
Accelerating Learning Bayesian Network Structures
by Reducing Redundant CI Tests

Wentao Hu, Shuai Yang, Xianjie Guo, and Kui Yu
School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, China

{wentaohu,yangs,xianjieguo}@mail.hfut.edu.cn; yukui@hfut.edu.cn

Abstract—The type of constraint-based methods is one of the
most important approaches to learn Bayesian network (BN)
structures from observational data with conditional independence
(CI) tests. In this paper, we find that existing constraint-
based methods often perform many redundant CI tests, which
significantly reduces the learning efficiency of those algorithms.
To tackle this issue, we propose a novel framework to accelerate
BN structure learning by reducing redundant CI tests without
sacrificing accuracy. Specifically, we first design a CI test cache
table to store CI tests. If a CI test has been computed before,
the result of the CI test is obtained from the table instead of
computing the CI test again. If not, the CI test is computed and
stored in the table. Then based on the table, we propose two
CI test cache table based PC (CTPC) learning frameworks for
reducing redundant CI tests for BN structure learning. Finally,
we instantiate the proposed frameworks with existing well-
established local and global BN structure learning algorithms.
Using twelve benchmark BNs, the extensive experiments have
demonstrated that the proposed frameworks can significantly
accelerate existing BN structure learning algorithms without
sacrificing accuracy.

Index Terms—Bayesian network, Structure learning, Redun-
dant CI test, CI test cache table

I. INTRODUCTION

A Bayesian Network (BN) is a type of a probabilistic
graphical model introduced by Pearl [1]. The structure of a
BN is a directed acyclic graph (DAG) in which nodes of
DAG denote the variables in a dataset and edges represent the
dependence relationships between variables. Fig.1 (a) gives an
example of a BN structure, a directed edge B→ A denotes that
B is the parent of A and A is the child of B. BNs have been
widely used in many real-world applications, such as Earth
system, bioinformatics, and neuroscience [2], [3], and thus
learning BNs from observational data has been extensively
studied in the past two decades [4]–[7].

Existing algorithms for learning BN structures can be
mainly divided in two categories: score-based methods and
constraint-based methods [4], [8], [9]. Score-based algorithms
assign a score to each candidate BN structure for evaluating
how well the candidate BN structure fits a dataset [10].
Constraint-based algorithms learn a BN structure with condi-
tional independence (CI) tests by leveraging the probabilistic
relationships entailed by the Markov property of BNs [11].
Since constraint-based methods for BN structure learning
are computationally feasible for sparse graphs with up to
thousands of variables and easily generalize to the problem
of causal insufficiency, constraint-based approaches have at-

A

B

C

DE

F G

A

B

C

D A

B

C

A

B

E

F G

A

B

C

A

C

D

B

FB

EC

D

B

G
A

B

C

DE

F G

A

B

C

DE

F G

(a) A simple BN (b) Local skeleton (c) Local BN structure

(d) Local-to-global BN structure learning

Fig. 1: (a) An example of a BN structure. (b), (c) and (d)
Examples to illustrate three types of existing constraint-based
algorithms for BN structure learning.

tracted much attention and have been widely applied to many
diverse real-world problems [12], [13].

Existing constraint-based algorithms for BN structure learn-
ing can be roughly grouped into the following three categories,
as shown in Fig. 1 (b) to (d).

• Learning a local skeleton of a variable of interest [8], [14],
as shown in Fig. 1 (b). The local skeleton of a variable is
the Markov blanket (MB) (or parents and children, PC)
of the variable. A MB of a variable in a BN consists of
the variable’s PC (parents and children) and spouses (the
other parents of the children of the variable). As shown
in Fig. 1, the MB of A contains B (parent), C (child), and
D (spouse). Existing local skeleton learning algorithms
only learn an undirected local graph around the variable
and do not distinguish parents from children in the learnt
MB.

• Learning a local BN structure of a variable of interest [9],
[15], as shown in Fig. 1 (c). Existing local structure
learning algorithms first learn the local skeleton (i.e. PC)
of a variable, then go one step further to distinguish
parents from children in this learnt skeleton.

• Learning an entire BN structure, as shown in Fig. 1
(d). Existing approaches mainly employ a local-to-global
strategy which first learns the local skeleton (i.e. PC) of
each variable in a dataset, then constructs the global skele-

46

2021 IEEE International Conference on Big Knowledge (ICBK)

978-1-6654-3858-2/21/$31.00 ©2021 IEEE
DOI 10.1109/ICKG52313.2021.00016

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 B

ig
 K

no
w

le
dg

e
(IC

BK
) |

 9
78

-1
-6

65
4-

38
58

-2
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

KG
52

31
3.

20
21

.0
00

16

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 28,2022 at 09:19:44 UTC from IEEE Xplore. Restrictions apply.

ton involved all variables using the learnt local skeletons,
and finally orients edges in this global skeleton [4], [16].

As discussed above, we can see that the most important yet
common step of the three types of constraint-based algorithms
is to learn local skeletons using a PC learning algorithm (e.g.
MMPC [17] and HITON-PC [16]). When using a PC learning
algorithm for local skeleton learning, we find that it generally
produces the following two types of redundant CI tests.

One is a redundant CI test within PC learning. Existing PC
learning methods mainly adopt a forward-backward learning
strategy to learn the PC of a target variable. They first
learn a candidate PC set of the target variable, then remove
false positives from the candidate PC set. At each iteration,
those methods perform an exhaustive subset search within
the currently candidate PC set for finding the PC of the
target variable, leading to that many CI tests are repeatedly
computed. We call those repeatedly computed CI tests as
redundant CI tests within PC learning. For example, in Fig. 2
(a), in order to learn the MB of A, we first need to learn the
PC set of A and find that the CI tests such as I(A,B | /0) and
I(A,C | /0) are computed repeatedly many times.

The other is a redundant CI test between PC learning.
Existing local/global BN structure learning methods need to
learn the PC sets of some/all variables. For example, in Fig. 1
(a), if we learn the local BN structure of A, existing local
BN structure learning algorithms first learn the PC set of A
(B−A−C). Then to orient edges between A and B, they need
to learn the PC set of B. Meanwhile, to identify spouses of
a variable, the MB (local skeleton) learning methods need to
learn the PC of each variable within the PC set of this variable.
When learning the PC sets for some/all variables, we find the
following type of CI tests repeatedly computed and call them
redundant CI tests between PC learning. One is the same CI
test with a different order of a target variable and another
variable, while the other is the same CI tests with a different
order of variables in a conditioning set.

Fig. 2 gives an example using the well-established MMMB
algorithm [16] to illustrate redundant CI tests between PC
learning. To learn the MB of A, MMMB first learns the PC set
of A, then learn the PC sets of B and C for identifying spouse
D. The CI tests I(A,B | /0), I(A,B |C) and I(A,C | {E,B}) have
been computed in learning PC of A. However, in learning
the PC sets of B and C, we find that these CI tests such
as I(B,A | /0), I(B,A | C) and I(C,A | {B,E}) need to be
computed again, although the pairs of CI tests ([I(A,B | /0)
and I(B,A | /0)], [I(B,A |C) and I(A,B |C)], [I(C,A | {B,E})
and I(A,C | {E,B})]) are the same CI tests.

