set of X1 except X3 is {X4, X5} and the

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3329786

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 14,2023 at 07:36:23 UTC from IEEE Xplore. Restrictions apply.

2 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2020

X4

(a)

X2 X3

X1

X5

X4

X2 X3

X1

X5

X4

X2 X3

X1

X5

X4

X2 X3

X1

X5

(c) (d)

X4

X2 X3

X1

X5

X4

X2 X3

X1

X5

(b)

X4

X2 X3

X1

X5

l=0 l=1 l=2 l=3

？

Fig. 1: An example of the inaccurate causal structure learned by the constraint-based methods due to the wrong CI results.
(a) True DAG. (b) Constructing a skeleton layer by layer (red dashed edge is mistakenly deleted, and blue dashed edge is

mistakenly kept). (c) Identifying all v-structures. (d) Orienting the remaining undirected edges with the Meek’s rules.

adjacent variable set of X3 except X1 is {X2, X5} in the
skeleton. However, the separation set of X1 and X3 in the true
DAG is {X2, X4, X5}. Thus conditioning on the set {X4, X5}
or the set {X2, X5} does not make X1 and X3 conditionally
independent. As a result, the edge X1−X3 is falsely kept in
the skeleton. Therefore, the wrong CI results of the previous
layers have an impact on the construction of the subsequent
layers’ skeleton as the number of layers increases, leading to
cascading errors. Finally, in the skeleton construction phase,
in the example of Fig. 1 (b), two edges are mistakenly deleted
and an edge is wrongly retained in the final skeleton, resulting
in an inaccurate skeleton.

Secondly, in the skeleton orienting phase, an inaccurate
skeleton hinders the identification of the v-structures and fur-
ther hampers the orientation of the remaining undirected edges.
Fig. 1 (c) illustrates that the v-structure X3 → X4 ← X5 in
the true DAG cannot be identified in an inaccurate skeleton
due to falsely deleting the edge X3−X4 at l = 2. Then, as
shown in Fig. 1 (d), since the v-structure X3→X4←X5 is not
identified, when applying Meek’s rules to orient the remaining
edges, the edge direction of X4−X5 cannot be determined.

Based on the above discussions, constraint-based methods
face the issues of inaccurate skeleton construction and incor-
rect skeleton orientation due to unreliable CI tests. To tackle
these issues, our contributions can be summarized as follows.
•We propose a Bootstrap-based Layer-wise Refining (BLR)

algorithm for causal structure learning, which includes the
Layer-wise Skeleton Refining (LSkeR) and Collective Skele-
ton Orientation (CSkeO) procedures to tackle the problem of
unreliable CI tests.
• The LSkeR procedure presents a novel layer-wise skeleton

refining strategy by utilizing bootstrap sampling. LSkeR learns
and refines the skeletons on sampled datasets at each layer for
achieving a much more accurate skeleton at the current layer
and reducing the impact of unreliable CI tests on skeleton
learning at subsequent layers.
• The CSkeO procedure proposes an effective collective

skeleton orientation strategy by aggregating all of the learned
DAGs using a scoring method on sampled datasets for im-
proving the accuracy of edge orientations.
• We conduct extensive experiments to evaluate the effec-

tiveness of BLR on eight benchmark Bayesian Network (BN)
datasets, and the experimental results show that our algorithm
outperforms other causal structure learning methods.

The rest of this paper is organized as follows. Section 2

reviews related work of causal structure learning. Section 3
introduces basic notations and definitions. Section 4 proposes
our method. Section 5 presents and analyzes experimental
results and Section 6 concludes and discusses our work.

II. Related Work

In this section, we briefly introduce the literature related
to causal structure learning methods. The existing causal
structure learning methods can be roughly divided into two
types: combinatorial optimization methods and continuous
optimization methods.

Existing combinatorial optimization methods can be subdi-
vided into constraint-based, score-based, and hybrid methods.
Constraint-based methods rely on CI tests to discover the
causal relationships between variables. The PC algorithm
[16] is a classical constraint-based algorithm. And there are
many derivatives of the PC algorithm, such as PC-stable
[20], Consistent-PC [21], and others [22], [23], [24]. These
algorithms are inspired and improved by the PC algorithm
to improve the robustness of v-structure recognition. For
example, PC-stable eliminates the order dependency issues
and Consistent-PC solves the problem of separation set in-
consistency. These algorithms learn causal structures from
the datasets without latent variables (satisfying the causal
sufficiency assumption, as shown in definition 3.6). More-
over, there are other constraint-based methods, such as FCI
[1], RFCI [15], and FCI-soft [25] etc., which could learn
causal structures from the datasets containing latent variables.
Nevertheless, the prominent disadvantage of constraint-based
methods is that the CI tests usually require a large amount
of data samples, and the accuracy of the CI tests is easily
hindered by noisy data.

Score-based methods learn causal structures by adopting
a scoring function to evaluate how well each graph fits the
data and a search strategy to find the best graph structures
in the potential graph space. GES [26] is a representational
score-based method, which adopts the BDeu [27] scoring
function and the greedy search strategy. There are many other
scoring functions and search strategies [28]. Different scoring
functions can be combined with different search strategies to
form different methods, such as GIES [29] and THPs [30].
However, score-based methods generally suffer from a large
search space, and the search space grows exponentially as the
number of nodes increases, leading to practical inefficiencies.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3329786

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 14,2023 at 07:36:23 UTC from IEEE Xplore. Restrictions apply.

FIRST A. AUTHOR et al.: BARE DEMO OF IEEETAI.CLS FOR IEEE JOURNALS OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 3

Hybrid methods combine the constraint-based method and
score-based method to discover DAGs efficiently. Specifically,
the hybrid method first uses a constraint-based method to
restrict the search space of the graph and then adopts a
score-based method to find the DAG with the highest score.
MMHC [31] is a classic hybrid method, which first constructs
a local skeleton using CI tests, and then adopts search-and-
score techniques for orientation to discover causal structures.
BCSL [32] eliminates asymmetric edges in the learned local
structure to improve the accuracy of causal structure.

Continuous optimization methods are proposed for causal
structure learning in recent years. These methods usually solve
problems by using gradient descent methods to optimize vari-
ous highly parameterized networks [33]. NOTEARS [34] is the
first method to formulate the causal structure learning problem
as a continuous optimization problem over real matrices and
solves the problem using augmented Lagrangian methods.
However, this method is designed for the linear Structural
Equation Model (SEM), which means that the relationships
between variables are linear. Subsequently, many researchers
have used neural networks to study the nonlinear relation-
ships between variables [35], [36], [37], [38], [39]. Among
them, DAG-GNN [35] employs a variational auto-encoder to
reconstruct the data for fitting the generative mechanism and
derive the true graph structure. DAG-NoCurl [39] learns causal
structures by first finding the initial cyclic solution of the
optimization problem and then using the Hodge decomposition
of the graph and projecting the cyclic graph onto the gradient
of the potential function. Continuous optimization methods
have a strong dependence on the generative model of the
data and the distribution of noise. Therefore, the application
scenarios of the continuous optimization methods are different,
the performance in practice is also unstable, and it is difficult
to be widely used in real scenarios.

To compare the differences of the above algorithms more
intuitively, we summarize their characteristics in Table I.
”Sufficiency” refers to whether an algorithm satisfies the
causal sufficiency assumption. These algorithms may produce
different results, where DAG is a directed acyclic graph, PAG
is a partially ancestral graph (a Markov equivalence class of
DAGs with latent and selection variables in the acyclic case)
and CPDAG is a completely partial directed acyclic graph (in
the graph all v-structures have been identified and other edges
oriented using the Meek’s rules [17]).

TABLE I: Comparison of the related algorithms.

Algorithm Year Type Sufficiency Output

PC [16] 1989 constraint yes CPDAG
PC-stable [20] 2014 constraint yes CPDAG

Consistent-PC [21] 2019 constraint yes CPDAG
FCI [1] 2000 constraint no PDAG

RFCI [15] 2012 constraint no PDAG
GES [26] 2002 score yes CPDAG
GIES [29] 2012 score yes CPDAG

MMHC [31] 2006 hybrid yes DAG
BCSL [32] 2022 hybrid yes DAG

NOTEARS [34] 2018 continuous optimization yes DAG
DAG-GNN [35] 2019 continuous optimization yes DAG

DAG-NoCurl [39] 2021 continuous optimization yes DAG

III. Background

In this section, we introduce some basic notations and
definitions. In Table II, we summarize the notations commonly
used in this paper.
Definition 3.1 (Conditional Independence [40]): Random vari-
able Xi and Xj are conditionally independent if given a
variable set S that P (Xi, Xj |S) = P (Xi |S)P (Xj |S),
which is denoted as Xi ⊥Xj |S. Otherwise Xi and Xj are
conditionally dependent, which is denoted as Xi 6⊥Xj | S.
Definition 3.2 (V-structure [1]) A structure containing three
nodes Xi, Xj , W is called a v-structure, where Xi and Xj

have a common child node W and there is no edge between
Xi and Xj , i.e., Xi→W←Xj .

TABLE II: Summary of notations.

