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Feature selection is a crucial preprocessing step in data analytics and machine learning. Classical feature se-
lection algorithms select features based on the correlations between predictive features and the class variable
and do not attempt to capture causal relationships between them. It has been shown that the knowledge
about the causal relationships between features and the class variable has potential benefits for building in-
terpretable and robust prediction models, since causal relationships imply the underlying mechanism of a
system. Consequently, causality-based feature selection has gradually attracted greater attentions and many
algorithms have been proposed. In this article, we present a comprehensive review of recent advances in
causality-based feature selection. To facilitate the development of new algorithms in the research area and
make it easy for the comparisons between new methods and existing ones, we develop the first open-source
package, called CausalFS, which consists of most of the representative causality-based feature selection algo-
rithms (available at https://github.com/kuiy/CausalFS). Using CausalFS, we conduct extensive experiments to
compare the representative algorithms with both synthetic and real-world datasets. Finally, we discuss some
challenging problems to be tackled in future research.
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1 INTRODUCTION

Feature selection plays an essential role in high-dimensional data analytics [13, 37, 47, 101] and it
is widely employed in all kinds of machine learning solutions. Feature selection is to find a subset
of features from a large number of predictive features for building predictive models for a target or
a class variable of interest. For example, gene (i.e., feature) selection can identify a small number
of informative genes from a high-dimensional gene dataset for predicting a disease or directing
experimental studies to validate the identified genes (as genetic factors of a disease) in laboratories.
Now feature selection is more critical than ever, since a dataset with high-dimensionality has be-
come ubiquitous in various applications [110]. In the previous example, a gene expression dataset
may easily have more than 10K predictive features [80]. For another example, the Web Spam Cor-
pus 2011 collected approximately 16M predictive features for malicious web detection [98]. Almost
all machine learning methods may not directly work on datasets of such high dimensionality with-
out feature selection. As a result, in the past two decades, feature selection has been well studied
and has achieved great success in reducing computational costs of learning and improving the
generalization ability of predictive models [47].

Existing feature selection methods can be broadly categorized into filter, wrapper, and embed-
ded methods. A filter method is independent of a predictive model, whereas the other two types of
methods are predictive-model-dependent. Due to their independence of predictive models, filter
methods are able to achieve fast processing speed and have no bias on specific predictive mod-
els. With the rapid increase of high-dimensional data, filter methods have been attracting more
attentions than ever. In this article, we focus on causality-based feature selection, an emerging
successful type of filter method. In feature selection, a feature is considered as a strongly relevant
feature, or a weakly relevant feature, or an irrelevant feature with respect to a class variable of in-
terest [43]. A classical feature selection method aims to find a subset of relevant features based on
the correlations between (predictive) features and the class variable [37]. In general, correlations
do not capture the causal relationships between features and the class variable, but only their co-
occurrences. Recent studies have shown that causal features may provide the following potential
benefits in feature selection for classification [5, 36]:

e Causal features can improve the explanatory capability of predictive models [66]. Correla-
tions capture only the co-occurrence of features and the class variable. Hence, the selected
features often do not provide a convincing explanation for predictions. For example, a strong
correlation between shoe size (of a child in an elementary school (grades 1-5)) and reading
ability (of the child) may be found, making shoe size a good predictive feature of reading
ability of an elementary school child. However, clearly shoe size is not a reasonable expla-
nation at all for reading ability. In fact, the causes of reading ability, such as age, is more
explainable than shoe size.

e Causal features can improve the robustness of predictive models [9, 82]. Causal relationships
imply the underlying mechanism about the class variable and thus they are persistent across
different settings or environments. For example, we want to build a predictive model to
predict reading ability of a child in an elementary school using historical data. Based on
the historical data, a predictive model built using non-causal features such as shoe size may
not produce good predictions for a student in senior high school. In contrast, if the causes
of reading ability of students (such as age) were selected as the predictive features, a model
built on the historical data will be robust.

In recent years, causality-based feature selection methods have been developed to identify po-
tential causal features using the Bayesian network (BN) and Markov boundary (MB) theory in both
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Fig. 1. An example of an MB of variable T (blue variables) in a Bayesian network.

machine learning and causal discovery domains [5, 12, 105]. The structure of a BN is represented
by a directed acyclic graph (DAG) where nodes represent variables and edges represent the de-
pendence relationship between the variables [64]. A DAG, or the structure of a BN, can be used to
represent causal relationships of variables, when a directed edge X — Y is interpreted as a direct
cause (X) and effect (Y) relationship [64]. In this case the BN is called a causal BN. The notion of
MB was proposed in the context of a BN. If a BN satisfies the faithfulness assumption (see Defini-
tion 2.1 in Section 2.1), the MB of a variable in the BN is unique and consists of the parents (direct
causes), children (direct effects), and spouses (i.e., other parents of the class variable’s children) of
the class variable [64]. Figure 1 gives an example of an MB in a BN. The MB of Tincludes A and B
(parents), D (child), and Q (spouse).

As can be seen in Figure 1, the MB of a class variable implies the local causal relationships
between the class variable and the features in its MB. Most importantly, all other features are
probabilistically independent of the class variable conditioning on its MB [92]. Therefore, under
certain assumptions (to be discussed in Section 2), the MB of the class variable is the minimal fea-
ture subset with maximum predictivity for classification. Accordingly, we can learn a BN structure
and then read off the MB of the class variable in the learnt structure for causality-based feature
selection. In the past decades, many BN structure learning algorithms have been proposed [19,
87, 112]. However, learning a global BN structure is often computationally expensive especially
with a high-dimensional dataset. Although some recently developed algorithms, such as the fGES
algorithm, can learn a global BN structure with very high-dimensional data [76], in fact, it is not
necessary and wasteful to find an entire BN structure when we are only interested in the MB of a
variable of interest.

Thus, there is a need to develop causality-based feature selection methods that only focus on
identifying the MB of a variable or a subset of the MB such as parents and children (PC) without
learning an entire BN structure involving all features in a dataset. In the past decade, by com-
bining BN structure learning methods with the MB theory, many causality-based feature selection
algorithms have been proposed [5, 12]. The developed causality-based feature selection algorithms
are divided into constraint-based methods and score-based methods, and they provide a new and
complementary algorithmic methodology to enrich feature selection, especially for achieving ex-
plainable and robust machine learning.