Those redundant CI tests significantly reduce the learning
efficiency of existing constraint-based BN structure learning
algorithms, especially with high-dimensional data. However,
the problem of the redundant CI tests discussed above has not
received any attention in the literature. To tackle this problem,
the contributions of this paper are summarized as follows.
• We first design a CI test cache table to store CI tests

and the CCT select algorithm for retrieving CI tests.
Then based on the table and the CCT select algorithm,

CI test Table

…
I(A, B | Ø)

I(A, C | Ø)

…
I(A, C | {E})

I(A, C | {E,B})

CI test Table
…

I(C, A | Ø)

I(C, B | Ø)

…
I(C, A | Ø)

I(C, A | {B,E})

CI test Table

…
I(B, A | Ø)

I(B, C | Ø)

…
I(B, A | Ø)

I(B, A | {C})

…
I(A, B | Ø)

I(A, B | {C})

(a) Learning PC of A

(c) Learning PC of C

(b) Learning PC of B

A

B

C

DE

F G

A

B

C

DE

F G

A

B

C

DE

F G

I(A, C | Ø)

Fig. 2: (a), (b) and (c) take an example to illustrate two types
of redundant CI tests.

we propose two CI test cache table based PC (CTPC)
learning frameworks to reduce the two types of redundant
CI tests in BN structure learning. The two frameworks are
able to be instantiated by any existing constraint-based
BN structure learning algorithms without violating the
original ideas of these algorithms.

• Using twelve benchmark BN datasets, we present ten BN
structure learning algorithms by instantiating the CTPC
frameworks using ten existing BN structure learning
algorithms and conduct a series of experiments to validate
the efficiency of the proposed CTPC frameworks. The ex-
periments have demonstrated that the CTPC frameworks
can significant accelerate existing BN structure learning
algorithms without sacrificing accuracy.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 proposes the CI test cache
table and the CTPC frameworks. Section 4 presents and
discusses the experiments. Section 5 concludes the paper.

II. RELATED WORK

A. MB learning

Recently, a variety of methods has been designed for MB
discovery. Existing methods can be divided into simultaneous
MB learning and divide-and-conquer MB learning [8]. The
simultaneous MB learning algorithms learn the MB of a
target variable simultaneously without distinguishing spouses
from PC. One typical simultaneous MB learning method is
GSMB [18], which consists of growing and shrinking phases.
In the growing phase, the variable that is dependent on the
target variable conditioning on the currently candidate MB
set will be added to the candidate MB set. In the shrinking
phase, all false positives will be removed from the candidate
MB set. Based on GSMB, IAMB [19] and its variants such as
IAMBnPC [20], Inter-IAMB [20], and Fast-IAMB [21] have
been proposed to improve the performance of GSMB. Existing
simultaneous MB learning algorithms are computationally
efficient, but the quality of MBs learnt by those algorithms

47

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 28,2022 at 09:19:44 UTC from IEEE Xplore. Restrictions apply.

degrades greatly in practical settings when the size of the MB
is large and the data samples are insufficient.

To reduce the data requirements of the simultaneous MB
learning algorithms, divide-and-conquer MB learning algo-
rithms have been proposed, which learn PC and spouses
of a target variable separately. The MMMB algorithm [17]
learn the PC set of a target variable by performing a subset
search within the candidate PC set currently selected instead of
conditioning on the entire candidate PC set. Based on MMMB,
HITON-MB [22] and semi-HITON-MB [22] removes false
positives from the candidate PC set as early as possible
during PC learning by interleaving the growing and shrinking
phases. Although MMMB and HITON-MB have achieved
promising performance, they are proved to be incorrect under
the faithfulness assumption [23]. PCMB [23] was proposed to
solve this problem, which uses symmetry constraints to ensure
the correctness of the PC learning.

B. Local BN structure learning

To distinguish parents from children in a local BN structure
around a target variable, several local structure learning meth-
ods have been developed, such as PCD-by-PCD [24], MB-
by-MB [25] and CMB [15]. Given a target variable, PCD-by-
PCD [24] recursively identifies the PC set of the target variable
using a PC learning algorithm, then constructs a skeleton with
the learnt PC and iteratively identifies v-structures by learning
PC sets of other variables and uses the found v-structures
and Meek rules [26] for edge orientations. MB-by-MB is
developed based on PCD-by-PCD, and it learns the MB of the
target variable instead of learning its PC set. Compared to MB-
by-MB, CMB also employs standard MB learning algorithms
(such as HITON-MB) to find the MB to construct the local
skeleton, but CMB needs to track conditional independence
changes after MB learning for edge orientations. Since these
local structure learning methods need to perform an exhaustive
subset within the currently selected variables for PC learning,
which are computationally expensive or even prohibitive on
high-dimensional data, Ling et al. [9] recently employed
feature selection for PC learning to speed up local BN structure
learning.

C. Global BN structure learning

Constraint-based global BN learning methods aim to learn
an entire BN structure involved all variables in a dataset
using CI tests. The pioneer algorithms include the SGS [11]
and PC [27] algorithms. They first construct a BN structure
skeleton by testing whether there exist the edges between
each pair of variables, then identify all v-structures in the
skeleton, and finally orient edges as many as possible using
Meek rules. However, SGS and PC are often computationally
infeasible on high-dimensional datasets. To tackle this issue,
many local-to-global BN structure learning methods have been
proposed. GSBN [18] first employs GSMB to build a global
BN skeleton, then orients edges using CI tests. Inspired by
GSBN, several local-to-global structure learning algorithms
have been proposed, such as MMHC [4], SLL+C [28] and

Value

CItest

 Cache

Table

value0

value1

value2

value4

value3

CI test Table

Variable 2 Conditioning SetVariable 1

X17

X2

X2

X17

X5, X8, X16

X5, X8, X16

X17 X2 X8, X5, X16

Dependency Value

15.65842

15.65842

15.65842

X2_X17

Key3 Value3X2_X17_X5_X8_X16 15.65842

X5_X8_X16

Case

1

2

3

A B

Redundant

CI tests

Sort from

small to large

Key
key0

key2

key4

key3

key1

Fig. 3: An example of the CI test cache table. (a) The left
part shows the storage structure of the CI test cache table. (b)
The right part takes a table as an example to illustrate how to
cache CI tests by the data structure. In the CI test Table, Vi
denotes the i-th variable in the dataset (Columns are variables
and rows are samples).

SLL+G [28]. MMHC [4] first constructs a global skeleton us-
ing the MMPC algorithm [17], and then employs a score-based
method and hill-climbing search strategy for orienting edges.
SLL+C and SLL+G employ SLL [28] that is a score-based
MB learning algorithm to build a global BN skeleton, and then
use constraint-based or score-based methods to determine the
orientation of edges. Instead of identifying the MB or PC of
all variables first, GGSL [29] starts from randomly selected
variable and employs a score-based MB discovery algorithms
(i.e., S2TMB [30]) to build the local structure around the target
variable, then gradually expands the local structure until the
entire BN structure has been learned.

III. PROPOSED ALGORITHMS

In this section, we first design a CI test cache table for
reducing redundant CI tests. To retrieve CI tests in the table,
we propose the CCT select algorithm. Then based on the
CCT select algorithm, we propose two types of CI test cache
table based PC (CTPC) learning frameworks for BN structure
learning. Let V denote a set of random variables and let
X⊥⊥ Y |S denotes that X and Y are conditionally independent
conditioned on S⊆V\{X∪Y}, and X 6⊥⊥ T |S represents X and
Y are conditionally dependent conditioned on S.