Notation Meaning

X a set of variables
P (X) the joint probability distribution of X
S a skeleton (a undirected graph)
G a directed acyclic graph
S a set of condition variables
Ds a set of sampled datasets
A,B the adjacency matrix representing a graph

Aij , Bij the element at row i and column j of the adjacency matrix
Xi, Xj ,W random variables (nodes)
Pa (G,Xi) the parent node set of Xi in G
adj (S,Xi) the adjacency variable set of Xi in S

adj (S,Xi)\{Xj} the adjacency variable set of Xi in S except Xj

X\{Xi, Xj}, a set of variables X except Xi and Xj

Xi⊥Xj |S Xi and Xj are independent under the set S
Xi 6⊥Xj |S Xi and Xj are dependent under the set S

N the number of sampled datasets
M the number of experiments
n the number of samples in the dataset
m the number of variables in the dataset
d the maximum degree in the graph
ε the aggregation threshold
α the significance level for CI test
| · | the size of the condition set

Definition 3.3 (Blocked Path [41]): A path between Xi and
Xj in a DAG is blocked by S needs to satisfy any of the
following conditions:
1) if the path contains a chain structure Xi→W →Xj or a
fork structure Xi←W→Xj , W should be included in S;
2) if the path contains a v-structure Xi→W ←Xj , neither
W nor W ’s descendant nodes should be included in S;
Definition 3.4 (D-Separation [41]): Xi and Xj are d-separated
by a set S if all paths between Xi and Xj in the DAG are
blocked by the set S.
Definition 3.5 (Separation Set [41]): A set S is called the
separation set of Xi and Xj , if ∃S⊆X\{Xi, Xj} d-separates
Xi and Xj , i.e., Xi and Xj are conditionally dependent
conditioning on the set S.
Definition 3.6 (Causal Sufficiency [1]) A variable set X
satisfies the causal sufficiency assumption if the direct cause
variables of any two variables of X exist in X . That is, there
are no latent variables in the variable set X .
Definition 3.7 (Faithfulness [1]): Given a DAG G, for any
two nodes Xi and Xj in X and a set S⊆X\{Xi, Xj}, Xi

and Xj are conditionally independent under the set S in the
data distribution correspond to Xi and Xj being d-separated
by the set S in G, then the joint probability distribution P (X)
is said to be faithful to G while G is faithful to P (X).

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3329786

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 14,2023 at 07:36:23 UTC from IEEE Xplore. Restrictions apply.

4 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2020

The faithfulness makes the conditional independence in data
distributions equivalent to the d-separation in the graphical
models. Thus, the faithfulness makes it possible to learn causal
structures from a given dataset.

IV. Proposed Algorithm

A. Overview

In this section, we propose a Bootstrap-based Layer-wise
Refining (BLR) algorithm for accurately recovering the under-
lying DAG from observational data. The BLR algorithm is di-
vided into two main procedures: Layer-wise Skeleton Refining
(LSkeR) and Collective Skeleton Orientation (CSkeO). The
LSkeR procedure learns a skeleton using a layer-wise skeleton
refining method based on the bootstrap sampling technique.
The CSkeO procedure collectively orients the skeleton learned
at the LSkeR procedure from the sampled datasets using
the scoring function methods. The framework of the BLR
algorithm is shown in Fig. 2, and the details of the above two
procedures of the BLR algorithm will be described in Section
IV-B and Section IV-C.

X2

X5
X4

X3

X1

X2

X5
X4

X3

X1

LSkeR CSkeO

 Use the bootstrap-

based layer-wise

skeleton refining method

to construct the global

skeleton

Use the collective

skeleton orient method

to orient the skeleton

D

D1

D2

DN

...

Fig. 2: The framework of the BLR algorithm.

B. The Layer-wise Skeleton Refining (LSkeR) Procedure

The goal of the LSkeR procedure is to construct a reliable
global skeleton from the dataset D. As shown in Fig. 3,
LSkeR first samples N datasets from the original dataset using
the bootstrap sampling, then it learns skeletons from the N
sampled datasets using a layer-wise refining strategy. The idea
of the layer-wise skeleton refining strategy is described as
follows. Starting from the fully connected skeleton, using a
layer-by-layer strategy, LSkeR learns N skeletons from each
sampled dataset independently and refines the learned skeleton
by aggregating these N skeletons at each layer. The initial
value of the layer begins with 0 and it increases with 1 each
time. At the l-th (l ≥ 1) layer, LSkeR takes the skeleton
aggregated at the (l-1)-th layer as the input skeleton and learns
new skeletons on each sampled dataset independently based
on this input skeleton. This procedure is repeated until the size
of the adjacency variables of all variables in the aggregated
skeleton is less than the value of the current layer. The pseudo-
code of the LSkeR procedure is shown in Algorithm 1.

Stage 1: Data sampling (Lines 1-5). LSkeR samples N
datasets D1, D2, ..., DN that have the same size as the original
dataset D. The set Ds saves the N sampled datasets for
orienting skeletons in the CSkeO procedure.

Algorithm 1: The LSkeR procedure
Input: Dataset D with the variable set X , significance

level α, number of sampled datasets N , and aggregating
threshold ε

Output: Global skeleton S∗, a set of sampled datasets Ds

1: // Stage 1: Data sampling
2: for k = 1 : N do
3: Bootstrap sampling dataset Dk from D
4: end for
5: Ds = {D1, D2, ..., DN}
6: // Stage 2, Stage 3 and Stage 4
7: l = 0, S−1 = Sc

8: while all pairs of adjacent vertices (Xi, Xj) in Sl−1

satisfy
∣∣adj (Sl−1, Xi

)
\ {Xj}

∣∣ ≥ l do
9: // Stage 2: Learning skeletons at the l-th layer

10: for k = 1 : N do
11: Slk = Sl−1

12: Remove all edges Xi −Xj from Slk if
∃S ⊆ adj

(
Sl, Xi

)
\{Xj} with |S| = l such that

Xi ⊥ Xj |S using Dk under the α
13: end for
14: // Stage 3: Refining the skeleton at the l-th layer
15: Sum the adjacency matrices Al1, Al2,..., AlN

corresponding to Sl1, Sl2, ..., SlN respectively, and let
Ãl =

∑N
i=1A

l
i

16: Judge every element Ãlij in Ãl based on the Eq. (2) to
obtain Sl represented by Al

17: // Stage 4: Go to the (l+1)-th layer
18: l = l + 1
19: end while
20: S∗ = Sl−1

21: return S∗, Ds

In a dataset containing n samples, using the bootstrap
sampling method to sample a dataset, when n→∞, approx-
imately 36.8% samples of the original dataset do not appear
in the sampled dataset [42]. Based on the sampling theory,
each sampled dataset contains at least 63.2% of the samples
in the original dataset, and the other 36.8% of the samples
are repeated when the original data samples tend to infinity.
The bootstrap sampling method improves the diversity of data
samples by sampling different datasets. The diversity of data
ensures that we can mitigate the impact of unreliable CI tests
on skeleton learning by aggregating the skeletons learned from
the N sampled datasets.

Stage 2: Learning skeletons at the l-th layer (Lines 9-
13). At the l-th layer, taking the skeleton Sl−1 learned from
the (l-1)-th layer as the initial skeleton (when l = 0, taking
the fully connected skeleton Sc as the initial skeleton), N
sampled datasets D1, D2, ..., DN are used to learn N skeletons
Sl1, S

l
2, . . . , S

l
N independently. The process of learning the

skeleton Slk on the k-th (1 ≤ k ≤ N) sampled dataset Dk

at the l-th layer is described as follows.
For each node Xi in the skeleton Sl−1, we let

adj(Sl−1, Xi) denote the adjacency node set of Xi in the
skeleton Sl−1. Stage 2 considers each node in the adjacency
node set of Xi i.e., ∀Xj ∈ adj

(
Sl−1, Xi

)
and computes

whether Xi and Xj are independent using the dataset Dk. The

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3329786

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 14,2023 at 07:36:23 UTC from IEEE Xplore. Restrictions apply.

FIRST A. AUTHOR et al.: BARE DEMO OF IEEETAI.CLS FOR IEEE JOURNALS OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 5

...

Original dataset

D1

DN

X2

X5

X4

X3

X1

X2

X5

X4

X3

X1

X2

X5

X4

X3

X1

X2

X5

X4

X3

X1

Sampled datasets

S2
l

SN
l

.
..

l-th layer skeleton learning

Sl

S1
l

Stage 1

Stage 2

Stage 3

Stage 4

.
.
.












 1,

0,

11
l S

l S
S

l

c
l












 1,

0,

12
l S

l S
S

l

c
l












 1,

0,

1 l S

l S
S

l

c
l

N

l-th layer

l-th layer

l-th layer

l=l+1

D2D

 l-th layer skeleton refining

A2
l

X5

X4

X3

X2

X1

1

1

X1
1

X2

1

X3

1

1

X4

1

1

X5

X5

X4

X3

X2

X1

1

1

1

X1

1

X2

1

X3

1

1

X4

1

X5

X5

X4

X3

X2

X1

1

1

X1
1

X2

1

X3

1

1

X4

1

1

X5

A1
l

AN
l

X5

X4

X3

X2

X1

1

1

X1
1

X2

1

X3

1

1

X4

1

1

X5

Al

Fig. 3: The LSkeR procedure of the BLR algorithm.

edge Xi −Xj in the skeleton Sl−1 is removed if there exists
a subset S ⊆ adj

(
Sl−1, Xi

)
\ {Xj} with |S| = l such that

Xi ⊥ Xj |S holds. Once the conditional independence of each
node Xi in the skeleton Sl−1 and its adjacent node Xj among
all possible separation sets S ⊆ adj

(
Sl−1, Xi

)
\ {Xj} with

|S| = l are checked, and the skeleton Slk is obtained using the
dataset Dk at the l-th layer.

Stage 3: Refining skeleton at the l-th layer (Lines 14-16).
After finishing the skeleton learning at the l-th layer, the N
skeletons Sl1, S

l
2, . . . , S

l
N are obtained in Stage 2 and Stage

3 aggregates these skeletons to get a global skeleton Sl for
the next-layer skeleton learning. The LSkeR procedure sets a
threshold ε to determine whether there exists an edge between
Xi and Xj in Sl based on the N skeletons Sl1, S

l
2, . . . , S

l
N . If

more than ε of the skeletons contain an edge between Xi and
Xj , then an edge exists in Sl between Xi and Xj . We set the
value of the threshold ε to N/2. In Section V-C3, we conduct
a sensitivity analysis on the parameter ε to discuss why the
value of ε is set to N/2.

Specifically, we refine the skeleton at the l-th layer as
follows. The adjacency matrices Al1, A

l
2, . . . , A

l
N represent the

skeletons Sl1, S
l
2, . . . , S

l
N learned from the N sampled datasets

at the l-th layer, respectively. Alk;ij is the i-th row and j

column element of matrix Alk (k = 1, 2, . . . , N). Alk;ij = 1
means that there is an edge between i and j, otherwise there
is no edge between i and j. Ãl is the sum of the N matrices
as shown in Eq. (1). Ãlij means the total number of the edge
between i and j existing in the skeletons Sl1, S

l
2, . . . , S

l
N .