To advance the research in causality-based feature selection, a comprehensive review of the
state-of-the-art techniques in this area is needed. However, so far, there has not been such a re-
view available. Aliferis et al. [5, 6] proposed a general local learning framework for causality-based
feature selection, which are focused on three specific causality-based feature selection algorithms
and their extensions to the BN structure learning, but the work is not a survey paper. Guyon
et al. [36] presented a comparison of the motivations and pros/cons of causality-based and classi-
cal feature selection approaches at the conceptual level, but again they did not provide a survey of
causality-based feature selection algorithms. Yu et al. [105] theoretically analyzed the link between
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causality-based feature selection and classical feature selection in four levels: learning objectives,
assumptions and optimization, search strategies, and practical implications, instead of presenting
an extensive review of causality-based feature selection algorithms. There have been some recent
reviews on causal inference, such as References [33, 35, 59, 112], but they mainly focused on the
advances on learning causal relations between features. And almost all reviews regarding feature
selection focused on classical feature selection methods in the past decades [13, 37, 47]. In sum-
mary, so far there is little work on a comprehensive review of causality-based feature selection
algorithms.

Thus, in this article, we extensively review existing causality-based feature selection methods.
Since identifying the causes of a class variable is crucial for robust predications where the training
data and testing data have different distributions and almost all existing causality-based feature se-
lection methods do not distinguish causes from effects, we also discuss some representative meth-
ods of distinguishing causes from effects. To our knowledge, this is the first attempt on presenting
an extensive survey of causality-based feature selection and its recent advances.

In addition, there is no any open-source toolbox/package that implements existing causality-
based feature selection algorithms. An open-source toolbox plays a crucial role for facilitating the
development of new algorithms and making comparisons between the new methods and exist-
ing ones easy, and it may further promote both scientific and practical studies in machine learning
and causal discovery. In this article, we develop the first comprehensive open-source package writ-
ten in C language that implements the representative and state-of-the-art causality-based feature
selection algorithms.

Finally, we conduct a comprehensively empirical evaluation on representative causality-based
feature selection algorithms and classical feature selection methods using both synthetic and real-
world datasets.

The rest of the article is organized as follows: Section 2 gives basic background knowledge.
Section 3 reviews constraint-based methods. Section 4 reviews score-based methods. Section 5
discusses the algorithms for distinguishing causes from effects. Section 6 presents the open-source
package. Section 7 reports the evaluation results. Section 8 concludes the article and discusses some
open problems.

2 MARKOV BOUNDARY AND CAUSALITY-BASED FEATURE SELECTION

In this section, we first briefly introduce the background knowledge of MB, BN, and causality-
based feature selection, then we discuss the general strategy of existing causality-based feature
selection methods.

2.1 Bayesian Network, Markov Boundary, and Causality-based Feature Selection

Let C be a class variable and F = {Fy, F,, . .., Far} be a feature set including M distinct features. We
use F; 1L Fj|S, where i # jand S C F \ {F;, F}}, to denote that F; is conditionally independent of F;
given feature set S, and F; L F;|S to represent that F; is conditionally dependent on F; given S.

Let S be any set of variables within V; we use S\ V; as the shorthand of S\ {V;} and SUV; as
the shorthand of SU {V;}. Let V=FUC ={V},Vo,...,Var1}, Vi = F; (1 <i < M), and V141 = C.
Let P(V) be the joint probability distribution over V and G = (V, E) represent a directed acyclic
graph (DAG) with nodes V and edges E, where an edge V; — V; denotes that V; is a parent (direct
cause) of V; while Vj is a child (direct effect) of V;. The triplet (V, G, P(V)) is called a BN if and only
it (V, G, P(V)) satisfies the Markov condition: Every node of G is independent of any subset of its
non-descendants conditioning on the parents of the node [64]. In the following, we introduce the
key concepts and assumptions related to BN, Markov blanket, Markov boundary, and causality-
based feature selection.
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Definition 2.1 (Faithfulness). [64] Given a BN < V, G, P(V) >, G is faithful to P(V) if and only if
every conditional independence present in P(V) is entailed by G and the Markov condition. P(V)
is faithful to G if and only if G is faithful to P(V).

Definition 2.2 (Causal sufficiency). [64, 87] Causal sufficiency assumes that any common cause
of two or more variables in V is also in V.

We first present the concepts of Markov blanket and Markov boundary from a statistical per-
spective. A variable may have multiple Markov blankets. For example, the set of all variables V'
excluding C is also a Markov blanket of C. In practice, we are often interested in minimal Markov
blankets.

Definition 2.3 (Markov Blanket, Mb). [64] A Markov blanket of the class variable C (Mb(C)) in
V is a set of variables conditioned on which all other variables are independent of C; that is, for
every V; € V\ (Mb(C) U C), C L V;|Mb(C).

Definition 2.4 (Markov Boundary, MB). [64] If no proper subset of Mb(C) satisfies the definition
of Markov blanket of C, then Mb(C) is called the Markov boundary of C, denoted as MB(C).

From a BN perspective, under the faithfulness assumption, a node’s Markov boundary in a BN
is unique and it is the same as the node’s Markov blanket, as shown in Definition 2.5.

Definition 2.5 (Markov Blanket/Markov Boundary). [64] Under the faithfulness assumption, the
MB of a node in a BN is unique and it consists of the node’s parents (direct causes), children (direct
effects), and spouses (other parents of the node’s children).

In a BN, the MB of a node renders the node statistically independent of all the remaining nodes
conditioning on the MB [64], as shown in Proposition 2.6 below.

PROPOSITION 2.6. [64] In a BN, let MB(X) be the MB of node X, VY € V\ (MB(X) UX), X 1L
Y|MB(X) holds.

Proposition 2.6 illustrates that learning the MB of the class variable is actually a procedure of
feature selection [5, 92]. Koller and Sahami [45] were the first to introduce the concept of MBs to
feature selection. The work in References [92, 105] stated that under the faithfulness assumption,
(1) the strongly relevant features belong to the MB of the class variable, and (2) the MB is the min-
imal feature subset with maximum predictivity for classification. Just as we discussed in Section 1,
existing causality-based feature selection algorithms aim to learn the MB of the class variable or
a subset of the MB (without learning an entire BN structure involving all features in a dataset)
(5, 36].