A. CI test cache table

In this section, we design a new data structure, called CI test
cache table (CCT), to reduce redundant CI test, as shown in
Fig. 3. A CCT is based on a key-value data structure to store
the CI tests. As show in Fig. 3, the Key part of a CCT uses
key generated from the tested variables and a condition set of
the CI test as an index, and the Value part of a CCT stores
the result of the CI test. Specifically, we use the key-value
data structure “Dictionary” as a CCT, since the “Dictionary”
is based on an associative array or a hash table and uses key-
value pairs to store and retrieve information, its query and
storage are fast, and the uniqueness of the key-value pairs
guarantees the CI tests will not be stored repeatedly.

To retrieve and store a CI test in the cache table, we propose
the CCT select algorithm which consists of two phases, as

48

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 28,2022 at 09:19:44 UTC from IEEE Xplore. Restrictions apply.

shown in Algorithm 1. Phase 1 (lines 2 to 8) generates the
key for a CI test. Phase 2 (lines 10 to 15) retrieves the result
of the CI test based according to the key of the CI test. If the
CI test is not in the CI test cache table, the CI test is computed
and the corresponding result is stored in the table. Otherwise,
the result of the CI test is obtained from the table.

Phase 1 (lines 2 to 8 of Algorithm 1): Based on the
given conditioning set S and variables V1, V2, the CCT select
generates the key that is used as a keyword for a CI test query
in Phase 2. First, V1, V2 are sorted in ascending by the values
of their subscripts. Then, we splice them into a string κ1 using
char ’ ’ (line 2). If the conditioning set S is empty, we obtain
the key κ (line 4), i.e., κ = κ1. If S is not empty, we sort
and splice the variables in S into string κ2, then we splice
strings κ1 and κ2 into a key κ (lines 6 to 7). For example,
as shown in Fig. 3, assuming that Xi denotes the i-th variable
in a dataset. Given conditioning set S ={X8,X5,X16} and two
variables X17, X2, we first sort and splice the two variables
X17 and X2 into κ1 = X2 X17, then we splice the conditioning
set S = {X8,X5,X16} into κ2 = X5 X8 X16. Finally, we splice
the two string κ1 = X2 X17 and κ2 = X5 X8 X16 into the key
κ = X2 X17 X5 X8 X16.

Phase 2 (lines 10 to 15 of Algorithm 1): The phase is to
obtain the result of a CI test. Specifically, CCT select first
determines whether the key κ of a query CI test exists in the
CI test cache table. If κ is in the table, i.e., κ ∈ CCT.key,
CCT select will obtain the CI test result (i.e., dep) from
the cache table. The value of dep represents the dependency
between variables (line 11). If the key is not in the cache
table, CCT select will compute the CI test using the CI-
Test(·) function to get the value of dep, and store the CI
test and corresponding value of dep in the cache table with
the key, i.e., CCT [κ].value ← dep. The CI-Test(·) function
can be instantiated by the G2 test, chi-squared test, mutual
information and so on.

Algorithm 1: The CCT select algorithm
Require: variables V1, V2; conditioning set S; CI test cache table CCT
Ensure: dependency value dep
1: // Phase 1: Generate the key
2: κ1← sort and splice variables V1, V2
3: if S = /0 then
4: key κ ← κ1
5: else
6: κ2← sort and splice variables inside S
7: key κ ← splice κ1,κ2
8: end if
9: // Phase 2: Query cache table by the key

10: if κ ∈CCT.key then
11: dep ←CCT [κ].value
12: else
13: dep ← CI-Test(V1, V2, S)
14: CCT [κ].value ← dep
15: end if
16: return dep

B. CI test cache table based PC learning frameworks

There are two general strategies for learning the PC set
of a variable [8], [31]. One is the standard strategy which

sequentially performs a forward step and a backward step. At
the forward step, it starts with a (usually empty) candidate
PC set of a variable and adds candidate PC features to it
until a given stopping criterion is met. And the backward step
starts with the candidate PC set obtained from the forward
step and removes false PC features from that set until a
stopping criterion is met, such as the MMPC algorithm [17].
The other is the interleaving strategy which runs the forward
step and backward step alternatively, such as the HITON-
PC algorithm [22]. Specifically, if a feature is added to the
candidate PC set at the forward step, the interleaving strategy
immediately triggers the backward step and implements both
steps alternatively.

Based on the two existing PC learning strategies, in this
section, we propose two CI test cache table based PC (CTPC)
learning frameworks. One framework is called CTPC-S which
sequentially performs a forward step and a backward step, as
shown in Algorithm 2. The other framework is referred to as
CTPC-I which interleaves the forward step and backward step,
as shown in Algorithm 3. In the following, we will describe
the details of the two frameworks1 .

The CTPC-S framework: as shown in Algorithm 2, given
a target variable T, CTPC-S first performs the forward step to
obtain the candidate PC of T , then carries out the backward
step to remove false positives using the CCT select algorithm.
CTPC-S starts with an empty candidate PC set (i.e., CPC = /0)
and a candidate set R that contains all variables which are
dependent on T given an empty set.

At each iteration in the forward step, for each variable
X ∈ R, line 4 implements CCT select(T,X ,S,CCT) to obtain
the dependency value of X and T conditioning on all possible
subsets S ⊆ CPC, then adds the best variable X that its
dependency value with T satisfies the greedy strategy of an
algorithm to CPC and removes it from R. If the greedy strategy
cannot select the best variable from R, or the chosen variable
is conditionally independent of T , the forward step will be
terminated.

Then CTPC-S performs the backward step to remove false
positives from CPC. At each iteration, CTPC-S examines
whether each variable Y in CPC is independent of T con-
ditioning on all possible subsets S ⊆ CPC\Y by perform-
ing CCT select(Y,T,S,CCT). If Y and T are conditionally
independent, CTPC-S removes it from CPC. The backward
step will be terminated until all the variables in CPC are not
independent of T .

The CTPC-I framework: In Algorithm 3, CTPC-I per-
forms the forward step and backward step alternatively. Given
a target variable T, CTPC-I starts with CPC and R, which
is the same as CTPC-S. At each iteration, for each variable
X ∈R, CTPC-I implements CCT select(T,X ,S,CCT) to obtain
the dependency value of T and X conditioning on all possible
subsets S ⊆ CPC, then chooses the best variable X with the

1The examples of how the two CTPC frameworks are instan-
tiated by the two well-established existing PC learning algorithms,
MMPC and HITON-PC, are available at https://github.com/wt-hu/Acc-
pyCausalFS/blob/master/Supplementary.pdf

49

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 28,2022 at 09:19:44 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: The CTPC-S framework
Require: variable set V , target variable T ,

CI test cache table CCT
Ensure: CPC // the candidate PC of T
1: Initialization: CPC = /0, R = {∀X ∈V & X 6⊥⊥ T | /0};
2: // Forward step: Adding relevant variables to CPC
3: repeat
4: Obtain the dependency value of each variable X ∈ R and T

conditioning on S⊆CPC by CCT select(X ,T,S,CCT),
and select the best variable X with a greedy strategy;

5: CPC =CPC∪X , R = R\X ;
6: until no variables in R are added to CPC;
7: // Backward step: Removing false positives from CPC
8: repeat
9: Consider each variable Y ∈CPC, and find a subset S⊆CPC\Y ,

obtain the dependency value of Y and T conditioning on S by
CCT select(Y,T,S,CCT);

10: if Y ⊥⊥ T |S then
11: CPC =CPC\Y ;
12: end if
13: until no variables in CPC are removed;
14: return CPC

dependency value with T satisfying the greedy strategy of an
algorithm. If so, CTPC-I adds X to CPC and then removes
it from R. Once a new variable is added to CPC, at lines 8-
12, CTPC-I immediately triggers the backward step to check
each variable in CPC for removing false positives to keep
the size of CPC as small as possible. Specifically, for each
variable Y ∈CPC, CTPC-I checks whether Y is independent
of T conditioning on S⊆CPC using CCT select(T,Y,S,CCT).
If so, Y will be removed from CPC and never added again.
The interleaving execution of CTPC-I terminates until no new
variables can be added to CPC.