Ãl =

N∑
i=1

Ali. (1)

The aggregated skeleton Sl is represented by the aggregated
matrix Al. Alij = 1 means that there is an edge between i and
j in Sl, otherwise there is no edge between i and j in Sl.
Eq. (2) shows that Al is obtained from Ãl based on the ε. If
the number of the edge between i and j in Ãl is larger than
ε, then there is an edge between i and j in the aggregated
skeleton. Otherwise, there is no edge between i and j in the
aggregated skeleton. Thus, we get the aggregated skeleton Sl

at the l-th layer.

Alij =

{
1 Ãlij > ε

0 Ãlij ≤ ε
. (2)

Stage 4: Go to the (l+1)-th layer (Lines 17-18). The value
of the layer increases by 1, starting from the l-th layer to the
(l+1)-th layer.

Stage 2, Stage 3 and Stage 4 are repeated until the sizes of
the adjacency variables of all variables in the skeleton Sl−1

are less than l. At this time, the skeleton Sl−1 is represented
as S∗, and S∗ is the final skeleton.

LSkeR improves the accuracy of skeleton learning in two
ways. On the one hand, we leverage the bootstrap sampling
method to obtain N diverse sampled datasets for the LSkeR
procedure. These sampled datasets come from the same origi-
nal dataset. They have similar data distributions among them,
and there are some distribution differences, which can be
aggregated to learn the skeleton. By aggregating N skeletons,
we can improve skeleton accuracy by overcoming the influence
of incorrect CI tests on skeleton learning. On the other hand,
at each layer of the skeleton learning, we use the skeleton
aggregated from N sampled datasets in the previous layer as
the prior skeleton for the current-layer skeleton learning. In
this way, a high-quality skeleton is provided for LSkeR to
construct a subsequent skeleton on each sampled dataset, then
the skeletons learned at each layer are more reliable, reducing
cascading errors in the skeleton learning phase and leading to
an accurate final skeleton.

C. The Collective Skeleton Orientation (CSkeO) Procedure

The CSkeO procedure aims to orient the undirected edges
in S∗ learned from the LSkeR procedure to obtain a DAG.
Fig. 4 shows that the BDeu scoring function is used to
learn the DAGs with the highest scores on sampled datasets
independently and all these learned DAGs are aggregated to
get the final DAG. The pseudo-code of the CSkeO procedure
is shown in Algorithm 2.

Stage 1: Scoring the skeleton for orientation using
sampled datasets independently (Lines 1-4). Based on the

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3329786

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 14,2023 at 07:36:23 UTC from IEEE Xplore. Restrictions apply.

6 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2020

X2

X5X4

X3

X1

X2

X5
X4

X3

X1

G*

D1

DAGs

X2

X5
X4

X3

X1

X2

X5
X4

X3

X1

G2

.
.
.

G1

GN

Global skeleton

D2

BDeu

DN

BDeu

...

S*

Aggregated DAG

X2

X5
X4

X3

X1

X5

X4

X3

X2

X1

X1

1

X2

1

X3

1

X4
1

X5

X5

X4

X3

X2

X1

X1 X2

1

X3

1

1

X4
1

X5

X5

X4

X3

X2

X1

X1

1

X2

1

X3

1

X4
1

X5

B1

B2

BN

X5

X4

X3

X2

X1

X1

1

X2

1

X3

1

X4
1

X5

B*

BDeu

Stage 1 Stage 2

Fig. 4: The CSkeO procedure of the BLR algorithm.

skeleton S∗, the CSkeO procedure adopts the BDeu scoring
function on the N sampled datasets D1, D2, ..., DN sampled
from the LSkeR procedure for orientation. The edges in the
skeleton are continuously adjusted through the hill-climbing
search strategy, until obtaining the N DAGs G1, G2, ..., GN
with the highest BDeu scores.

Algorithm 2: The CSkeO procedure
Input: Global skeleton S∗, Sampled datasets set Ds, the

number of sampled datasets N , and aggregating
threshold ε

Output: DAG G∗

1: // Stage 1: Scoring the skeleton for orientation using the
sampled datasets independently

2: for k = 1 : N do
3: Obtain the Gk with the highest BDeu(Gk, Dk)

through the hill-climbing search process
4: end for
5: // Stage 2: Aggregating all directed edges in the learned

DAGs for orientation
6: Sum the adjacency matrices B1, B2,..., BN

corresponding to G1, G2, ..., GN respectively, and let
B̃ =

∑N
i=1Bi

7: for every element B̃ij in B̃ do
8: if B̃ij > ε then
9: B∗ij = 1

10: else
11: B∗ij = 0
12: end if
13: end for
14: return G∗ represented by B∗

The BDeu [27] scoring function of DAG G on the corre-
sponding dataset D is defined as:

BDeu(G,D)=logP (G)+
m∑

i=1

qi∑
j=1

log
Γ
(

N′
qi

)
Γ
(
Nij + N′

qi

)+

ri∑
k=1

log
Γ
(
Nijk+ N′

riqi

)
Γ
(

N′
riqi

)
 ,
(3)

where P (G) is a prior probability of the specific graph
structure and this probability can be ignored because it is
usually assumed to be the same for all graphs. Γ is the Gamma
function, i is the index of the m variables, qi represents the
combination of values of the node Xi’s parents , j is the index
of qi, ri represents the possible values of the node Xi, and
k is the index of ri. In addition, Nijk represents the number
of instances when the node Xi takes the k-th value, and its
parents take the j-th combination of values in the dataset D,
Nij =

∑ri
k=1Nijk represents the total number of instances

where the parents of Xi have the j-th combination of values
in the dataset D, and N ′ is the equivalent sample size (ESS)
that represents the confidence we have in the prior parameters.

Stage 2: Aggregating all directed edges in the learned
DAGs for orientation (Lines 5-14). Stage 2 aggregates all
directions of the edges in N DAGs G1, G2, ..., GN to obtain
the final DAG G∗. The CSkeO procedure sets the same
threshold ε to determine the edge direction of Xi−Xj based
on the N DAGs learned from Stage 1. If more than ε edges
go from Xi to Xj in these DAGs, then the edge direction
of Xi −Xj goes from Xi to Xj in G∗, otherwise, the edge
direction of Xi −Xj is from Xj to Xi in G∗. Here, we set
the value of the threshold ε to N/2 because the skeleton is
oriented using the same sampled datasets from LSkeR.

Specifically, N learned DAGs G1, G2, . . . , GN are oriented
by the scoring function from N sampled datasets. N learned
DAGs are represented by N adjacency matrices B1, B2,
. . . , BN respectively. Bk;ij = 1(k = 1, 2, ..., N) means an
directed edge from i to j in the DAG Gk. Otherwise, there is
no edge from i to j. B̃ is the sum of the N adjacency matrices.
B̃ij means the total number of the directed edge from i to j
in the DAGs B1, B2, . . . , BN .

If B̃ij is larger than ε, then B∗ij = 1. B∗ij = 1 means
that there is a directed edge from i to j in the aggregated
DAG. Otherwise, B∗ij = 0, there is no edge from i to j in the
aggregated DAG. Therefore, the aggregated matrix B∗ of N
adjacency matrices is obtained. Correspondingly, we get the

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3329786

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 14,2023 at 07:36:23 UTC from IEEE Xplore. Restrictions apply.

FIRST A. AUTHOR et al.: BARE DEMO OF IEEETAI.CLS FOR IEEE JOURNALS OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 7

DAG G∗ represented by B∗.
There are two main benefits of using the scoring function

orienting. Firstly, using a scoring function to orient edges does
not need to consider the separation sets (Definition 3.8) that
play a significant role in the skeleton orienting stage for the
constraint-based methods. The separation sets of variables in
each sampled dataset may be different during the skeleton
learning phase, so using a scoring function to orient the skele-
ton avoids finding separation sets that are inconsistent with the
final skeleton. Secondly, based on a reliable skeleton, it is more
accurate and efficient to use a scoring function to orient the
edges in the skeleton. The given skeleton reduces the search
space of the scoring function, and scoring a reliable skeleton
can improve the accuracy of orientation. The advantage of
CSkeO is that avoids orientation bias caused by a low-quality
dataset. Aggregating the DAGs learned from multiple sampled
datasets can improve the robustness of skeleton orientation,
making the aggregated DAG more accurate.

V. Experiments

In this section, we evaluate the effectiveness of our al-
gorithm by comparing it with seven state-of-the-art causal
structure learning algorithms on eight benchmark Bayesian
Network (BN) datasets. Moreover, we conduct multiple ex-
periments and set different parameters to evaluate the stability
of our algorithm based on the experimental results.

TABLE III: The details of Bayesian Networks.

Network Num. Num. Max In/Out- Min/Max
Vars Edges Degree |PCset|

Child 20 25 2/7 1/8
Child3 60 79 3/7 1/8
Child5 100 126 2/7 1/8
Alarm3 111 149 4/5 1/6
Child10 200 257 2/7 1/8
Alarm10 370 570 4/7 1/9

Pigs 441 592 2/39 1/41
Link 724 1125 3/14 0/17

A. Experiment Settings

1) Datasets: We conduct experiments on eight benchmark
Bayesian networks (BNs), which are provided from existing
works [31]. These eight benchmark BNs are Child, Child3,
Child5, Alarm3, Child10, Alarm10, Pigs, and Link. These
eight benchmark BNs are derived from real-life structures,
as described on the website1. The details of the eight BNs
are presented in Table III. The number of nodes in these
networks varies from 20 to 724, verifying the effectiveness of
the algorithm under different network sizes. For each network,
we randomly generated datasets with sample sizes of 200, 300,
500, 1000, and 5000 for experiments.