2.2 The General Strategy of Causality-based Feature Selection

Forward-backward feature selection is one of the most basic and commonly used feature selection
frameworks. The forward phase of forward-backward selection starts with a (usually empty) set
of features and adds features to it, until a given stopping criterion is met, the backward phase
of forward-backward selection starts with a set of features (usually obtained from the forward
phase) and then removes features from that set until a stopping criterion is met. Under the forward-
backward framework, there are two general strategies for feature selection. The standard forward-
backward feature selection (SFBS) strategy (Algorithm 1) starts with a forward phase for selecting
a subset of candidate features S and then uses a backward phase for removing false positives from
S [56]. The interleaving forward-backward feature selection (IFBS) strategy (Algorithm 2) performs
the forward phase and backward phase alternatively [94]. Specifically, if there are new features
added to S at the forward phase, IFBS immediately triggers the backward phase and implements
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ALGORITHM 1: Standard Forward-Backward Selection (SFBS)

1: Input: Feature Set F and the class variable C
Output: The set of selected S
S=0;
: //Forward phase: Adding features to S
repeat
Identify the most informative feature X € F by selection criterion ®;
if (SUX) > &(S) then
S=SUXandF=F\X;
end if
: until no features in F are added to S;
: //Backward phase: Removing features from S
: repeat
Find the least informative feature Y € S by selection criterion ®;
if ®(S\Y) > ®(S) then
S=S\7V;
end if
: until no features in S are removed
: Output S

R A A

e T e e

ALGORITHM 2: Interleaving Forward-Backward Selection (IFBS)

1: Input: Feature Set F and the class variable C
Output: The set of selected S

2: S=0;

3: repeat

4:  //Forward phase: Adding features to S

5:  Identify the most informative feature X € F by selection criterion ®;
6: if ®(SUX) > O(S) then

7: S=SUXand F=F\X;

8: //Backward phase: Removing features from S

9: repeat
10: Find the least informative feature Y € S by selection criterion ®;
11: if ©(S\Y) > @(S) then
12: S=5\Y;
13: end if
14: until no features in S are not removed
15 endif
16: until no features in F are added to S;
17: Output S

both phases alternatively. Existing causality-based feature selection algorithms adopt either the
SFBS strategy or the IFBS strategy, and they employ a selection criterion @, such as information
gain, independence tests, and score criteria, to add/remove features to/from S.

3 CONSTRAINT-BASED METHODS

In this section, we will discuss the constraint-based methods to learn the MB or PC of the class
variable, i.e., the methods using conditional independence tests. Constraint-based methods can
be categorized into five types: simultaneous MB learning, divide-and-conquer MB learning, MB
learning with interleaving PC and spouse learning, MB learning with relaxed assumptions, and
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Table 1. Representative Constraint-based Methods

Category

Representative algorithm

Simultaneous MB learning
(learning PC and spouses
simultaneously and do not
distinguish PC from spouses)

GSMB [56]

TAMB [92]

TAMBnPC [94]

TAMB-IP [75]

Fast-IAMB [102]

Inter-IAMB [94]

Inter-TAMBnPC [94]

FBEDFX [12]

PFBP [95]

Divide-and-conquer MB learning

MMMB [93]

HITON-MB [7]

Semi-HITON-MB [5]

111:7

. PCMB [70]
(learning PC and spouses TPCMB [26]
separately)

MBOR [23]
STMB [30]
CCMB [100]
MB learning with interleaving PC | BAMB [50]
and spouse learning EEMB [99]
KIAMB [70]
MB learning with relaxed TIE* [88]
assumptions (e.g., the faithfulness SGAI [108]
assumption or causal sufficiency LCMB [51]
assumption) WLCMB [51]
M3B [106]
MIMB [104]

MB learning with special purpose | MCFS [107]

(e.g., multiple datasets, distribution | MIAMB and MKIAMB [52]
shift, and weak supervision) BASSUM [15]

Semi-IAMB [85]

MB learning with special purpose. A summary of the representative algorithms of the five types
is given in Table 1.

In the following, Section 3.1 presents the basis of constraint-based methods. Section 3.2 gives
the brief discussions of the five types of constraint-based methods. Section 3.3 extensively reviews
existing constraint-based methods of each type.

3.1 Basis of the Constraint-based Methods

The constraint-based methods are mainly based on Propositions 3.1 and 3.2 below. Proposition 3.1
illustrates the dependent relations between a node and its parents (or children). It states that if V;
is a parent or a child of V; in a BN, V; and V; are not independent conditioning on any subsets of
VAA{V;, Vb

ProrosITION 3.1. [87] In a BN, if node V; is a parent (or a child) of V;, then VS C V \ {V;, V}},
Vi L VIS,

ACM Computing Surveys, Vol. 53, No. 5, Article 111. Publication date: September 2020.



111:8 K. Yu et al.

Forward phase Backward phase
GSMB,IAMB | 1| Find a candidate Prune the candidate | || (e ofc
and their variants MB of C MB of C

Fig. 2. Simultaneous MB learning.

Proposition 3.2 presents the relation between a node and its spouses in a BN. It indicates that
if V; is a spouse of Vi and Vj is their common child, there exists a subset S € V'\ {V;, V}, Vi} such
that V; and V. are independent given S but they are dependent given S U V;. For instance, Q is
the spouse of T in Figure 1. Q and T are independent (S is an empty set), but they are dependent
conditioning on their common child D. Proposition 3.2 shows that Q (spouse) and D (common
child) together carry more predictive information about T than D only. Proposition 3.2 also states
that spouses of Vi consist of all parents of the children of Vj (excluding V).

ProPoSITION 3.2. [87]In a BN, assuming thatV; is adjacent to V;, V; is adjacent to Vi, and V; is not
adjacent to Vi (e.g., Vi = Vj « Vi), if AS € V\ {V}, V}, Vi} such that V; L Vi|S and V; L Vi I{S,V})}
hold, V; is a spouse of V.

Using the SFBS (or IFBS) strategy, existing constraint-based methods employ the statistical in-
dependence tests as the selection criteria, denoted as ®, to add/remove features to/from S. Given
the class variable C, in SFBS (or IFBS), at each iteration, let S be a set of features currently selected,
it X (X € V\{CUS})and C are conditionally independent conditioning on S (or a subset S’ C S),
X does not provide any predictive information to C conditioning on S (i.e., (S U X) < &(5)). In
this case, X is not to be added to S at the forward phase or removed from S at the backward phase.

There are five types of conditional independence tests used by current constraint-based meth-
ods, A? test, G? test, mutual information for discrete features [58], Fisher’s Z test for continuous
features with linear relations and additive Gaussian errors [68], and kernel-based tests for contin-
uous features with nonlinearity and non-Gaussian noise [111].

3.2 Overview of Constraint-based Methods

In the section, we will give a brief overview of the five types of constraint-based methods. The
detailed review of the representative algorithms of each type will be presented in Section 3.3.