Algorithm 3: The CTPC-I framework
Require: variable set V , target variable T ,

CI test cache table CCT
Ensure: CPC // the candidate PC of T
1: Initialization:CPC = /0, R = {∀X ∈V & X 6⊥⊥ T | /0};
2: repeat
3: // Forward step: Adding relevant variables to CPC
4: Obtain the dependency value between each variable X ∈ R and T

conditioning on S⊆CPC by CCT select(X ,T,S,CCT),
and select the best variable X with a greedy strategy;

5: CPC =CPC∪X , R = R\X ;
6: // Backward step: Removing false positives from CPC
7: repeat
8: Consider each variable Y ∈CPC, and find a subset

S⊆CPC\Y , obtain the dependency value between Y and T
conditioning on S by CCT select(Y,T,S,CCT);

9: if Y ⊥⊥ T |S then
10: CPC =CPC\Y ;
11: end if
12: until no variables in CPC are removed;
13: until no variables in R are added to CPC;
14: return CPC

IV. EXPERIMENTS

In this section, we will systematically evaluate the perfor-
mance of the proposed CTPC frameworks, and this section
is organized as follows. Section 4.1 describes the experiment
setting, including datasets, accelerated methods, implementa-
tion details and evaluation metrics. Section 4.2 reports the

results of the MB learning algorithms accelerated by the two
CTPC frameworks. Sections 4.3 and 4.4 summarize the results
of three local structure learning methods and three local-to-
global structure learning methods accelerated by the CTPC
frameworks, respectively.

A. Experiment setting

1) Datasets: To evaluate the two CTPC frameworks, we use
twelve standard benchmark BNs, as shown in Table I. Among
them, Alarm, Child, Insurance and Hailfinder are small-size
BNs. Alarm3, Child3, Insurance3 and Hailfinder3 are middle-
size BNs, which are generated by tiling three copies of Alarm,
Child, Insurance and Hailfinder, respectively. Hailfinder5 is
generated by tiling 5 copies of Hailfinder, and Alarm10,
Child10, Insurance10 are generated by tiling 10 copies of
Alarm, Child, Insurance, respectively, which represent large-
size BNs. For each benchmark BN, we use a group of data
including 5 datasets with 5000 data instances.

2) Accelerated Methods: We compare ten BN structure
learning algorithms accelerated by the two CTPC frameworks
against the same original algorithms (not be accelerated),
including four representative MB learning algorithms, MMM-
B [17], HITON-MB [22], semi-HITON-MB [31] and PCM-
B [23], three state-of-the-art local structure learning algorithm-
s, PCD-by-PCD [24], MB-by-MB [25], and CMB [15], and
three local-to-global structure learning algorithms, MMHC [4],
MMMB-CSL [8] and HITON-MB-CSL [8]. We use ∗ as the
superscript of a BN structure learning algorithm to represent
that the algorithm is accelerated by the CTPC frameworks.
Accordingly, we get the following ten accelerating algorithms,
MMMB*, HITON-MB*, semi-HITON-MB*, PCMB*, PCD-
by-PCD*, MB-by-MB*, CMB*, MMHC*, MMMB-CSL*,
and HITON-MB-CSL*.

3) Implementation Details: All BN structure learning al-
gorithms are implemented using the open-source pyCausalFS
package in Python2. In the experiments, G2-test with the
significance level of 0.01 is used to compute the conditional
dependence between variables. All experiments are conducted
on a computer with Intel(R) Core(TM) i7-8700 @3.2GHz
CPU, and 16GB memory.

4) Evaluation Metrics: We evaluate the efficiency of the
CTPC frameworks using the following metrics.
• Utilization (Uti). Utilization = CIT−CIT ∗

CIT , where CIT and
CIT ∗ represent the number of CI tests of a BN struc-
ture learning algorithm and its accelerated BN structure
learning algorithm, respectively. If an algorithm performs
much more redundant CI tests, the value of its Utilization
will be higher.

• Acceleration (Acc). Acceleration = Time
Time∗ , where Time

and Time∗ denote the runtime of a BN structure learning
algorithm and its accelerated BN structure learning algo-
rithm, respectively. The value of Utilization is higher, the
value of Acceleration is larger.

2The source codes are available at https://github.com/wt-hu/Acc-
pyCausalFS

50

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 28,2022 at 09:19:44 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Summary of benchmark BNs.

Network Num. Num. Max In/Out- Min/Max Domain
Vars Edges Degree |PCset| Range

Alarm 37 46 4/5 1/6 2-4
Alarm3 111 149 4/5 1/6 2-4
Alarm10 370 570 4/7 1/9 2-4
Child 20 25 2/7 1/8 2-6
Child3 60 79 3/7 1/8 2-6
Child10 200 257 2/7 1/8 2-6
Insurance 27 52 3/7 1/9 2-5
Insurance3 81 163 4/7 1/9 2-5
Insurance10 270 556 5/8 1/11 2-5
Hailfinder 56 66 4/16 1/17 2-11
Hailfinder3 168 283 5/18 1/19 2-11
Hailfinder5 280 458 5/18 1/19 2-11

TABLE II: Results of MB learning algorithms on datasets.

Datasets Algorithms CIT / CIT∗ Time / Time∗ Uti Acc

MMMB / MMMB∗ 394.02 / 245.08 4.08 / 2.84 0.38 1.44
Alarm HITON-MB / HITON-MB∗ 372.45 / 258.11 3.97 / 2.81 0.31 1.41

semi-HITON-MB / semi-HITON-MB∗ 338.12 / 263.06 3.33 / 2.82 0.22 1.18
PCMB /PCMB∗ 2743.08 / 589.76 25.34 / 7.02 0.79 3.61

MMMB / MMMB∗ 655.46 / 501.43 6.42 / 4.93 0.24 1.30
Alarm3 HITON-MB / HITON-MB∗ 633.72 / 512.68 6.19 / 4.92 0.19 1.26

semi-HITON-MB / semi-HITON-MB∗ 591.81 / 520.79 5.52 / 4.98 0.12 1.11
PCMB /PCMB∗ 6239.18 / 1116.81 52.23 / 11.77 0.82 4.44