2) Comparison Methods: We choose the following seven
algorithms for comparison: PC [16], PC-stable [20], GES [26],
MMHC [31], BCSL [32], NOTEARS [34], DAG-GNN [35],
and DAG-NoCurl [39]. PC and PC-stable are constraint-based
methods. GES is a score-based method. MMHC and BCSL are

1https://www.bnlearn.com/bnrepository/.

hybrid methods. They are well-established combinatorial opti-
mization methods. NOTEARS, DAG-GNN, and DAG-NoCurl
are continuous optimization methods. More introduction about
above algorithms is as follows:
• PC [16]. PC is a well-known and widely used constraint-

based causal structure learning algorithm.
• PC-stable [20]. PC-stable is a well-established causal

structure learning algorithm and partially solves the order
dependency problem of PC.
• GES [26]. GES is a well-known score-based causal

structure learning algorithm.
• MMHC [31]. MMHC is a well-established algorithm for

learning large-scale causal structures.
• BCSL [32]. BCSL eliminates asymmetric edges in learned

skeleton by using a data sampling technique, then uses the
scoring function and the search strategy to orient edges in the
local skeleton.
• NOTEARS [34]. NOTEARS is the first algorithm to use

gradient descent to learn causal structures.
• DAG-GNN [35]. DAG-GNN learns causal structures using

a variational auto-encoder.
• DAG-NoCurl [39]. DAG-NoCurl learns causal structures

based on the graph Hodge theory.
3) Evaluation Metrics: We mainly evaluate the BLR al-

gorithm in terms of the accuracy and structure error of the
learned DAG. Therefore, we use four metrics for evaluation,
which are Arc P , Arc R, Arc F1, and SHD (Structural
HammingDistance).
TP denotes the number of the true edges that are present

in both the learned DAG and the true DAG, FP denotes the
number of the edges that are present in the learned DAG but
not in the true DAG, and FN denotes the number of the edges
that are present in the true DAG but not in the learned DAG.
The specific definitions are as follows:
• Arc P = TP

TP+FP . The number of the true directed edges
in the learned DAG divided by the total number of the edges
in the learned DAG.
• Arc R = TP

TP+FN . The number of the true directed edges
in the learned DAG divided by the total number of the edges
in the true DAG.
• Arc F1 = 2 · Arc P · Arc R

Arc P + Arc R . Arc F1 considers both
of the Arc P and Arc R to comprehensively evaluate the
performance of the algorithm.
• SHD(Structural Hamming Distance). SHD is the

total number of the wrong edges in the learned DAG. SHD
is defined as the sum of the number of the extra edges, the
missing edges, and the reverse edges in the learned DAG.

For these four evaluation metrics, the larger values of
Arc F1, Arc P , and Arc R, the better the effect; the smaller
value of SHD, the better the effect.

4) Implementation Details: Our algorithm, PC, PC-stable,
MMHC, and BCSL are implemented in MATLAB, GES is
implemented in R, and NOTEARS, DAG-GNN, and DAG-
NoCurl are implemented in Python. All experiments are con-
ducted on a computer with Windows 10, Intel(R) Core(TM) i9-
10900F 2.80GHz CPU, and 32GB memory. The significance
level α is set 0.01 for the algorithms employing CI tests for
causal structure learning. Following the experimental settings

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3329786

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 14,2023 at 07:36:23 UTC from IEEE Xplore. Restrictions apply.

8 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2020

TABLE IV: Results on the Child and Child3 networks (↑ means the higher the better; ↓ represents the lower the better).

Networks Child Child3
Samples Metrics

Algorithms
Arc F1% (↑) Arc P% (↑) Arc R% (↑) SHD(↓) Arc F1% (↑) Arc P% (↑) Arc R% (↑) SHD(↓)

200

PC 22.22 20.69 24.00 31 19.05 17.98 20.25 99
PC-stable 22.22 20.69 24.00 31 14.91 14.63 15.19 97
GES 41.79 33.33 56.00 34 32.65 27.35 32.65 114
MMHC 60.87 66.67 56.00 13 44.60 51.67 39.24 63
BCSL 57.77 65.00 52.00 13 50.00 59.65 43.03 50
NOTEARS 24.39 31.25 20.00 23 27.85 27.85 27.85 92
DAG-GNN 23.81 29.41 20.00 24 25.00 36.59 18.99 77
DAG-NoCurl 14.29 12.90 16.00 40 11.32 9.02 15.19 164
BLR (ours) 69.28 90.99 56.00 11.2 64.01 86.47 50.89 41

300

PC 27.45 26.92 28.00 25 25.93 25.30 26.58 82
PC-stable 19.61 19.23 20.00 27 22.50 22.22 22.78 84
GES 58.62 51.52 68.00 21 37.56 31.36 46.84 103
MMHC 65.31 66.67 64.00 13 57.97 67.80 50.63 45
BCSL 65.21 71.24 60.00 12 58.99 68.33 51.89 43
NOTEARS 29.27 37.50 24.00 19 30.99 34.92 27.85 74
DAG-GNN 28.57 50.00 20.00 20 30.00 43.90 22.78 66
DAG-NoCurl 17.78 20.00 16.00 29 14.38 14.86 13.92 104
BLR (ours) 77.56 90.66 68.00 8.8 63.48 77.69 53.67 38.4

500

PC 32.65 33.33 32.00 20 31.94 35.38 29.11 64
PC-stable 32.65 33.33 32.00 20 31.94 35.38 29.11 64
GES 38.89 29.79 56.00 37 36.55 30.51 45.57 100
MMHC 75.00 78.26 72.00 7 65.22 76.27 56.96 41
BCSL 72.34 77.27 68.00 8 68.61 81.03 59.49 35
NOTEARS 29.27 37.50 24.00 21 26.77 35.42 21.52 70
DAG-GNN 26.32 38.46 20.00 22 22.86 46.15 15.19 69
DAG-NoCurl 12.50 13.04 12.00 33 15.94 18.64 13.92 93
BLR(ours) 81.61 88.16 76.00 6 75.54 91.05 64.56 28.6

1000

PC 41.67 43.48 40.00 16 38.62 42.42 35.44 57
PC-stable 37.50 39.13 36.00 17 38.62 42.42 35.44 57
GES 44.16 32.69 68.00 37 41.38 33.87 53.16 93
MMHC 32.50 35.22 60.00 10 69.44 76.92 63.29 31
BCSL 59.57 63.63 56.00 11 64.74 75.00 56.96 36
NOTEARS 35.00 46.67 28.00 20 29.03 40.00 22.78 64
DAG-GNN 31.58 46.15 24.00 21 31.67 46.34 24.05 63
DAG-NoCurl 17.39 19.05 16.00 29 11.11 14.89 8.86 88
BLR (ours) 77.83 87.08 70.40 7.4 73.60 86.40 64.20 29.2

5000

PC 64.00 64.00 64.00 9 65.82 65.82 65.82 28
PC-stable 56.00 56.00 56.00 11 65.82 65.82 65.82 28
GES 47.37 35.29 72.00 34 45.69 34.64 67.09 105
MMHC 89.80 91.67 88.00 3 84.97 87.84 82.28 14
BCSL 96.00 96.00 96.00 1 87.89 88.46 87.34 11
NOTEARS 29.27 37.50 24.00 20 26.77 35.42 21.52 66
DAG-GNN 25.64 35.71 20.00 21 31.58 51.43 22.78 64
DAG-NoCurl 13.64 15.79 12.00 29 10.85 14.00 8.86 92
BLR (ours) 96.00 96.00 96.00 1 88.78 91.58 85.97 13

in NOTEARS, we adopt 0.3 as the threshold to prune edges in
a DAG for NOTEARS, DAG-GNN, and DAG-NoCurl. Since
the distributions of the N datasets sampled from the original
dataset at different times vary, the experimental results may
fluctuate. Therefore, we run our algorithm 5 times on all
datasets and use the average result as the final result. In the
experiment, we set N and the aggregation threshold ε to 10
and 5 for each dataset, respectively.

B. Experiment Results

Tables IV-VII show the experimental results of the above
eight networks, and we can get the following findings accord-
ing to the experimental results.

BLR versus PC and PC-stable. PC and PC-stable have
comparable accuracy and structural error on all networks,
while BLR outperforms them with higher accuracy and fewer
structural errors across all networks. When the sample size
is small, the results of the CI tests are tend to be unreliable.
Incorrect CI test results lead to many errors in the process of

learning and orienting the skeleton, resulting in low accuracy
and large structural error. BLR adopts layer-wise skeleton
refining and collective scoring orientation strategies based on
the bootstrap sampling method, which not only reduces the
structural error of the learning skeleton but also improves the
orientation accuracy.

As the sample size increases, the results of the CI tests
gradually become more reliable, the accuracy of the skeleton
learning and edges orientation increases, and the structural
error decreases. However, BLR has advantages in high accu-
racy and low structural error at this time. In conclusion, BLR
significantly improves the accuracy of the skeleton learning
and edges orientation compared to constraint-based methods,
especially when the sample size is small.

BLR versus GES, MMHC, and BCSL. To reach the
highest score, GES usually keeps more edges in the graph,
which results in large structural errors. Thus, GES almost
always has a larger value of SHD than the constraint-based
methods. The advantage of retaining more edges is that may
have higher recall. For example, as shown in Table VII, GES

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3329786

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 14,2023 at 07:36:23 UTC from IEEE Xplore. Restrictions apply.

FIRST A. AUTHOR et al.: BARE DEMO OF IEEETAI.CLS FOR IEEE JOURNALS OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 9

TABLE V: Results on the Child5 and Alarm3 networks (↑ means the higher the better; ↓ represents the lower the better).