1. Simultaneous MB learning. Given the class variable C, a simultaneous MB learning algo-
rithm aims to find parents, children, and spouses of C simultaneously, and does not distinguish PC
(parents and children) of C from its spouses during the MB learning. As shown in Figure 2, the si-
multaneous MB learning approach adopts a forward-backward strategy to greedily learn an MB of
C by conditioning on the entire candidate MB of C (CMB(C)) currently selected at each iteration.
The representative simultaneous MB learning algorithms include GSMB [56], IAMB [92], IAMB-
nPC [94], Fast-TAMB [102], Inter-IAMB [94], Inter-TAMBnPC [94], IAMB-IP [75], FBEDX [12], and
PFBP [95]. The GSMB algorithm was the first algorithm for learning an MB of the class variable
without learning an entire Bayesian network. JAMB and its variants are all the improved ver-
sions of GSMB. Inter-IAMB interleaves the forward phase and the backward phase of IAMB. Both
FBEDX and PFBP are the state-of-the-art variants of IAMB.

Due to the use of the entire CMB(C) currently selected for conditional independence tests at
each computation, existing simultaneous MB learning algorithms reduce the number of indepen-
dence tests, but require more data samples for each test, since the number of data samples required
is exponential to the size of the conditioning set. Thus, the simultaneous MB learning algorithms
are time-efficient but not data-efficient. When the sample size of a dataset is not big enough, these

ACM Computing Surveys, Vol. 53, No. 5, Article 111. Publication date: September 2020.



Causality-based Feature Selection: Methods and Evaluations 111:9

Learning PC Learning spouse
MMMB " MMPC ™
HITON- L. HITON-PC
MB
Semi- Semi-
HITON-MB HITON-PC
Identifying spouses
PCMB " GetPC from parents and children
R - of PC of C
ecognize-
IPCMB - PC MB
(PC+spouse)
MBOR —— MBtoPC
CCMB + —»  FindPC
N Identifying spouses
STMB | | Recognize- from the features in F
pC excluding PC of C and C

Fig. 3. Divide-and-conquer MB learning.

algorithms cannot find the MB accurately. The quality of learnt MBs of these algorithms degrades
greatly in practical settings due to the limited number of samples. They are expected to perform
the best in problems where MB(C) is small.

2. Divide-and-conquer MB learning. The divide-and-conquer MB learning approach aims to
reduce the data requirements of the simultaneous MB learning approach. This approach breaks the
problem of learning MB(C) into two subproblems: first, learning parents and children of C (i.e.,
PC(C)), and second, learning the spouses of C (i.e., SP(C)). As for learning PC(C), the divide-and-
conquer approach does not use the entire PC(C) as the conditioning set for conditional indepen-
dence tests when determining whether feature X is a candidate member of PC(C). Instead it makes
use of the subsets of PC(C), which is much smaller than CMB(C) used by the simultaneous MB
learning approach when making decisions. Thus, the divide-and-conquer MB learning approach
needs significantly smaller number of samples than the simultaneous MB learning approach. For
instance, to determine whether feature X is a candidate member of PC(C), the divide-and-conquer
approach explores possible subsets of PC(C). If there exists a subset S C PC(C) such that X 1 C|S
holds, this subset exploring process will terminate and X will be discarded and never considered
again. However, for the simultaneous MB learning approach, the discarded features will be recon-
sidered many times (for identifying spouses).

The representative divide-and-conquer algorithms include MMMB [93], HITON-MB [7], semi-
HITON-MB [7], PCMB [69], IPCMB [26], MBOR [23], STMB [30], and CCMB [100]. The main
differences between those algorithms lie in the strategies of identifying PC(C) and the strategies
of finding SP(C), as shown in Figure 3. This figure also presents the general steps of existing
divide-and-conquer algorithms and the PC learning algorithms used by the eight representative
MB methods, respectively.

The divide-and-conquer MB learning methods are data-efficient but not time-efficient. Although
they mitigate the problem of the large sample requirement, existing divide-and-conquer MB learn-
ing algorithms will be computationally expensive when the size of currently selected features be-
comes large.

3. MB learning with interleaving PC and spouse learning. This approach is an extension
of the divide-and-conquer approach. Instead of learning PC and identifying spouses separately,
this approach implements the PC learning phase and the spouse identifying phase alternatively.
Specifically, once a candidate member of PC of C is added to the candidate PC(C) at the PC
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%L N b
. Y
BAMB Learning PC {—{ Learning spouse {—{ Prune PC |—Prune spouse MB
(PC+spouse)

1=

%J— . T
EEMB Learning PC |—| Learning spouse Prune PC |—{Prune spouse |— MB
(PC+spouse)

Fig. 4. MB learning with interleaving PC and spouse learning.

learning phase, this approach triggers the spouse learning phase immediately. The representa-
tive algorithms include BAMB [50] and EEMB [99]. The difference between BAMB and EEMB is
shown in Figure 4, where we can see that BAMB learns the candidate PC and spouse sets of C and
removes false positives from the two candidate sets in one go, while EEMB breaks BAMB into two
independent subroutines: learning and pruning.

By interleaving PC and spouse learning, BAMB and EEMB attempt to keep both candidate PC
and spouse sets as small as possible for achieving the trade-off between data efficiency and time
efficiency. However, due to false PC inclusions, many false spouses may enter the candidate spouse
set, leading to a large size of the candidate spouse set, which will degrade the performance of BAMB
and EEMB.

4. MB learning with relaxed assumptions. The above algorithms are designed to learn the
MB of the class variable under the faithfulness and causal sufficiency assumptions. In fact, both
assumptions are often violated in practice.

When the faithfulness assumption is violated, the MB of a class variable in a dataset may not be
unique [70, 88]. To deal with the violation of the faithfulness assumption, some research work has
been done for identifying multiple MBs without the assumption, such as KIAMB [70], TIE* [88],
SGAI [108], LCMB [51], and WLCMB [51]. KIAMB was the first attempt to learn multiple MBs, but
it needs to run multiple times and cannot guarantee finding all possible MBs of the class variable.
TIE* can find all MBs of the class variable in a dataset, but it is often computationally expensive.
SGAI may be more efficient than TIE* but it is not guaranteed to find all possible MBs of the class
variable. WLCMB is motivated by KIAMB and thus it still suffers from the drawbacks of KIAMB.

When the causal sufficiency assumption is violated, if we still use an MB learning algorithm
that assumes causal sufficiency, the learnt MB may not properly indicate the true causal relations.
Yu et al. [106] proposed the M3B algorithm to tackle the violation of causal sufficiency. But M3B is
designed based on the constraint-based approach and thus it also suffers from time efficiency and
incorrect test problems.