MMMB / MMMB∗ 1663.94 / 1467.59 21.62 / 18.71 0.12 1.16
Alarm10 HITON-MB / HITON-MB∗ 1639.67 / 1482.26 21.18 / 18.59 0.10 1.14

semi-HITON-MB / semi-HITON-MB∗ 1587.57 / 1485.96 20.13 / 18.87 0.06 1.07
PCMB /PCMB∗ 19760.63 / 3021.22 238.79 / 42.19 0.84 5.66

MMMB / MMMB∗ 580.17 / 323.74 14.38 / 9.02 0.44 1.59
Child HITON-MB / HITON-MB∗ 628.76 / 352.11 16.67 / 9.54 0.44 1.75

semi-HITON-MB / semi-HITON-MB∗ 438.52 / 342.92 10.51 / 8.87 0.22 1.19
PCMB /PCMB∗ 4370.74 / 756.14 102.17 / 18.63 0.83 5.49

MMMB / MMMB∗ 686.89 / 440.30 11.87 / 7.67 0.36 1.55
Child3 HITON-MB / HITON-MB∗ 673.87 / 462.27 11.71 / 7.93 0.31 1.48

semi-HITON-MB / semi-HITON-MB∗ 562.74 / 465.95 8.71 / 7.79 0.17 1.12
PCMB /PCMB∗ 6549.96 / 1067.64 89.18 / 18.62 0.84 4.79

MMMB / MMMB∗ 1186.00 / 940.50 15.32 / 11.33 0.21 1.35
Child10 HITON-MB / HITON-MB∗ 1163.29 / 951.57 15.47 / 11.40 0.18 1.36

semi-HITON-MB / semi-HITON-MB∗ 1059.56 / 958.90 12.85 / 11.35 0.10 1.13
PCMB /PCMB∗ 14785.19 / 2173.42 151.39 / 26.72 0.85 5.67

MMMB / MMMB∗ 538.16 / 305.67 9.08 / 5.80 0.43 1.57
Insurance HITON-MB / HITON-MB∗ 510.47 / 312.92 9.07 / 5.73 0.39 1.58

semi-HITON-MB / semi-HITON-MB∗ 399.92 / 301.94 6.54 / 5.35 0.25 1.22
PCMB /PCMB∗ 3611.31 / 668.09 151.39 / 26.72 0.82 4.59

MMMB / MMMB∗ 1213.22 / 770.40 22.12 / 15.41 0.37 1.44
Insurance3 HITON-MB / HITON-MB∗ 1221.81 / 825.95 24.22 / 15.54 0.32 1.56

semi-HITON-MB / semi-HITON-MB∗ 1018.76 / 863.91 18.46 / 16.45 0.15 1.12
PCMB /PCMB∗ 14093.84 / 2114.08 200.95 / 40.59 0.85 4.95

MMMB / MMMB∗ 1966.57 / 1537.86 31.92 / 23.28 0.22 1.37
Insurance10 HITON-MB / HITON-MB∗ 1959.07 / 1573.13 32.58 / 22.99 0.20 1.42

semi-HITON-MB / semi-HITON-MB∗ 1773.75 / 1619.20 26.73 / 24.12 0.09 1.11
PCMB /PCMB∗ 29977.75 / 3837.15 350.96 / 58.37 0.87 6.01

MMMB / MMMB∗ 276.01 / 211.47 1.98 / 1.89 0.27 1.15
Hailfinder HITON-MB / HITON-MB∗ 287.72 / 209.77 2.17 / 1.59 0.24 1.25

semi-HITON-MB / semi-HITON-MB∗ 257.92 / 208.66 1.79 / 1.53 0.19 1.17
PCMB /PCMB∗ 1523.00 / 338.11 10.44 / 2.83 0.78 3.69

MMMB / MMMB∗ 763.04 / 639.43 7.14 / 5.64 0.16 1.27
Hailfinder3 HITON-MB / HITON-MB∗ 742.23 / 633.12 6.81 / 5.40 0.15 1.26

semi-HITON-MB / semi-HITON-MB∗ 712.51 / 634.14 6.50 / 5.45 0.11 1.19
PCMB /PCMB∗ 6006.40 / 1147.22 51.66 / 10.44 0.81 4.95

MMMB / MMMB∗ 1066.85 / 954.83 10.89 / 10.38 0.11 1.05
Hailfinder5 HITON-MB / HITON-MB∗ 1047.66 / 948.13 11.15 / 10.17 0.10 1.10

semi-HITON-MB / semi-HITON-MB∗ 1024.67 / 949.87 10.66 / 10.37 0.07 1.03
PCMB /PCMB∗ 8386.50 / 1635.37 83.96 / 17.96 0.81 4.68

B. Results of MB learning algorithms

In this section, we first evaluate the efficiency of the two
CTPC frameworks for accelerating four representative MB
learning algorithms. We run each MB learning algorithm to
learn the MBs for all variables in each BN, the average
results of each variable over five datasets are summarized in
Table II. From the experimental results, we have the following
observations.

(1) We can see that PCMB∗ achieves the most significant
acceleration performance among the MB learning algorithms.
Specifically, PCMB∗ has the highest rate of Utilization (0.83
on average). Moreover, PCMB∗ is 4.87 times faster than
PCMB on average. The main reason is that PCMB uses the two
subroutines, called GetPCD and GetPC, to identify PC. The
GetPCD subroutine is to find candidate PC, while the GetPC
subroutine employs symmetry constraints to remove false

positives from the candidate PC set to ensure the correctness of
the learnt PC. Using the symmetry constraints, GetPC needs to
learn the PC sets of all variables in the candidate PC set, thus,
this symmetry constraints checking leads to many repeatedly
computed CI tests.

(2) The performance of MMMB∗ is almost the same as that
of HITON-MB∗ in terms of Acceleration metric, since MMM-
B and HITON-MB have the same computational complexity
in theory. Specifically, the rate of Utilization of MMMB∗ and
HITON-MB∗ are 0.28 and 0.24 on average, respectively. And
their time efficiency boosts about 1.35 and 1.38 times on
average, respectively. The difference of MMMB and HITON-
MB lies in that MMMB employs MMMPC that utilizes
standard forward-backward strategy to search for PC, while
HITON-MB employs HITON-PC that interleaves forward step
and backward step for PC learning.

(3) It can be seen that semi-HITON-MB∗ achieves a little
improvement on efficiency on all of datasets. The explanation
is that semi-HITON-MB only considers the elimination of
the newly added variables before the candidate variable set
becomes empty, and a full variable elimination in candidate
PC set will be performed after the candidate variable set is
empty. Therefore, semi-HITON-MB performs less redundant
CI tests.

(4) MMMB∗, HITON-MB∗ and semi-HITON-MB∗ obtain
excellent acceleration on small-size BNs. Their time efficiency
boosts 1.44, 1.50 and 1.17 times on average, respectively.
On large-size BNs, MMMB∗, HITON-MB∗ and semi-HIOTN-
MB∗ achieve poor acceleration performance, and the time
efficiency only boosts 1.23, 1.26 and 1.09 times, respectively.
Since large-size BNs were generated by tiling multiple copies
of the small-sized BNs, the number of variables on the large-
size BNs is several times that of the small-size BNs. With
the increase of the search scope, the MB learning algorithms
thus perform more CI tests to identify MB on larger-size BNs.
However, the ratio of MB of a variable to the total variables
on large-size BNs is less than on small-size BNs, and thus
the proportion of the redundant CI tests between PC learning
on large-size BNs is less than on small-size BNs. We also
note that the MB learning algorithms achieve poor acceleration
performance on the Hailfinder, Hailfinder3 and Hailfinder5.
It means that the MB learning algorithms learn few relevant
variables on these datasets and thus perform less redundant CI
tests.