Networks Child5 Alarm3
Samples Metrics

Algorithms
Arc F1% (↑) Arc P% (↑) Arc R% (↑) SHD (↓) Arc F1% (↑) Arc P% (↑) Arc R% (↑) SHD(↓)

200

PC 19.62 18.71 20.63 157 30.48 34.17 27.52 131
PC-stable 19.53 19.23 19.84 150 26.22 29.66 23.49 135
GES 26.67 20.08 39.68 243 32.17 23.79 49.66 286
MMHC 61.33 69.70 54.76 73 33.21 67.36 65.10 80
BCSL 63.50 78.82 53.17 65 68.8 85.14 57.71 66
NOTEARS 22.73 21.74 23.81 162 51.64 66.32 42.28 108
DAG-GNN 14.11 11.50 18.25 240 32.63 29.67 36.24 207
DAG-NoCurl 9.19 6.23 17.46 393 15.49 9.71 38.26 601
BLR (ours) 65.89 88.68 52.03 62.2 73.89 94.90 60.45 63.2

300

PC 24.70 24.80 24.60 129 41.73 50.48 35.57 108
PC-stable 20.97 21.31 20.63 132 33.73 42.00 28.19 119
GES 34.29 26.79 47.62 197 36.65 27.65 54.36 260
MMHC 54.94 59.81 50.79 82 71.28 73.57 69.13 71
BCSL 55.04 65.21 47.61 76 72.06 80.81 59.73 62
NOTEARS 28.05 32.63 24.60 118 49.38 63.83 40.27 109
DAG-GNN 25.56 42.59 18.25 111 38.63 43.57 33.20 144
DAG-NoCurl 14.97 13.10 17.46 210 15.01 10.42 26.85 429
BLR (ours) 66.61 83.82 55.41 59.4 72.01 95.68 58.23 64.2

500

PC 30.13 31.86 28.57 105 43.77 50.00 38.93 98
PC-stable 27.62 29.20 26.19 108 40.15 47.27 35.90 104
GES 38.90 29.71 56.35 192 32.98 24.21 51.68 280
MMHC 72.81 81.37 65.87 46 69.69 72.46 67.11 69
BCSL 70.85 80.44 62.69 50 81.67 94.7 71.81 44
NOTEARS 30.48 38.10 25.40 107 50.86 71.08 39.60 104
DAG-GNN 21.82 46.15 14.29 110 41.35 47.01 36.91 138
DAG-NoCurl 17.48 22.50 14.29 132 23.20 17.73 33.56 310
BLR (ours) 77.22 90.62 67.41 43.2 84.24 99.82 72.41 40.4

1000

PC 40.17 42.48 38.10 88 59.09 67.83 52.35 71
PC-stable 40.17 42.48 38.10 88 56.49 65.49 49.66 75
GES 41.23 31.76 58.73 179 47.69 37.40 65.77 193
MMHC 73.28 80.19 67.46 42 86.62 91.11 82.55 36
BCSL 73.12 82.17 65.87 43 85.5 95.83 77.18 37
NOTEARS 30.62 38.55 25.40 103 51.95 73.17 40.27 99
DAG-GNN 25.32 62.50 15.87 108 41.51 69.84 29.53 114
DAG-NoCurl 18.54 24.05 15.08 130 37.63 39.13 36.24 154
BLR (ours) 75.62 85.62 68.01 41.2 87.03 99.62 77.03 35

5000

PC 65.61 65.35 65.87 44 66.19 71.32 61.74 58
PC-stable 64.03 63.78 64.29 46 64.49 70.08 59.73 61
GES 36.41 26.22 59.52 217 49.53 38.18 70.47 189
MMHC 82.11 84.17 80.16 25 80.41 80.95 79.87 44
BCSL 87.4 88.67 88.09 18 89.92 96.9 93.89 25
NOTEARS 32.00 43.24 25.40 99 53.28 76.25 40.94 99
DAG-GNN 33.51 52.54 24.60 97 45.81 66.67 34.90 109
DAG-NoCurl 16.22 25.42 11.90 123 40.73 44.44 37.58 142
BLR (ours) 89.46 93.46 85.90 19.20 88.90 97.24 82.24 28.2

has the highest recall on the Link network. When the sample
size is small, on the networks of the Child, Child3, Child5, and
Alarm3, GES is more accurate than the constraint-based meth-
ods, but on the Child10, Alarm10, Pigs, and Link networks,
GES is less accurate than the constraint-based methods. As the
sample size increases, the accuracy of GES cannot catch up
with the constraint-based methods. In addition, the accuracy
of GES is not as good as BLR.

MMHC and BCSL have high accuracy and few structural
errors on all networks. With an increase in sample size, the
accuracy of these two algorithms steadily improves and even
reaches 100% on the Pigs network with 5000 samples. In
comparison to MMHC, although the Arc R of MMHHC is
better than BLR on a small number of networks, most of
the metrics are better than MMHC on all networks and BLR
always have lower SHD. Compared to BCSL, most metrics of
BCSL are better than BLR on the Child10, Alarm10, and Pigs
networks, but on other networks and datasets of 5000 samples,
the accuracy of BLR is higher than BCSL.

BLR versus NOTEARS, DAG-GNN, and DAG-NoCurl.

On all networks, BLR consistently maintains a large advantage
over the continuous optimization methods in terms of accuracy
and structural error. On the small and medium-sized networks
with small sample sizes, the accuracy of the continuous opti-
mization methods is not much different from the combinatorial
optimization methods as shown in Tables IV-VI. Although
the accuracy improvement is not as fast as the combinatorial
optimization methods, it increases steadily with the increase
of the sample size.

On the large network of the Pigs and Link, as shown in
Table VII, the performance of the continuous optimization
methods is unsatisfactory. The accuracy of NOTEARS is not
very high, and the accuracy doesn’t increase with the increase
of the sample size but has a downward trend; the accuracy of
DAG-GNN is low or even 0 when the sample size is small, and
the accuracy gradually improves as the sample size increases;
the accuracy of DAG-NoCurl is not only low but also the value
of SHD has large fluctuations with the change of sample size,
showing its unstable properties. Therefore, compared with the
continuous optimization methods, BLR has great advantages

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3329786

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 14,2023 at 07:36:23 UTC from IEEE Xplore. Restrictions apply.

10 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2020

TABLE VI: Results on the Child10 and Alarm10 networks (↑ means the higher the better; ↓ represents the lower the better).

Networks Child10 Alarm10
Samples Metrics

Algorithms
Arc F1% (↑) Arc P% (↑) Arc R% (↑) SHD(↓) Arc F1% (↑) Arc P% (↑) Arc R% (↑) SHD(↓)

200

PC 22.83 21.36 24.51 320 27.24 32.37 23.51 543
PC-stable 19.85 19.13 20.62 315 22.82 27.92 19.30 558
GES 19.47 12.99 38.91 747 12.39 7.42 37.54 2919
MMHC 48.80 55.45 43.58 186 60.37 64.60 56.67 383
BCSL 53.17 67.26 43.96 159 65.48 89.12 51.75 297
NOTEARS 18.18 15.60 21.79 419 41.11 52.30 33.86 507
DAG-GNN 15.88 14.03 18.29 456 16.51 64.29 9.47 528
DAG-NoCurl 2.30 1.23 18.68 3990 2.33 1.21 31.58 15030
BLR (ours) 57.02 79.68 44.89 153.8 64.89 90.68 50.23 309

300

PC 25.00 25.10 24.90 266 33.93 42.90 28.07 459
PC-stable 22.09 22.40 21.79 270 28.26 37.14 22.81 483
GES 23.75 16.49 42.41 623 19.14 12.00 47.19 2192
MMHC 45.82 50.95 41.63 202 63.44 66.22 60.88 358
BCSL 51.05 64.11 42.41 163 71.8 94.3 58.07 256
NOTEARS 22.80 23.46 22.18 303 44.89 61.21 35.44 449
DAG-GNN 21.84 41.76 14.79 240 29.82 67.70 19.12 485
DAG-NoCurl 7.48 4.85 16.34 968 2.73 1.41 41.04 16730
BLR (ours) 60.89 80.30 49.01 136 69.23 94.90 54.67 273.4

500

PC 36.13 39.27 33.46 194 43.66 53.57 36.84 395
PC-stable 32.49 35.48 29.96 203 30.97 49.07 32.46 418
GES 28.11 19.97 47.47 544 24.50 16.19 50.35 1692
MMHC 71.74 81.28 64.20 101 70.12 74.17 66.49 293
BCSL 69.81 82.88 60.31 106 76.82 96.8 63.68 213
NOTEARS 28.91 36.97 23.74 225 47.33 69.86 35.79 417
DAG-GNN 25.21 47.83 17.12 225 25.96 69.47 15.96 495
DAG-NoCurl 14.26 13.77 14.79 384 8.45 4.94 29.12 3521
BLR (ours) 77.85 91.58 67.70 87 74.89 97.02 61.01 229.6

1000

PC 42.56 45.37 40.08 172 49.95 60.65 42.46 334
PC-stable 40.66 43.56 38.13 176 46.83 57.54 39.47 346
GES 32.93 23.90 52.92 473 32.14 22.52 56.14 1265
MMHC 71.25 78.93 64.92 96 71.16 75.20 67.54 263
BCSL 70.92 81.72 62.64 96 81.76 98.27 70 176
NOTEARS 28.71 39.46 22.57 213 49.01 72.51 37.02 405
DAG-GNN 25.08 64.52 15.56 208 30.18 69.18 19.3 485
DAG-NoCurl 18.65 27.91 14.01 250 27.97 23.75 34.04 926
BLR (ours) 72.45 84.24 63.67 95 81.02 98.24 68.89 182.4

5000

PC 62.75 63.24 62.26 97 60.71 68.97 54.21 265
PC-stable 60.00 60.47 59.53 104 59.09 67.65 52.46 271
GES 34.89 24.96 57.98 457 40.92 30.52 62.11 917
MMHC 86.23 88.52 84.05 42 79.85 84.81 75.44 174
BCSL 81.52 84.23 78.98 54 83.89 95.31 74.91 146
NOTEARS 30.62 41.89 24.12 208 49.41 76.47 36.49 396
DAG-GNN 28.41 55.68 19.07 213 39.63 58.36 30.00 458
DAG-NoCurl 16.58 24.81 12.45 260 41.74 54.86 33.68 472
BLR (ours) 89.24 92.68 85.90 39.4 85.24 97.24 75.46 140.4

in both the accuracy and stability of causal structure learning.
Overall, BLR outperforms other well-established algorithms

in terms of the accuracy and structural error for learning causal
structures on the above benchmark datasets.

C. Experiment Analysis
1) Analysis of distribution differences between sampled

datasets and original dataset: Bootstrap sampling is a random
sampling method with replacement that increase data diversity
and generate sampled datasets with similar distribution char-
acteristics to the original dataset. Therefore, these sampled
datasets can be used to train causal structure learning models
to identify causal relationships in the original dataset. We
conduct visual analyses of the data distribution to illustrate
the similarity between the sampled datasets and the original
dataset. Furthermore, we calculate the distance between the
sampled datasets and the original dataset, revealing slight
distribution differences between them.

We use the Child network with 500 samples. As shown in
Fig. 5, we visualize the distribution of the original dataset and

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) Original dataset.
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) Sampled dataset 1.
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(c) Sampled dataset 2.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(d) Sampled dataset 3.
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(e) Sampled dataset 4.
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(f) Sampled dataset 5.