5. MB learning with special purpose. Beyond the algorithms discussed above, several MB
learning algorithms have been proposed for special purposes, including the MIMB algorithm for
identifying an MB of a class variable from multiple datasets [104], the MCFS algorithm for stable
prediction with distribution shift [107], the MIAMB and MKIAMB algorithms for learning an MB
of multiple class variables [52], and the BASSUM and Semi-IAMB algorithms for MB learning
with weak supervision [15, 85]. These studies have shown that causal properties of features can
facilitate semi-supervised learning and feature selection with distribution shifts. Moreover the
intersection of machine learning and causal discovery has attracted increasing attention in areas
beyond feature selection. For example, causal knowledge has inspired efficient transfer learning
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ALGORITHM 3: The Instantiation of SFBS for Simultaneous MB Learning

1: Input: Feature Set F and the class variable C
Output: CMB(C)

: CMB(C) = 0;
: //Forward phase: Adding candidate MB (relevant) features to CMB(C)
: repeat
Select a feature X € F;
if X A C|CMB(C) then

CMB(C) =CMB(C)UX and F = F\ X;
end if
: until no features in F are added to CMB(C);
: //Backward phase: Removing false positives from CMB(C)
: repeat

_ =
_- O

12:  Select a feature Y € CMB(C);

13:  if Y L C|CMB(C) \ Y then

14: CMB(C) = CMB(C) \ ' Y;

15:  end if

16: until no features in CMB(C) are removed
17: Output CMB(C)

and domain adaptation methods for accurate prediction across different domains [54, 79]. It is a
promising research area to link machine learning research with causality to develop explainable
and robust machine learning methods and solutions to causal discovery for data analytics.

3.3 Detailed Review of Constraint-based Methods

3.3.1  Methods of Simultaneous MB Learning. In this subsection, we first introduce the methods
using SFBS, including GSMB, IAMB, and the two extensions of [AMB, which are IAMBnPC and
IAMP-IP. Then, we introduce the methods employing IFBS, which are Fast-TAMB, Inter-IAMB and
Inter-IAMBNPC. Since FBEDk and PFBP are the state-of-the-art algorithms, they will be introduced
at the end.

GSMB. The Growing-Shrinking MB (GSMB) learning algorithm [55, 56] instantiates the SFBS
framework for simultaneous MB learning, as shown in Algorithm 3. Let CMB(C) be the candidate
MB of C currently selected, in the forward (growing) phase (Steps 5 to 9 in Algorithm 3), at each
iteration, if 3X € F \ CMB(C) such that X £ C|CMB(C) holds, GSMB adds X to CMB(C), until no
features within F \ CMB(C) are added to CMB(C). In the backward (shrinking) phase (Steps 12
to 16 in Algorithm 3), GSMB sequentially removes from CMB(C) the false positive Y € CMB(C)
satisfying Y 1L C|CMB(C) \ Y. At Step 5 of the forward phase, GSMB uses a static heuristic that
at each time GSMB randomly selects a feature X € F satisfying X £ C|CMB(C) and adds it to
CMB(C). The static heuristic may make many false positives enter CMB(C) in the forward phase,
leading to the growing of the size of CMB(C). Given a fixed size of data samples, the larger size of
CMB(C), the more unreliable the independence tests. Thus, this heuristic makes GSMB ineffective
in coping with a dataset of small sample size but high dimensionality.

IAMB, IAMBnPC, and IAMB-IP. To tackle the problem with GSMB, the incremental associ-
ation Markov boundary (IAMB) algorithm [92] uses a dynamic heuristic at Step 5 in Algorithm 3
of the forward phase. At each iteration, IAMB adds to CMB(C) the feature X € F \ CMB(C) with
the highest association with C conditioning on the current CMB(C) if X i C|CMB(C) holds. This
dynamic heuristic makes the features that belong to MB(C) enter CMB(C) as early as possible
and reduces as much as possible the chance of false positives to enter CMB(C) during the forward
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ALGORITHM 4: The Instantiation of IFBS for Simultaneous MB Learning

1: Input: Feature Set F and the class variable C
Output: CMB(C)
2: CMB(C) = 0;
3: repeat
4:  //Forward phase: Adding candidate MB (relevant) features to CMB(C)

5 Select a feature X € F with the highest association with C;
6 if X f CICMB(C) then
7: CMB(C) = CMB(C) UX and F = F\ X;
8 //Backward phase: Removing false positives from CMB(C)
9 repeat

10: Select a feature Y € CMB(C);

11: if Y 1 C|CMB(C) \ Y then

12: CMB(C) = CMB(C) \'Y;

13: end if

14: until no features in CMB(C) are removed

15 endif

16: until no features in F are added to CMB(C);
17: Output CMB(C)

phase. Accordingly, IAMB performs better (with lower time complexity and lower data sample
requirement) than GSMB, since fewer false positives will be added to CMB(C) in the forward
phase. However, the number of required data samples of IAMB is still exponential with the size
of CMB(C), since the size of CMB(C) may become large in the forward phase. To mitigate this
problem, several variants of IAMB were proposed, such as IAMBnPC [94], Inter-IAMB [94], inter-
IAMBnNPC [94], and Fast-IAMB [102]. Compared to IAMB, [AMBnPC only substitutes the backward
phase (Steps 11 to 15 in Algorithm 3) as implemented in JAMB with the PC algorithm [87]. To lever-
age prior knowledge, IAMB-IP (IAMB-Informative Prior) was proposed in Reference [75]. It can
incorporate domain knowledge priors and structure sparsity priors to improve the performance
of MB learning when the dataset is of small sample size but high dimensionality.

Inter-IAMB and Inter-IAMBnPC. These two algorithms adopt the IFBS framework, which
is the key difference between them and IAMB. Algorithm 4 shows how they instantiate IFBS for
simultaneous MB learning. The goal of the interleaving is to keep the size of CMB(C) as small as
possible during all steps of the algorithms’ execution. Comparing to Inter-IAMB, Inter-IAMBnPC
substitutes the backward phase as implemented in inter-IAMB with the PC algorithm (Steps 9 to
14 in Algorithm 4).

Fast-IAMB. Similar to Inter-IAMB and Inter-IAMBnPC, Fast-IAMB instantiates IFBS as shown
in Algorithm 4. However, different from IAMB and its other variants discussed above, Fast-TAMB
adopts an aggressively greedy strategy in the forward phase to make it more efficient. Specifically,
at Steps 5 to 7 in Algorithm 4, Fast-TAMB does not add one feature to CMB(C) then immediately
triggers the backward phase. Instead Fast-TAMB greedily adds as many features conditionally de-
pendent on C given the current CMB(C) as possible in the forward phase until a conditional in-
dependence test is not reliable (i.e., we do not have enough data for conducting the test). When a
test is not reliable in the forward phase, the backward phase is triggered.