C. Results of local structure learning algorithms

In this section, we compare three accelerated local structure
learning algorithms against their original algorithms to evalu-
ate the efficiency of our proposed frameworks. For each BN
dataset, we select ten variables (nodes 1 to 10) to learn their
local BN structure, and report the average experimental results
in Table III. Based on the experimental results, we have the
following observations.

(1) PCD-by-PCD∗ has 0.44 rate of Utilization on average,
and the time efficiency of PCD-by-PCD∗ boosts over 1.50
times on most datasets. When learning a local BN structure,

51

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 28,2022 at 09:19:44 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Results of local structure learning algorithms

Datasets Algorithms CIT / CIT∗ Time / Time∗ Uti Acc

PCD-by-PCD / PCD-by-PCD∗ 3745.20 / 1793.95 34.71 / 21.76 0.52 1.60
Alarm MB-by-MB / MB-by-MB∗ 1930.10 / 679.41 27.88 / 14.06 0.64 1.98

CMB / CMB∗ 1212.34 / 418.26 13.42 / 4.96 0.66 2.70
PCD-by-PCD / PCD-by-PCD∗ 15197.52 / 8343.44 139.38 / 89.77 0.45 1.55

Alarm3 MB-by-MB / MB-by-MB∗ 2670.94 / 1220.62 33.67 / 18.71 0.54 1.80
CMB / CMB∗ 1700.96 / 659.97 17.47 / 6.74 0.61 2.59

PCD-by-PCD / PCD-by-PCD∗ 141598.30 / 77454.26 1613.10 / 998.11 0.45 1.62
Alarm10 MB-by-MB / MB-by-MB∗ 8443.36 / 4356.77 123.31 / 65.78 0.48 1.87

CMB / CMB∗ 6972.08 / 2977.08 83.51 / 34.57 0.57 2.42
PCD-by-PCD / PCD-by-PCD∗ 2050.40 / 998.54 34.71 / 22.59 0.51 1.54

Child MB-by-MB / MB-by-MB∗ 7483.74 / 1002.82 174.44 / 26.09 0.87 6.69
CMB / CMB∗ 9485.30 / 1100.29 272.00 / 45.49 0.88 5.98

PCD-by-PCD / PCD-by-PCD∗ 6348.80 / 3371.21 78.23 / 51.58 0.47 1.52
Child3 MB-by-MB / MB-by-MB∗ 3956.66 / 1376.92 73.75 / 32.53 0.65 2.27

CMB / CMB∗ 7667.06 / 1702.09 176.91 / 52.01 0.78 3.40
PCD-by-PCD / PCD-by-PCD∗ 41613.20 / 22804.03 436.67 / 293.76 0.45 1.49

Child10 MB-by-MB / MB-by-MB∗ 5844.76 / 2565.85 87.75 / 41.08 0.56 2.14
CMB / CMB∗ 10357.00 / 3490.31 206.68 / 74.79 0.66 2.76

PCD-by-PCD / PCD-by-PCD∗ 3126.40 / 1485.04 41.17 / 25.84 0.53 1.59
Insurance MB-by-MB / MB-by-MB∗ 4769.72 / 1087.50 84.22 / 24.66 0.77 3.42

CMB / CMB∗ 5864.88 / 1237.49 112.78 / 30.82 0.79 3.66
PCD-by-PCD / PCD-by-PCD∗ 18559.80 / 9131.42 302.91 / 188.65 0.51 1.61

Insurance3 MB-by-MB / MB-by-MB∗ 11336.30 / 3049.46 252.89 / 75.93 0.70 3.33
CMB / CMB∗ 13622.22 / 3160.35 1075.13 / 203.72 0.81 5.28

PCD-by-PCD / PCD-by-PCD∗ 48431.80 / 30996.35 665.85 / 451.65 0.36 1.47
Insurance10 MB-by-MB / MB-by-MB∗ 21601.50 / 6329.24 373.67 / 106.85 0.71 3.50

CMB / CMB∗ 23196.22 / 6425.35 854.10 / 170.85 0.72 5.00
PCD-by-PCD / PCD-by-PCD∗ 700.40 / 498.68 5.70 / 3.90 0.29 1.30

Hailfinder MB-by-MB / MB-by-MB∗ 660.30 / 277.99 4.99 / 2.41 0.58 2.07
CMB / CMB∗ 285.32 / 185.74 2.10 / 1.47 0.35 1.43

PCD-by-PCD / PCD-by-PCD∗ 18188.28 / 11003.91 176.02 / 116.79 0.40 1.51
Hailfinder3 MB-by-MB / MB-by-MB∗ 2982.98 / 1387.08 29.39 / 13.83 0.54 2.13

CMB / CMB∗ 2171.78 / 1166.24 24.17 / 12.36 0.46 1.96
PCD-by-PCD / PCD-by-PCD∗ 45132.42 / 28072.37 508.96 / 334.91 0.38 1.52

Hailfinder5 MB-by-MB / MB-by-MB∗ 5550.44 / 2347.84 60.17 / 25.92 0.58 2.32
CMB / CMB∗ 1874.76 / 1209.22 23.35 / 13.78 0.36 1.69

PCD-by-PCD recursively identifies the PC for learning a local
BN skeleton and orienting edges, the process of calling a PC
learning subroutine results in performing many redundant CI
tests. Thus, the larger the local structure of PCD-by-PCD∗

expands, the higher its Utilization is achieved.
(2) We can observe that MB-by-MB∗ is significantly su-

perior to PCD-by-PCD∗ on all of datasets in terms of both
Utilization and Acceleration metric. Specifically, MB-by-MB∗

has 0.64 rate of Utilization on average, and its average time
efficiency boosts about 2.74 times. The explanation is that
MB-by-MB is developed from PCD-by-PCD, and it employs
MB learning algorithms to learn a local BN structure instead
of using PC learning algorithms.

(3) Among these algorithms, the acceleration performance
of CMB∗ is better than PCD-by-PCD∗ and MB-by-MB∗ on
most datasets. Since CMB employs MB learning algorithms
to construct a local skeleton, and orients edges by tracking
independence relationship changes in MB of a target variable,
then sequentially constructs local structure by the learnt MBs
of the variables connected to the target variable. Therefore,
both the process of MB learning and tracking independence
relationship changes lead to more redundant CI tests.

D. Results of local-to-global structure learning algorithms

In this section, to further evaluate the efficiency of the CTPC
frameworks on BN global learning algorithms, we select three
local-to-global BN learning algorithms, MMHC, MMMB-CSL
and HITON-MB-CSL. Table IV summarizes the experimental
results. In addition, MMMB-CSL and HION-MB-CSL are
variants of GSBN algorithms, the main difference is that
they employ MMMB and HITON-MB to learn MB for con-
structing global skeleton instead of using GSMB, respectively.