Fig. 5: The sample distribution of the original and the
sampled datasets of Child network. In each subfigure, the

points represent the feature representations of the data
samples. The positions of the points represent the
distribution of data samples in the feature space.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3329786

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 14,2023 at 07:36:23 UTC from IEEE Xplore. Restrictions apply.

FIRST A. AUTHOR et al.: BARE DEMO OF IEEETAI.CLS FOR IEEE JOURNALS OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 11

TABLE VII: Results on the Pigs and Link networks (↑ means the higher the better; ↓ represents the lower the better).

Networks Pigs Link
Samples Metrics

Algorithms
Arc F1% (↑) Arc P% (↑) Arc R% (↑) SHD(↓) Arc F1% (↑) Arc P% (↑) Arc R% (↑) SHD(↓)

200

PC 41.03 37.17 45.78 458 15.42 12.76 19.47 2200
PC-stable 40.89 37.39 45.10 447 15.64 13.37 18.84 2089
GES 26.36 15.24 97.30 3204 7.13 4.18 24.27 6975
MMHC 89.45 86.69 92.40 98 23.76 31.39 19.11 1258
BCSL 94.46 93.83 95.10 51 28.99 44.69 20.97 1079
NOTEARS 50.51 51.22 49.83 355 1.07 15.15 8.27 1422
DAG-GNN 0.00 0.00 0.00 592 0.00 0.00 0.00 1125
DAG-NoCurl 4.37 2.35 30.91 7876 0.58 0.31 4.36 16608
BLR (ours) 94.46 92.90 96.02 55.8 31.23 61.89 20.88 1004.8

300

PC 45.88 40.93 52.20 446 14.43 11.34 19.82 2417
PC-stable 42.15 37.80 47.64 464 14.39 11.60 18.93 2306
GES 34.97 21.32 97.30 2127 14.57 9.75 28.80 3681
MMHC 93.87 92.05 95.78 61 24.46 32.64 19.56 1222
BCSL 96.21 95.81 96.62 37 32.13 49.00 23.91 1058
NOTEARS 44.28 44.13 44.43 399 14.58 25.44 10.22 1213
DAG-GNN 0.00 0.00 0.00 592 0.00 0.00 0.00 1125
DAG-NoCurl 2.24 1.35 6.42 3284 0.46 0.24 4.36 20985
BLR (ours) 96.24 94.46 97.90 40.2 34.01 63.67 23.48 981.4

500

PC 62.07 61.81 62.33 228 25.07 25.53 24.62 1456
PC-stable 55.77 55.63 55.91 264 24.70 25.65 23.82 1432
GES 45.29 29.28 100.00 1430 20.00 13.70 36.98 3216
MMHC 96.99 95.87 98.14 25 29.12 36.40 24.27 1180
BCSL 98.57 98.16 98.98 11 37.01 53.62 28.26 1014
NOTEARS 42.64 41.75 43.58 415 17.36 35.73 11.47 1080
DAG-GNN 0.00 0.00 0.00 592 0.00 0.00 0.00 1125
DAG-NoCurl 22.25 15.54 39.19 1373 1.03 0.54 12.00 25709
BLR (ours) 97.46 96.24 99.24 24.2 35.67 60.01 25.23 994.2

1000

PC 75.93 75.67 76.18 145 29.46 28.89 30.04 1435
PC-stable 74.03 73.91 74.16 155 27.96 28.10 27.82 1421
GES 55.11 38.13 99.32 954 24.29 16.61 45.16 3050
MMHC 98.57 98.16 98.99 11 34.84 41.98 29.78 1121
BCSL 99.49 99.32 99.66 4 37.24 51.82 29.06 1008
NOTEARS 40.91 39.53 42.40 427 15.42 35.24 9.87 1070
DAG-GNN 0.30 0.13 0.17 592 0.00 0.00 0.00 1126
DAG-NoCurl 31.56 30.15 33.13 567 1.29 0.70 8.27 14152
BLR (ours) 99.02 98.24 99.46 10.2 38.67 62.23 28.23 952.4

5000

PC 99.41 99.16 99.66 5 55.63 78.70 43.02 676
PC-stable 99.66 99.49 99.83 3 55.19 79.33 42.31 669
GES 71.98 56.22 100.00 461 20.23 12.86 47.47 4110
MMHC 100.00 100.00 100.00 0 52.36 63.00 44.80 843
BCSL 100.00 100.00 100.00 0 59.26 79.61 47.20 683
NOTEARS 40.99 38.82 43.41 436 17.03 37.46 11.02 1058
DAG-GNN 9.79 14.33 7.43 584 0.86 1.19 0.44 1128
DAG-NoCurl 30.86 30.48 31.25 546 3.91 2.55 8.44 4604
BLR (ours) 100.00 100.00 100.00 0 59.67 88.46 45.01 659.2

the distributions of five datasets sampled through bootstrap
sampling. Each sampled dataset has the similar distribution as
that of the original dataset.

TABLE VIII: MMD between original and 10 sampled datasets.

MMD

Networks Samples 1 2 3 4 5 6 7 8 9 10

Child

200 0.221 0.220 0.217 0.221 0.219 0.218 0.222 0.222 0.219 0.218
300 0.222 0.222 0.218 0.223 0.221 0.22 0.224 0.224 0.221 0.219
500 0.217 0.217 0.214 0.218 0.216 0.215 0.219 0.219 0.216 0.215
100 0.221 0.221 0.217 0.222 0.220 0.219 0.223 0.223 0.220 0.219
500 0.219 0.220 0.215 0.220 0.218 0.217 0.221 0.222 0.218 0.217

Child3

200 0.227 0.225 0.226 0.229 0.229 0.230 0.226 0.226 0.224 0.230
300 0.227 0.225 0.226 0.229 0.229 0.230 0.226 0.226 0.224 0.230
500 0.226 0.224 0.225 0.228 0.228 0.229 0.225 0.226 0.224 0.229
100 0.227 0.225 0.226 0.229 0.228 0.230 0.226 0.226 0.224 0.230
500 0.226 0.225 0.226 0.228 0.228 0.229 0.226 0.226 0.224 0.229

To quantify the distribution differences between the original
and sampled datasets of the Child and Child3 network, we
utilize the maximum mean discrepancy (MMD). MMD is a
widely used quantitative measure of the difference between
two probability distributions in dataset comparison. Given two

datasets Di and Dj , MMD is defined as Eq. (4):

MMD(Di, Dj)=

∥∥∥∥∥ 1

ni

ni∑
k=1

Φ
(
Xi
k

)
− 1

nj

nj∑
k=1

Φ
(
Xj
k

)∥∥∥∥∥
H

. (4)

where ni and nj are the number of samples in Di and Dj ,
Φ (X) is a feature map kernel function from X to H which
is the reproducing kernel Hilbert space (RKHS) being high-
dimensional or even infinite-dimensional.

In Table VIII, we show the MMDs of the original and
10 sampled datasets on two networks. While the MMDs
may be somewhat different for different networks, the MMDs
between the original and sampled datasets are similar on
the same network. Therefore, the bootstrap sampling method
improves the diversity of data samples. The skeletons can be
learned separately from each sampled dataset and aggregated
to improve the accuracy of causal structure learning.

2) Stability Analysis of Experimental Results: To verify the
stability of our method, we conduct multiple experiments on
all datasets under the same parameter settings. Specifically,
we set the number of sampled datasets to 10 (N = 10) and

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3329786

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 14,2023 at 07:36:23 UTC from IEEE Xplore. Restrictions apply.

12 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2020

200 300 500 1000 5000
0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
pe

rf
or

m
an

ce
s &

 S
ta

nd
ar

d
de

vi
at

io
ns

(a) Child network.

Arc_F1
Arc_P
Arc_R

200 300 500 1000 5000
0.0

0.2

0.4

0.6

0.8

1.0

(b) Child3 network.

Arc_F1
Arc_P
Arc_R

200 300 500 1000 5000
0.0

0.2

0.4

0.6

0.8

1.0

(c) Child5 network.

Arc_F1
Arc_P
Arc_R

200 300 500 1000 5000
0.0

0.2

0.4

0.6

0.8

1.0

(d) Alarm3 network.

Arc_F1
Arc_P
Arc_R

200 300 500 1000 5000
0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
pe

rf
or

m
an

ce
s &

 S
ta

nd
ar

d
de

vi
at

io
ns

(e) Child10 network.

Arc_F1
Arc_P
Arc_R

200 300 500 1000 5000
0.0

0.2

0.4

0.6

0.8

1.0

(f) Alarm10 network.

Arc_F1
Arc_P
Arc_R

200 300 500 1000 5000
0.0

0.2

0.4

0.6

0.8

1.0

(g) Pigs network.

Arc_F1
Arc_P
Arc_R

200 300 500 1000 5000
0.0

0.2

0.4

0.6

0.8

1.0

(h) Link network.

Arc_F1
Arc_P
Arc_R

0

5

10

15

20

25
SHD

0

10

20

30

40

50
SHD

0

10

20

30

40

50

60

70

80
SHD

0

10

20

30

40

50

60

70

80
SHD

0

25

50

75

100

125

150

175

200
SHD

0

50

100

150

200

250

300

350
SHD

0

10

20

30

40

50

60

70

80
SHD

0

200

400

600

800

1000

1200
SHD

Fig. 6: Mean performances and standard deviations (error bars) of BLR on different networks. The left y-axis is the metrics
of Arc F1, Arc P , Arc R, the right y-axis is the metric of SHD, and the x-axis is the number of samples of the network.

The low standard deviation of the evaluation metrics shows that BLR has good stability on all datasets
.

the aggregation threshold to 5 (ε = 5). We conducted five
experiments on each dataset of all networks and analyzed all
metrics of the experimental results. The mean performances
and standard deviations of all metrics were depicted in Fig. 6.
The calculation formulas of the mean and standard deviation
are shown in the Eq. (5) and Eq. (6), where the notation M
is the number of experiments, and the notation E is a metric.
It can be instantiated as Arc F1, Arc P , Arc R and SHD.