A reliable independence test for C and X € F\ CMB(C) given CMB(C) should satisfy the rule
that the average number of instances per cell of the contingency table of X U C U CMB(C) must be
atleast k,i.e., N/{rx = rc * rcyp(c)} = k where the minimum value of k is set to 5 for reliable tests
as suggested by Agresti [3], N is the total number of data samples, and r¢ denotes the number of
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discrete values that C takes. By the rule, at Steps 5 to 6 in Algorithm 4, Fast-TAMB will not perform
a test when it is not reliable. This checking not only speeds up Fast-JAMB, but also reduces the
risk of unreliable independence tests.

FBEDX. FBEDX (Forward-Backward selection with Early Dropping) [12] was developed from
IAMB. In the forward phase, at each iteration [AMB should reconsider all remaining features (in-
cluding all discarded features at each iteration) to find the next best candidate. To tackle the issue,
FBEDX adopts an early dropping strategy in the forward phase. The main idea is that at each
forward iteration, FBEDX removes the features that are conditionally independent of C given the
current CMB(C) from the remaining features in F instead of keeping them in F. This leads to
quickly reduce the number of candidate features in F, while keeping relevant features in it. A
run of the forward phase with the early dropping terminates until F is empty. Then the forward
phase is allowed to run up to K additional times to reconsider features dropped previously until
no features can be dropped. Finally, the backward phase is applied to CMB(C) obtained at the for-
ward phase, and this is the same as the backward phase of IAMB. FBEDX significantly improves
computational efficiency while retaining competitive accuracy.

PFBP. Motivated by FBEDX, the Parallel Forward-Backward with Pruning (PFBP) algorithm
was proposed for improving IAMB to tackle big data with high dimensionality [95]. PFBP enables
computations to be performed in a parallel way by partitioning data both in terms of rows (sam-
ples) as well as columns (features) and using meta-analysis techniques to combine results of local
computations. In addition to the early dropping strategy proposed in Reference [12], PFBP also
proposed two new heuristics of early stopping with the consideration of features within the same
iteration and early returning the current best feature for addition or removal. It has been shown
that PFBP can scale to millions of features and millions of training samples and achieves a super-
linear speedup with increasing sample size and linear scalability with respect to the number of
features and processing cores.

3.3.2 Methods of Divide-and-conquer MB Learning. In this subsection, we will discuss eight
representative divide-and-conquer algorithms, i.e., MMMB [93], HITON-MB [7], semi-HITON-
MB [7], PCMB [69], IPCMB [26], MBOR [23], STMB [30], and CCMB [100]. As illustrated in
Figure 3, given the class variable C, how to learn its parents and children and identify its spouses
is the main difference between those algorithms. Generally speaking, there are three strategies for
learning PC(C): SFBS, IFBS, and the backward framework. SFBS and IFBS for PC learning are very
similar to those for MB learning. The instantiations of SFBS and IFBS for PC learning are present
in Algorithms 5 and 6, respectively, while the backward framework for PC learning is shown in
Algorithm 7.

MMMB. The MMMB (Max-Min MB) algorithm [93] first employs the MMPC (Max-Min Parents
and Children) algorithm to find candidate parents and children of C, CPC(C). MMPC [93] utilizes
the SFBS framework to search for CPC(C) first, then prunes CPC(C) at the backward phase, as
shown in Algorithm 5. The novelty of MMPC lies in the fact that at Step 7 of the forward phase in
Algorithm 5, MMPC proposes a max-min greedy search strategy to identify the best feature from
F\ CPC(C) at each iteration. Specifically, in the forward phase, at each iteration, given the current
CPC(C) (initially CPC(C) is empty), for each feature X in the remaining candidate features (i.e.,
X € F\ CPC(C)), MMPC first calculates the associations of X and C conditioning on all possible
subsets of CPC(C), respectively, and chooses the minimum association as the association of X and
C. Then MMPC chooses the next feature to be included in CPC(C) as the one that exhibits the
maximum association among the features in F \ CPC(C) and is dependent on C, while the features
independent of C are discarded and never considered as candidate PC again. The forward phase
terminates until each feature in F \ CPC(C) and C are independent given any subsets of CPC(C). At
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ALGORITHM 5: The Instantiation of SFBS for PC Learning

1:

e T e e

Input: Feature set F and the class variable C
Output: CPC(C)

: CPC(C) = 0
: // Filtering out irrelevant features by Proposition 3.1 (if X 1 C holds, X ¢ PC(C))

R=F\S (X €S, X 1 C|0);

: //Forward phase: Adding candidate PC (or relevant) features to CPC(C)

repeat
Select the best feature X € R with a greedy strategy;
CPC(C) =CPC(C)U{X}; R=R\ X;

: until no features in R are added to CPC(C);
: //Backward phase: Removing false positives from CPC(C);

: repeat
Consider each feature Y € CPC(C);
if 3S C CPC(C) \ Y s.t. Y 1L C|S then
CPC(C) =CPC(CO) \ Y;
end if
: until no features in CPC(C) are removed;
: Output CPC(C)

ALGORITHM 6: The Instantiation of IFBS for PC Learning

1:

14:
15:
16:

R A A

Input: Feature set F and the class variable C
Output: CPC(C)

: CPC(C) = 0;
: R=F\S (¥YX eS8, X 1 Clo);
repeat

//Forward phase: Adding candidate PC (relevant) features to CPC(C)
Select the best feature X € R with a greedy strategy;
CPC(C) =CPC(C)U{X};R=R\ X;
//Backward phase: Removing false positives from CPC(C)
repeat

Consider each feature Y € CPC(C)
if 3S C CPC(C) \ Y s.t. Y 1 C|S then
CPC(C) =CPC(O)\ Y;
end if
until no features in CPC(C) are removed;
until no features in R are added to CPC(C);
Output CPC(C)

the backward phase, MMPC examines whether each feature Y in CPC(C) obtained in the forward
phase is independent of C conditioning on all possible subsets of CPC(C) \ Y. If so, Y is removed
from CPC(C); otherwise, it is retained.