TABLE IV: Results of local-to-global structure learning algo-
rithms

Datasets Algorithms CIT / CIT∗ Time / Time∗ Uti Acc

MMHC / MMHC∗ 3840.20 / 1812.57 62.97 / 51.58 0.53 1.22
Alarm MMMB-CSL / MMMB-CSL∗ 17983.00 / 3003.20 283.95 / 81.38 0.83 3.49

HITON-MB-CSL / HITON-MB-CSL∗ 17061.40 / 3054.00 260.29 / 73.68 0.82 3.53
MMHC / MMHC∗ 19394.20 / 9386.80 415.71 / 348.56 0.52 1.19

Alarm3 MMMB-CSL / MMMB-CSL∗ 83809.80 / 13661.00 1177.38 / 311.14 0.84 3.78
HITON-MB-CSL / HITON-MB-CSL∗ 80702.00 / 13638.60 1168.68 / 300.96 0.83 3.88

MMHC / MMHC∗ 167553.00 / 82603.60 5005.56 / 4109.53 0.51 1.22
Alarm10 MMMB-CSL / MMMB-CSL∗ 662517.60 / 101365.20 8980.29 / 1921.54 0.85 4.67

HITON-MB-CSL / HITON-MB-CSL∗ 650769.80 / 100869.30 10614.10 / 2167.69 0.85 4.90
MMHC / MMHC∗ 2080.80 / 1000.90 45.59 / 33.58 0.52 1.36

Child MMMB-CSL / MMMB-CSL∗ 14243.20 / 1880.10 399.97 / 70.63 0.87 5.66
HITON-MB-CSL / HITON-MB-CSL∗ 15154.20 / 1925.60 289.58 / 66.69 0.87 4.34

MMHC / MMHC∗ 8669.20 / 4152.50 235.44 / 194.33 0.52 1.21
Child3 MMMB-CSL / MMMB-CSL∗ 54002.40 / 9288.40 1340.12 / 354.77 0.83 3.78

HITON-MB-CSL / HITON-MB-CSL∗ 51515.60 / 8551.60 1247.38 / 289.58 0.83 4.31
MMHC / MMHC∗ 57114.00 / 25086.20 1951.76 / 1674.08 0.56 1.17

Child10 MMMB-CSL / MMMB-CSL∗ 281409.00 / 46151.10 5495.38 / 1383.43 0.84 3.97
HITON-MB-CSL / HITON-MB-CSL∗ 271600.60 / 43456.10 5068.35 / 1173.73 0.84 4.32

MMHC / MMHC∗ 3224.60 / 1499.40 52.85 / 38.50 0.54 1.37
Insurance MMMB-CSL / MMMB-CSL∗ 17679.40 / 2634.20 358.19 / 83.68 0.85 4.28

HITON-MB-CSL / HITON-MB-CSL∗ 16954.20 / 2678.80 357.57 / 86.85 0.84 4.12
MMHC / MMHC∗ 18808.20 / 9122.00 575.77 / 464.41 0.52 1.24

Insurance3 MMMB-CSL / MMMB-CSL∗ 125280.80 / 19794.40 3284.36 / 785.87 0.84 4.18
HITON-MB-CSL / HITON-MB-CSL∗ 124571.60 / 19557.80 3351.13 / 747.09 0.84 4.49

MMHC / MMHC∗ 112800.60 / 55497.90 4587.80 / 3812.39 0.51 1.20
Insurance10 MMMB-CSL / MMMB-CSL∗ 613665.40 / 87754.20 14191.32 / 2959.05 0.86 4.80

HITON-MB-CSL / HITON-MB-CSL∗ 605890.40 / 85430.60 13993.64 / 2707.38 0.86 5.17
MMHC / MMHC∗ 5538.40 / 2531.00 55.49 / 38.44 0.54 1.44

Hailfinder MMMB-CSL / MMMB-CSL∗ 18601.60 / 3478.50 226.93 / 59.41 0.81 3.82
HITON-MB-CSL / HITON-MB-CSL∗ 17933.80 / 3425.40 181.52 / 49.76 0.81 3.65

MMHC / MMHC∗ 39070.80 / 18675.80 543.18 / 404.65 0.52 1.34
Hailfinder3 MMMB-CSL / MMMB-CSL∗ 145836.40 / 26250.60 2079.24 / 602.94 0.82 3.45

HITON-MB-CSL / HITON-MB-CSL∗ 141890.80 / 25682.20 1875.19 / 519.24 0.82 3.61
MMHC / MMHC∗ 355355.60 / 174835.00 6943.72 / 5023.81 0.51 1.38

Hailfinder5 MMMB-CSL / MMMB-CSL∗ 1233608.00 / 204779.00 16907.36 / 3637.68 0.83 4.65
HITON-MB-CSL / HITON-MB-CSL∗ 1220205.60 / 202554.00 16696.66 / 3638.24 0.83 4.72

According to the experimental results, we have the following
observations.

(1) Table IV shows that the CTPC frameworks achieve a
significant acceleration on local-to-global structure learning
algorithms. Since learning a PC set of a variable is the key
to local-to-global BN learning algorithms, and the efficiency
of the algorithms depends on the PC learning subroutine.
More specifically, when learning a global BN structure, all
of the algorithms start with learning the PC of all variables
to construct global skeleton, and thus they perform many
redundant CI tests.

(2) The average Utilization of MMHC∗ is 0.53, since
MMHC employs MMPC to learn PC of all variables to
construct a global skeleton and thus have a high Utilization.
The CTPC frameworks only speed up MMHC∗ 1.28 times
on average in terms of the Acceleration metric. The reason is
that for edge orientations, MMHC uses score-based methods
instead of using CI tests and this process takes up the main
execution time.

(3) As for MMMB-CSL∗ and HITON-MB-CSL∗, we can
see that they have a higher cache utilization and achieve better
acceleration performance than MMHC∗ in Table IV. Since
they employ MMMB and HITON-MB to learn MB of all
variables, respectively, and a MB learning subroutine performs
more redundant CI tests than a PC learning subroutine. More-
over, both MMMB-CSL and HITON-MB-CSL use CI tests to
orient edges after constructing a global skeleton, and MMMB-
CSL∗ and HITON-MB-CSL∗ can also accelerate the process
of edge orientations.

52

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 28,2022 at 09:19:44 UTC from IEEE Xplore. Restrictions apply.

V. CONCLUSION

In this paper, we design a CI test cache table for reducing
redundant CI-tests in constraint-based BN structure learning
algorithms. Based on the CI test cache table, we propose
two CTPC frameworks to accelerate PC learning for BN
structure learning algorithms. The two frameworks can be
instantiated by any existing constraint-based BN structure
learning algorithms. Using a series of standard benchmark
BNs, we compare ten representative BN structure learning
algorithms with their corresponding accelerated algorithms by
the CTPC frameworks. The experimental results demonstrate
that the CTPC frameworks achieve significant acceleration
performance on existing BN structure learning algorithms
without sacrificing accuracy.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (under Grant 61876206), and the Open
Project Foundation of Intelligent Information Processing Key
Laboratory of Shanxi Province (under grant CICIP2020003).

REFERENCES

[1] J. Pearl, Probabilistic reasoning in intelligent systems: networks of
plausible inference. Elsevier, 2014.

[2] J. Runge, S. Bathiany, E. Bollt, G. Camps-Valls, D. Coumou, E. Deyle,
C. Glymour, M. Kretschmer, M. D. Mahecha, J. Muñoz-Marı́ et al.,
“Inferring causation from time series in earth system sciences,” Nature
communications, vol. 10, no. 1, pp. 1–13, 2019.