MeanE =
1

M

M∑
i=1

Ei. (5)

StdE =

√√√√ 1

M

M∑
i=1

(Ei−MeanE)
2
. (6)

In Fig. 6, the height of each bar represents the mean of the
results, while the error bars represent the standard deviation of
the results. For convenience, we used a dual y-axis coordinate
system in the subfigure. The x-axis is the number of samples of
each network. The metrics of Arc F1, Arc P , and Arc R
are displayed on the left y-axis in the subfigure, while the
metric of SHD is displayed on the right y-axis. The title
of each subfigure is the network name. As depicted in Fig.
6, our experimental results exhibit small standard deviations,
which indicate that our experimental results are stable and
demonstrate the robustness of our algorithm.

3) Sensitivity Analysis of Parameters: In the experiments,
we need to determine the number N of sampled datasets
for bootstrap sampling and set an appropriate threshold ε
for aggregation. Therefore, in this section, we analyze the
influence of the number N and the setting of ε on the
results. To this end, we chose six different networks with

varying sample sizes and conducted experiments with different
threshold settings under the same number of N to find the
optimal threshold setting method. Then, we set different values
of N using the optimal threshold ε setting method to analyze
the stability of BLR on the number of sampled datasets.

Specifically, we conduct experiments by setting N to 10 and
varying the threshold ε from 0 to 9 to determine the optimal
threshold setting method for ε based on the experimental
results. The curve of the experimental metrics changing with
ε is shown in Fig. 7(a). In addition, we set ε = N/2 and
set the value of N from 10, 20 to 100 to verify the stability
of our algorithm with respect to different values of N . The
curve of the experimental metrics changing with N is shown
in Fig. 7(b). As in the previous experiments, we conduct five
experiments on each dataset and took the average of the results
as the final result. The title of each subfigure is the name of the
network and the corresponding sample size. In each subfigure,
the results for Arc F1, Arc P , and Arc R are displayed on
the left y-axis and the result for SHD is displayed on the right
y-axis. In Fig. 7(a), the x-axis is the value of ε. In Fig. 7(b),
the x-axis is the value of N . Through analysis, we can draw
the following conclusions:
• Under the same value of N , the learned DAG has a large

value of SHD when the value of ε is small. Since the value of
ε is too small, many edges are remained in the final skeleton.
After orienting the skeleton using the scoring function, there
are many extra edges in the DAG. At the same time, the values
of Arc F1, Arc P , and Arc R are very low. The value of
SHD decreases as the value of ε increases since the number
of edges in the final skeleton decreases, and then the extra
edges in the DAG after orienting the skeleton decreases. The
values of Arc F1, Arc P , and Arc R also increase as the

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3329786

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 14,2023 at 07:36:23 UTC from IEEE Xplore. Restrictions apply.

FIRST A. AUTHOR et al.: BARE DEMO OF IEEETAI.CLS FOR IEEE JOURNALS OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 13

0 1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

1.2

() Alarm3_200 network.

Arc_F1
Arc_P
Arc_R

0 1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

1.2

() Alarm10_300 network.

Arc_F1
Arc_P
Arc_R

0 1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

1.2

() Child5_1000 network.

Arc_F1
Arc_P
Arc_R

0 1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

1.2

() Child3_5000 network.

Arc_F1
Arc_P
Arc_R

0 1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

1.2

() Child_500 network.

Arc_F1
Arc_P
Arc_R

0 1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

1.2

() Child10_500 network.

Arc_F1
Arc_P
Arc_R

50

100

150

200

250SHD

400

600

800

1000

SHD

40

60

80

100

120

140

160

180SHD

20

30

40

50

60SHD

5

10

15

20

25

30

35SHD

100

200

300

400

500

600
SHD

(a) The curve of the metrics changing with ε (N = 10).

10 20 30 40 50 60 70 80 90 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

() Alarm3_200 network.

Arc_F1
Arc_P
Arc_R

10 20 30 40 50 60 70 80 90 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

() Alarm10_300 network.

Arc_F1
Arc_P
Arc_R

10 20 30 40 50 60 70 80 90 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

() Child5_1000 network.

Arc_F1
Arc_P
Arc_R

10 20 30 40 50 60 70 80 90 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

() Child3_5000 network.

Arc_F1
Arc_P
Arc_R

10 20 30 40 50 60 70 80 90 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

() Child_500 network.

Arc_F1
Arc_P
Arc_R

10 20 30 40 50 60 70 80 90 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

() Child10_500 network.

Arc_F1
Arc_P
Arc_R

40

50

60

70

80

90

100

110

120
SHD

180

200

220

240

260

280
SHD

30

40

50

60

70

80

90
SHD

0

5

10

15

20

25

30

35

40
SHD

2

4

6

8

10

12

14
SHD

60

70

80

90

100

110

120

130

140
SHD

(b) The curve of the metrics changing with N (ε = N/2).

Fig. 7: Sensitivity analysis of parameter ε and N of BLR under different networks In Fig. 7(a), the left y-axis is the metrics
of Arc F1, Arc P , and Arc R, the right y-axis is the metric of SHD, and the x-axis is the value of ε. Fig. 7(a) shows that
most of the metrics are the best when ε = N/2. In Fig. 7(b), the left y-axis is the metrics of Arc F1, Arc P , and Arc R,

the right y-axis is the metric of SHD, and the x-axis is the value of N . Fig. 7(b) shows that the metrics are stable as the
value of N changes.

value of ε increases until the optimal threshold N/2 is reached.
When the value of ε is close to N/2, the SHD reaches its
minimum value, while the Arc F1 and Arc R reach their
maximum values. The value of SHD increases when the value
of ε continues to increase, which is caused by the skeleton
containing only a few edges, resulting in missing a lot of edges
in the DAG. At this time, the advantage of using scoring for
orientation is that the orientation of the undirected edges in the
skeleton will be more accurate and efficient, that is, the value
of Arc P will continue to increase. However, the missing
edges in the DAG make the low values of Arc R and Arc F1.
Through the analysis of the experimental results, we know that
the optimal threshold setting method is N/2. Except for the
Arc P , all evaluation metrics on the benchmark networks are
optimal when the value of ε is set to N/2.

• Under the optimal threshold setting method, we examine
the impact of the number of sampled datasets on our exper-
imental results. Specifically, we set the value of ε to N/2
when the value of N changes. At this point, we can see that
each evaluation metrics of the experimental results has a very
small fluctuation with the changes of N , which shows that our

algorithm is stable to changes of the parameter N .
4) Statistical Test: To comprehensively evaluate the perfor-

mance of our algorithm, we utilize the Nemenyi test [43] to
compare BLR with other algorithms on all datasets. The test
states that two algorithms are significantly different if their
corresponding average ranks differ by at least one critical dif-
ference (CD). Fig. 8 illustrates CD diagrams for the evaluation
metrics, where each algorithm’s average rank is marked along
the axis (lower ranks to the right). As shown in Fig. 8 (a),
(b), (c) and (d), BLR consistently exhibits the lowest average
rank on all evaluation metrics. BLR demonstrates comparable
performance with BCSL and MMHC and performs signifi-
cantly better than NOTEARS, DAG-GNN, DAG-NoCurl, and
PC-stable on all evaluation metrics.

VI. Conclusion

In this paper, we propose the BLR algorithm for causal
structure learning, which aims to address the problem of in-
accurate causal structures resulting from incorrect conditional
independence tests in constraint-based methods. Specifically,
BLR first employs a layer-wise refining strategy to construct

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3329786

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 14,2023 at 07:36:23 UTC from IEEE Xplore. Restrictions apply.

14 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2020

(a) Arc F1 metric. (b) Arc P metric.

(c) Arc R metric. (d) SHD metric.

Fig. 8: Comparison of BLR against its rivals with the Nemenyi test (the lower the rank value, the better the performance).

a reliable skeleton of the DAG. Subsequently, BLR uses a
scoring technique to collectively orient the skeleton to improve
the accuracy of the orientation. The experimental results show
that BLR performs better than other state-of-the-art algorithms
on eight benchmark Bayesian Network datasets. However,
BLR also has some limitations. For example, BLR cannot be
used to discover causal relationships from the datasets with
latent variables and has poor efficiency in identifying the local
causal relationships of a given target variable.

In future, we plan to combine the bootstrap-based method
with other techniques such as deep learning, which has the po-
tential to improve the performance of causal structure learning
from the datasets containing latent variables. In addition, we
will extend BLR to accurately and efficiently learn the local
causal structure of a given target variable. Furthermore, we
intend to expand and apply BLR to learn causal relationships
in knowledge graphs and images, which can enhance the
generalization ability of models.

References

[1] P. Spirtes, C. N. Glymour, R. Scheines, and D. Heckerman, Causation,
prediction, and search. MIT press, 2000.

[2] R. Cai, J. Qiao, Z. Zhang, and Z. Hao, “Self: structural equational
likelihood framework for causal discovery,” in Proc. AAAI Conf. Artif.
Intell., 2018, pp. 1787–1794.

[3] X. Guo, K. Yu, L. Liu, P. Li, and J. Li, “Adaptive Skeleton Construction
for Accurate DAG Learning,” IEEE Trans. Knowl. Data Eng., vol. 35,
no. 10, pp. 10 526–10 539, 2023.

[4] S. Triantafillou, V. Lagani, C. Heinze-Deml, A. Schmidt, J. Tegner, and
I. Tsamardinos, “Predicting causal relationships from biological data:
Applying automated causal discovery on mass cytometry data of human
immune cells,” Sci. Rep., vol. 7, no. 1, pp. 1–11, 2017.

[5] D. C. Castro, I. Walker, and B. Glocker, “Causality matters in medical
imaging,” Nat. Commun., vol. 11, no. 1, pp. 1–10, 2020.

[6] Z. Chen, Z. Tian, J. Zhu, C. Li, and S. Du, “C-CAM: Causal CAM for
weakly supervised semantic segmentation on medical image,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2022, pp. 11 676–
11 685.

[7] T. Kyono and M. van der Schaar, “Exploiting Causal Structure for
Robust Model Selection in Unsupervised Domain Adaptation,” IEEE
Trans. Artif. Intell., vol. 2, no. 6, pp. 494–507, 2021.

[8] K. Zhang, M. Gong, P. Stojanov, B. Huang, Q. Liu, and C. Glymour,
“Domain adaptation as a problem of inference on graphical models,” in
Proc. Int. Conf. Neural Inf. Process. Syst., 2020, pp. 4965–4976.