Now, we discuss how to learn spouses of C after CPC(C) is obtained. The spouses of C are

the parents of the children of C excluding C U PC(C). However, MMPC cannot distinguish parents
from children of C during the procedure of identifying PC(C). Thus, MMMB considers the union of
parents and children of the features in CPC(C) excluding C U CPC(C) as the the candidate spouses
of C, called CSP(C). Then by Proposition 3.2, for each feature Y in the CSP(C) set and each feature
X in CPC(C), if there exists a subset S C F\ {C, X, Y} (S was identified and stored in the MMPC
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ALGORITHM 7: The Backward Framework for PC Learning

1: Input: Feature Set F and the class variable C
Output: CPC(C)
: CPC(C) = {F};
i=0;
: repeat
for each feature X in CPC(C) do
if S € CPC(C) \ X and |S| = i such that X 1L C|S then
CPC(C) =CPC(C) \ X;
end if
end for
i=i+1;
: until i > [CPC(O)[;
: Output CPC(C)

R A

==
N = O

subroutine) such that both C 1L Y|S and C £ Y|X U S hold, then MMMB considers Y as a spouse
of C.

HITON-MB and Semi-HITON-MB. HITON-MB uses the HITON-PC algorithm to discover
PC(C) [7]. Different from MMPC, HITON-PC employs the IFBS framework as presented in Algo-
rithm 6. HITON-PC interleaves the forward phase and the backward phase to make candidate PC
learning and false PC removal alternatively. In addition, at Step 6 in Algorithm 6, HITON-PC adopts
a simpler search strategy than MMPC for learning candidate parents and children of C. Specifically,
at Step 6, at each iteration, HITON-PC removes a feature, called X, with the highest association
with C conditioning on an empty set from the candidate feature set R and adds it to CPC(C), then
triggers the backward phase for removing false positives from the current CPC(C) due to the X’s
inclusion. For spouse learning, in the original version of the HITON-MB algorithm [7], the idea of
HITON-MB is the same as that of MMMB.

However, Pena et al. [69, 70] pointed out that MMMB and HITON-MB cannot return the correct
MB even under the faithfulness assumption. They found that (1) both MMPC and HITON-PC may
return a superset of the true PC of C, and (2) the spouse discovery procedures of both MMMB and
HITON-MB cannot find the correct spouses of C. Tsamardinos et al. [96] also identified the flaw
of MMPC in point (1) above independently and proposed a corrected MMPC using the symmetric
relation between parents and children in a BN (i.e., symmetric check). That is, if X is a parent
or a child of C, then C should be a child or a parent of X. Following this, Aliferis et al. [5] pro-
posed a general local learning (GLL) framework and corrected the two flaws discussed above. In
addition, in Reference [5], a new Semi-HITON-PC algorithm was proposed to speed up HITON-
PC. The difference between Semi-HITON-PC and HITON-PC is that at Step 10 in Algorithm 6,
Semi-HITON-PC only considers the elimination of the newly added feature at Step 7 before the
candidate feature set R becomes empty and a full feature elimination in CPC(C) will be performed
after R is empty. Employing Semi-HITON-PC, Semi-HITON-MB was proposed accordingly [5].

PCMB. The parents-and-children-based MB (PCMB) algorithm [69, 70] was the first correct
divide-and-conquer MB learning algorithm. Under the assumptions of faithfulness and causal suf-
ficiency, PCMB returns the true MB of a target variable in the corresponding DAG. PCMB uses the
two subroutines, called GetPCD and GetPC, to identify PC(C). The GetPCD subroutine is to find
CPC(C), and the GetPC subroutine removes false positives in CPC(C) using the symmetric check,
i.e., for each feature X in CPC(C), if the set of parents and children of X does not include C, then
X will be removed from CPC(C).
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ALGORITHM 8: The Framework of Spouse Learning

1: Input: C, CPC(C), and Sepset(X) for each feature X in F
Output: Spouses of C (SP(C))

2: SP(C) = 0;

3: for each feature X in CPC(C) do

4:  Find CPC(X) using a PC learning algorithm (e.g., MMPC)
5. for each feature Y in CPC(X) \ {C U CPC(C)} do

6: if Y L C|X U Sepset(Y) then

7: SP(C) = SP(C) U Y;

8: end if

9:  end for
10: end for
11: Output SP(C)

GetPCD adopts the similar idea of MMPC, but they have two differences. First, GetPCD adopts
the IFBS framework. Second, in the backward phase, for each feature X in the current CPC(C),
GetPCD calculates the associations of X and C conditioned on all possible subsets of CPC(C) and
chooses the minimum association as the association of X and C. If X and C are assessed to be
independent given the minimum association, then X will be removed from CPC(C). Pena et al. [69,
70] stated that CPC(C) learnt by GetPCD may be a superset of the true parents and children of
C, since some non-child descendants of C are added to CPC(C). Thus, GetPC was proposed to
remove these non-child descendants using the symmetry check. As for finding the spouses of C,
for each feature X € CPC(C) obtained by GetPC, first, PCMB uses GetPC to find PC(X). Then for
each feature Y in PC(X), if there exists a subset S within F \ {C, X, Y} (S was identified and stored
in the procedure of GetPCD) such thatboth C 1L Y|Sand C A Y|S U {X} hold, then Y is a spouse of
C with regard to X. The above procedure of spouse learning is summarized in Algorithm 8 [5, 70].
The study in References [5, 70] has shown that if the input CPC(C) and the PC learning algorithm
used by Algorithm 8 are correct, then Algorithm 8 is complete and sound [5].

IPCMB. The Iterative Parent-Child based search of MB (IPCMB) algorithm [26] is quite similar
to PCMB. The key difference between them is that IPCMB employs the RecognizePC algorithm [48]
to find the PC set of C. RecognizePC uses a backward strategy as shown in Algorithm 7. Initially,
RecognizePC assumes that all features in F are the candidate PC of C; that is, CPC(C) = F. To
remove false positives from CPC(C), RecognizePC uses conditional independence tests to check
each feature in CPC(C) level by level of the cardinality of the conditioning sets, starting with an
empty set.

For spouse discovery, IPCMB adopts the framework in Algorithm 8. And as an additional im-
provement, IPCMB embeds the symmetry check before Step 5 in Algorithm 8. That is, for each
feature X in CPC(C), if CPC(X) obtained at Step 4 does not include C, then IPCMB does not im-
plement Steps 6 to 8 and moves to the next feature in CPC(C).