[3] M. Prosperi, Y. Guo, M. Sperrin, J. S. Koopman, J. S. Min, X. He,
S. Rich, M. Wang, I. E. Buchan, and J. Bian, “Causal inference and
counterfactual prediction in machine learning for actionable healthcare,”
Nature Machine Intelligence, vol. 2, no. 7, pp. 369–375, 2020.

[4] I. Tsamardinos, L. E. Brown, and C. F. Aliferis, “The max-min hill-
climbing bayesian network structure learning algorithm,” Machine learn-
ing, vol. 65, no. 1, pp. 31–78, 2006.

[5] K. Yu, L. Liu, J. Li, W. Ding, and T. D. Le, “Multi-source causal
feature selection,” IEEE transactions on pattern analysis and machine
intelligence, vol. 42, no. 9, pp. 2240–2256, 2019.

[6] Y. Yu, J. Chen, T. Gao, and M. Yu, “Dag-gnn: Dag structure learning
with graph neural networks,” in International Conference on Machine
Learning, 2019, pp. 7154–7163.

[7] S. Yang, H. Wang, K. Yu, F. Cao, and X. Wu, “Towards efficient local
causal structure learning,” IEEE Transactions on Big Data, 10.1109/TB-
DATA.2021.3062937, 2021.

[8] K. Yu, X. Guo, L. Liu, J. Li, H. Wang, Z. Ling, and X. Wu, “Causality-
based feature selection: Methods and evaluations,” ACM Computing
Surveys, vol. 53, no. 5, pp. 111:1–111:36, 2020.

[9] Z. Ling, K. Yu, H. Wang, L. Li, and X. Wu, “Using feature selection for
local causal structure learning,” IEEE Transactions on Emerging Topics
in Computational Intelligence, vol. PP, no. 99, pp. 1–11, 2020.

[10] D. M. Chickering, “Optimal structure identification with greedy search,”
Journal of machine learning research, vol. 3, no. Nov, pp. 507–554,
2002.

[11] P. Spirtes, C. N. Glymour, R. Scheines, and D. Heckerman, Causation,
prediction, and search. MIT press, 2000.

[12] D. Colombo and M. H. Maathuis, “Order-independent constraint-based
causal structure learning,” The Journal of Machine Learning Research,
vol. 15, no. 1, pp. 3741–3782, 2014.

[13] J. Zhang, T. D. Le, L. Liu, and J. Li, “Inferring and analyzing module-
specific lncrna–mrna causal regulatory networks in human cancer,”
Briefings in bioinformatics, vol. 20, no. 4, pp. 1403–1419, 2019.

[14] Z. Ling, K. Yu, H. Wang, L. Liu, W. Ding, and X. Wu, “Bamb: A
balanced markov blanket discovery approach to feature selection,” ACM
Transactions on Intelligent Systems and Technology (TIST), vol. 10,
no. 5, pp. 1–25, 2019.

[15] T. Gao and Q. Ji, “Local causal discovery of direct causes and effects,”
in Advances in Neural Information Processing Systems, 2015, pp. 2512–
2520.

[16] C. F. Aliferis, A. R. Statnikov, I. Tsamardinos, S. Mani, and X. D.
Koutsoukos, “Local causal and markov blanket induction for causal
discovery and feature selection for classification part I: algorithms and
empirical evaluation,” J. Mach. Learn. Res., vol. 11, pp. 171–234, 2010.

[17] I. Tsamardinos, C. F. Aliferis, and A. Statnikov, “Time and sample
efficient discovery of markov blankets and direct causal relations,” in
Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, 2003, pp. 673–678.

[18] D. Margaritis and S. Thrun, “Bayesian network induction via local
neighborhoods,” in Advances in neural information processing systems,
2000, pp. 505–511.

[19] I. Tsamardinos and C. F. Aliferis, “Towards principled feature selection:
Relevancy, filters and wrappers,” in International Workshop on Artificial
Intelligence and Statistics. PMLR, 2003, pp. 300–307.

[20] I. Tsamardinos, C. F. Aliferis, A. R. Statnikov, and E. Statnikov,
“Algorithms for large scale markov blanket discovery.” in FLAIRS
conference, vol. 2, 2003, pp. 376–380.

[21] S. Yaramakala and D. Margaritis, “Speculative markov blanket discovery
for optimal feature selection,” in Proceedings of the 5th IEEE Interna-
tional Conference on Data Mining (ICDM 2005), 27-30 November 2005,
Houston, Texas, USA. IEEE Computer Society, 2005, pp. 809–812.

[22] C. F. Aliferis, I. Tsamardinos, and A. Statnikov, “Hiton: a novel markov
blanket algorithm for optimal variable selection,” in AMIA annual
symposium proceedings, vol. 2003. American Medical Informatics
Association, 2003, p. 21.

[23] J. M. Pena, R. Nilsson, J. Björkegren, and J. Tegnér, “Towards scalable
and data efficient learning of markov boundaries,” International Journal
of Approximate Reasoning, vol. 45, no. 2, pp. 211–232, 2007.

[24] J. Yin, Y. Zhou, C. Wang, P. He, C. Zheng, and Z. Geng, “Partial ori-
entation and local structural learning of causal networks for prediction,”
in Causation and Prediction Challenge, 2008, pp. 93–105.

[25] C. Wang, Y. Zhou, Q. Zhao, and Z. Geng, “Discovering and orienting
the edges connected to a target variable in a dag via a sequential local
learning approach,” Computational Statistics & Data Analysis, vol. 77,
pp. 252–266, 2014.

[26] C. Meek, “Causal inference and causal explanation with background
knowledge,” in UAI ’95: Proceedings of the Eleventh Annual Conference
on Uncertainty in Artificial Intelligence, Montreal, Quebec, Canada,
August 18-20, 1995, P. Besnard and S. Hanks, Eds. Morgan Kaufmann,
1995, pp. 403–410.

[27] P. Spirtes and C. Glymour, “An algorithm for fast recovery of sparse
causal graphs,” Social science computer review, vol. 9, no. 1, pp. 62–
72, 1991.

[28] T. Niinimaki and P. Parviainen, “Local structure discovery in bayesian
networks,” in Proceedings of the Twenty-Eighth Conference on Uncer-
tainty in Artificial Intelligence, Catalina Island, CA, USA, August 14-18,
2012, N. de Freitas and K. P. Murphy, Eds. AUAI Press, 2012, pp.
634–643.

[29] T. Gao, K. Fadnis, and M. Campbell, “Local-to-global bayesian network
structure learning,” in International Conference on Machine Learning,
2017, pp. 1193–1202.

[30] T. Gao and Q. Ji, “Efficient markov blanket discovery and its applica-
tion,” IEEE transactions on cybernetics, vol. 47, no. 5, pp. 1169–1179,
2017.

[31] C. F. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani, and X. D.
Koutsoukos, “Local causal and markov blanket induction for causal
discovery and feature selection for classification part i: Algorithms and
empirical evaluation.” Journal of Machine Learning Research, vol. 11,
no. 1, 2010.

53

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 28,2022 at 09:19:44 UTC from IEEE Xplore. Restrictions apply.