[9] K. Yu, L. Liu, J. Li, W. Ding, and T. D. Le, “Multi-source causal feature
selection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 9, pp.
2240–2256, 2020.

[10] S. Yang, K. Yu, F. Cao, L. Liu, H. Wang, and J. Li, “Learning causal
representations for robust domain adaptation,” IEEE Trans. Knowl. Data
Eng., vol. 35, no. 3, pp. 2750–2764, 2023.

[11] Y. Akkem, S. K. Biswas, and A. Varanasi, “Smart farming using artificial
intelligence: A review,” Eng. Appl. Artif. Intell., vol. 120, p. 105899,
2023.

[12] M. Li, P.-Y. Huang, X. Chang, J. Hu, Y. Yang, and A. Hauptmann,
“Video pivoting unsupervised multi-modal machine translation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 45, no. 3, pp. 3918–3932, 2022.

[13] H. Zhang, M. Liu, Y. Li, M. Yan, Z. Gao, X. Chang, and
L. Nie, “Attribute-guided collaborative learning for partial person re-
identification,” IEEE Trans. Pattern Anal. Mach. Intell., pp. 1–17, 2023.

[14] L. Zhang, X. Chang, J. Liu, M. Luo, Z. Li, L. Yao, and A. Hauptmann,
“TN-ZSTAD: Transferable Network for Zero-Shot Temporal Activity
Detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 3, pp.
3848–3861, 2022.

[15] D. Colombo, M. H. Maathuis, M. Kalisch, and T. S. Richardson,
“Learning high-dimensional directed acyclic graphs with latent and
selection variables,” Ann. Statist., vol. 40, no. 1, pp. 294–321, 2012.

[16] P. Spirtes, C. Glymour, and R. Scheines, “Causality from probability,”
pp. 181–199, 1989.

[17] C. Meek, “Causal inference and causal explanation with background
knowledge,” in Proc. Conf. Uncertainty Artif. Intell., 1995, pp. 403–
410.

[18] M. Kalisch and P. Bühlman, “Estimating high-dimensional directed
acyclic graphs with the PC-algorithm.” J. Mach. Learn. Res., vol. 8,
no. 3, pp. 613—-636, 2007.

[19] J. Zhang and P. Spirtes, “Strong faithfulness and uniform consistency
in causal inference,” in Proc. Conf. Uncertainty Artif. Intell., 2002, pp.
632–639.

[20] D. Colombo, M. H. Maathuis et al., “Order-independent constraint-based
causal structure learning.” J. Mach. Learn. Res., vol. 15, no. 1, pp. 3741–
3782, 2014.

[21] H. Li, V. Cabeli, N. Sella, and H. Isambert, “Constraint-based causal
structure learning with consistent separating sets,” in Proc. Int. Conf.
Neural Inf. Process. Syst., 2019, pp. 14 257––14 266.

[22] E. Giudice, J. Kuipers, and G. Moffa, “The Dual PC algorithm for
structure learning,” in Proc. Int. Conf. Probabilistic Graphical Models.,
2022, pp. 301–312.

[23] A. Sondhi and A. Shojaie, “The Reduced PC-Algorithm: Improved
Causal Structure Learning in Large Random Networks.” J. Mach. Learn.
Res., vol. 20, no. 164, pp. 1–31, 2019.

[24] X. Qi, X. Fan, H. Wang, L. Lin, and Y. Gao, “Mutual-information-
inspired heuristics for constraint-based causal structure learning,” Inf.
Sci., vol. 560, pp. 152–167, 2021.

[25] M. Kocaoglu, A. Jaber, K. Shanmugam, and E. Bareinboim, “Charac-
terization and learning of causal graphs with latent variables from soft
interventions,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2019, pp.
14 369–14 379.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3329786

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 14,2023 at 07:36:23 UTC from IEEE Xplore. Restrictions apply.

FIRST A. AUTHOR et al.: BARE DEMO OF IEEETAI.CLS FOR IEEE JOURNALS OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 15

[26] D. M. Chickering, “Optimal structure identification with greedy search,”
J. Mach. Learn. Res., vol. 3, no. Nov, pp. 507–554, 2002.

[27] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning Bayesian
networks: The combination of knowledge and statistical data,” Mach.
Learn., vol. 20, no. 3, pp. 197–243, 1995.

[28] M. J. Vowels, N. C. Camgoz, and R. Bowden, “D’ya like DAGs? a
survey on structure learning and causal discovery,” ACM Comput. Surv.,
vol. 55, no. 4, pp. 1–36, 2021.

[29] A. Hauser and P. Bühlmann, “Characterization and greedy learning of
interventional markov equivalence classes of directed acyclic graphs,”
J. Mach. Learn. Res., vol. 13, no. 1, pp. 2409–2464, 2012.

[30] R. Cai, S. Wu, J. Qiao, Z. Hao, K. Zhang, and X. Zhang, “THPs:
Topological hawkes processes for learning causal structure on event
sequences,” IEEE Trans. Neural Netw. Learn. Syst., 2022.

[31] I. Tsamardinos, L. E. Brown, and C. F. Aliferis, “The Max-Min hill-
climbing Bayesian network structure learning algorithm,” Mach. Learn.,
vol. 65, no. 1, pp. 31–78, 2006.

[32] X. Guo, Y. Wang, X. Huang, S. Yang, and K. Yu, “Bootstrap-based
causal structure learning,” in Proc. ACM Int. Conf. Inf. Knowl. Manag.,
2022, pp. 656–665.

[33] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nat., vol. 521,
no. 7553, pp. 436–444, 2015.

[34] X. Zheng, B. Aragam, P. K. Ravikumar, and E. P. Xing, “DAGs with
no tears: Continuous optimization for structure learning,” in Proc. Int.
Conf. Neural Inf. Process. Syst., 2018, pp. 9492–9503.

[35] Y. Yu, J. Chen, T. Gao, and M. Yu, “DAG-GNN: DAG structure learning
with graph neural networks,” in Proc. Int. Conf. Mach. Learn., 2019, pp.
7154–7163.

[36] X. Zheng, C. Dan, B. Aragam, P. Ravikumar, and E. Xing, “Learning
sparse nonparametric DAGs,” in Proc. Int. Conf. Artif. Intell. Stat., 2020,
pp. 3414–3425.

[37] S. Lachapelle, P. Brouillard, T. Deleu, and S. Lacoste-Julien, “Gradient-
based neural DAG learning,” in Int. Conf. Learn. Represent., 2020.

[38] I. Ng, S. Zhu, Z. Fang, H. Li, Z. Chen, and J. Wang, “Masked gradient-
based causal structure learning,” in Proc. SIAM Int. Conf. Data Min.,
2022, pp. 424–432.

[39] Y. Yu, T. Gao, N. Yin, and Q. Ji, “DAGs with No Curl: An efficient
DAG structure learning approach,” in Proc. Int. Conf. Mach. Learn.,
2021, pp. 12 156–12 166.

[40] A. Zanga, E. Ozkirimli, and F. Stella, “A Survey on Causal Discovery:
Theory and Practice,” J. Approx. Reasoning, vol. 151, pp. 101–129,
2022.

[41] M. Glymour, J. Pearl, and N. P. Jewell, Causal inference in statistics:
A primer. John Wiley & Sons, 2016.

[42] B. Efron and R. J. Tibshirani, An introduction to the bootstrap. CRC
press, 1994.

[43] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
J. Mach. Learn. Res., vol. 7, pp. 1–30, 2006.

Guodu Xiang received his B.S. degree in the School
of Mathematics from Hefei University of Technol-
ogy, China, in 2021. He is currently working toward
the M.S. degree in the School of Computer Science
and Information Engineering, Hefei University of
Technology, China.

His research interests are causal discovery and
machine learning.

Hao Wang received the BS degree from the De-
partment of Electrical Engineering and Automation,
Shanghai Jiao Tong University, Shanghai, China, and
the M.S. and Ph.D. degrees in computer science
from the Hefei University of Technology, Hefei,
China. He is a professor with the School of Com-
puter Science and Information Engineering, Hefei
University of Technology, China.

His current research interests include artificial in-
telligence and robotics and knowledge engineering.

Kui Yu (Member, IEEE) received the Ph.D. degree
in computer science from the Hefei University of
Technology, Hefei, China, in 2013. From 2013 to
2018, he was a Research Fellow of computer science
with the University of South Australia, Adelaide,
Australia, and Simon Fraser University, Burnaby,
Canada. He is a Full Professor with the School
of Computer Science and Information Engineering,
Hefei University of Technology.

His main research interests include causal discov-
ery and machine learning.

Xianjie Guo received the B.S. degree from Anhui
Normal University, Wuhu, China, in 2018. He is
currently pursuing the Ph.D. degree with the School
of Computer Science and Information Engineering,
Hefei University of Technology, Hefei, China.

His current research interests include causal dis-
covery and federated learning.

Fuyuan Cao received the M.S. and Ph.D. degrees in
computer science from Shanxi University, Taiyuan,
China, in 2004 and 2010, respectively. He is cur-
rently a professor with the school of computer and
information technology, Shanxi University, China.

His current research interests include machine
learning and clustering analysis.

Yukun Song is a undergraduate student of Hefei
University of Technology. He is currently pursuing
the B.S. degree with the School of Computer Science
and Information Engineering, Hefei University of
Technology, Hefei, China.

His current research interests include causal dis-
covery and machine learning.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3329786

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 14,2023 at 07:36:23 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Related Work
	Background
	Proposed Algorithm
	Overview
	The Layer-wise Skeleton Refining (LSkeR) Procedure
	The Collective Skeleton Orientation (CSkeO) Procedure

	Experiments
	Experiment Settings
	Datasets
	Comparison Methods
	Evaluation Metrics
	Implementation Details

	Experiment Results
	Experiment Analysis
	Analysis of distribution differences between sampled datasets and original dataset
	Stability Analysis of Experimental Results
	Sensitivity Analysis of Parameters
	Statistical Test

	Conclusion
	References
	Biographies
	Guodu Xiang
	Hao Wang
	Kui Yu
	Xianjie Guo
	Fuyuan Cao
	Yukun Song