STMB. For the divide-and-conquer approach, in the spouse discovery step, identifying parents
and children of each feature in CPC(C) is the most computationally expensive due to the exhaustive
search for conditioning sets. To mitigate this computational efficiency problem, the simultaneous
MB (STMB) algorithm [30] presents two new strategies. First, STMB [30] identifies the spouses of
C from F \ CPC(C) instead of the union of parents and children of each feature in CPC(C). Second,
STMB removes false positives from CPC(C) using the candidate spouses selected currently instead
of using the symmetric check. These two strategies may make STMB more efficient than MMMB,
HITON-MB, and IPCMB.
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Specifically, STMB includes the following four steps: At Step 1, STMB finds CPC(C) by using the
RecognizePC algorithm. At Step 2, for each feature X € CPC(C), STMB identifies the spouses of
C (SP(C) from F \ CPC(C) and removes false positives from CPC(C) using the candidate spouses
selected at this step alternatively. At Step 3, STMB removes false positives in SP(C) by using the
CPC(C) U SP(C) obtained at Step 2. At Step 4, STMB removes false positives from CPC(C) by using
SP(C) obtained at Step 3.

But STMB still suffers from the problem of data inefficiency at Steps 3 and 4, since at the two
steps it uses an entire set as a conditional set instead of a subset exhaustive search.

MBOR. The larger the size of a conditioning set in an independence test, the less reliable is
the independence test. The MB learning algorithms discussed above, such as IAMB, MMMB, and
PCMB, may miss true positives due to the unreliability of the conditional independence tests if the
conditioning set is large. To address this problem, MBOR (Markov Boundary search using the OR
condition) [23] was designed. The first difference between MBOR and the existing MB algorithms is
that MBOR applies the “OR condition” to consider two features X and Y as neighbors if Y € PC(X)
OR X € PC(Y). In contrast, MMMB, HITON-MB, and PCMB employ the “AND condition,” which
means that two features X and Y are considered as neighbors if Y € PC(X) AND X € PC(Y). The
OR condition is less strict than the AND condition and makes it easier for true positives to enter
the MB. The second difference is that MBOR finds a superset of the spouses of C from F \ PC(C) at
Step 1 instead of the union of parents and children of each feature in PC(C). Since MBOR uses the
MBtoPC algorithm [23] to find parents and children of C, which is the variant of the simultaneous
MB discovery approach, it still suffers from the problem of data inefficiency.

CCMB. To further address the incorrect conditional independence tests, Wu et al. [100] pre-
sented a new concept of PCMasking to describe a type of incorrect conditional independence tests
in the MB learning process and theoretically analyzed the mechanism behind this type of test.
In the work, PCMasking denotes that the class variable and its children may be independent of
each other conditioning on its parents and vice versa due to incorrect independence tests. Based
on the theoretical analysis, the cross-check and complement MB (CCMB) learning algorithm was
proposed to repair this type of incorrect CI independence test for accurate MB learning. Specifi-
cally, CCMB first learns the PC set of C using a subroutine called FindPC. FindPC is an improved
version of the GetPCD algorithm and aims to effectively identify all possible true parents and chil-
dren of C except for the PC features discarded by FindPC due to the PCMasking phenomenon.
Then CCMB recovers the discarded PC features using the OR rule based on FindPC. The spouse
learning phase of CCMB is the same as that of PCMB. The drawback of CCMB is that although it
significantly reduces the false negative rate, CCMB gets a little higher false positive rate than the
divide-and-conquer algorithms discussed above due to the OR rule.

3.3.3 Methods of MB Learning with Interleaving PC and Spouse Learning. BAMB [50] and
EEMB [99] implement the PC learning phase and the spouse identifying phase alternatively for
the trade-off between data efficiency and time efficiency.

BAMB. The balanced MB learning (BAMB) algorithm [50] does not separate PC learning and
spouse identifying into two independent phases. It finds the candidate PC and spouse set of C
and removes false positives from the candidate set in one go. Specifically, using the IFBS frame-
work, BAMB integrates PC learning and spouse identifying into one procedure. At each iteration,
once a new feature is added to the current CPC(C), BAMB is triggered to find the spouses of C
(SP(C)) with regard to this feature. Then BAMB first uses the found SP(C) to remove false positives
from CPC(C), then employs the updated CPC(C) to prune SP(C) in turn. In this way, during the
MB search BAMB can keep both CPC(C) and SP(C) as small as possible for achieving a trade-off
between data efficiency and time efficiency. However, in the PC learning and spouse identifying
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phase, due to false PC’s inclusion, many false spouses may enter SP(C), leading to a large size of
SP(C). BAMB will perform an subset search in the union of current SP(C) and CPC(C) to remove
false PC and spouses, respectively, and thus the large size of {SP(C) U CPC(C)} will make BAMB
both time- and data-inefficient.

EEMB. To tackle the drawback of BAMB, the EEMB (efficient and effective MB) algorithm [99]
breaks BAMB into two independent subroutines: ADDTrue and RMFalse. EEMB first uses the
ADDTrue subroutine to learn the candidate PC set and the spouse set, then employs the RMFalse
subroutine for pruning the two sets. In the ADDTrue subroutine, before a candidate PC feature X
is added to the current CPC(C), EEMB will test whether X is independent of C using the current
CPC(C). If so, X will be discarded and consider the next candidate PC feature. If not, EEMB is
triggered to identify the spouses of C with regard to X without performing a subset search in the
current SP(C). After this pruning, EEMB will greatly prune the false PC features before the spouse
learning phase is triggered and make both CPC(C) and SP(C) keep as small as possible before
the RMFalse subroutine runs. In the RMFalse subroutine, EEMB first uses the union of SP(C) and
current CPC(C) to prune CPC(C), then removes false positives from SP(C) using the union of the
updated CPC(C) and current SP(C).

3.3.4 Methods of MB Learning with Relaxed Assumptions. In this subsection, we will discuss
six representative MB learning algorithms for tackling the situation where the faithfulness or
causal sufficiency assumption is violated, i.e., KIAMB [70], TIE* [88], SGAI [108], LCMB [51], WL-
CMB [51], and M3B [106].

KIAMB. Let Sy, Sz, Z, and W denote four mutually disjoint feature subsets, the composition
property assumes thatif S; 1L S;|Z and S; 1L W|Z hold, then S; 1L (S, U W)|Z holds [64]. The com-
position property assumption is much weaker than the faithfulness assumption. KIAMB [70] aims
to tackle MB learning when the faithfulness assumption is violated. The difference between KI-
AMB and TAMB is that KIAMB allows the user to specify the trade-off between greediness and
randomness in the MB search through a randomization parameter K € [0, 1]. In the forward step,
IAMB greedily adds to CMB(C) the feature with the highest association with C among all features
excluding features currently in CMB(C). In contrast with IAMB, KIAMB uses two sets for storing
candidate MBs, i.e., CMB(C) and CMB1(C). In the forward phase, at each iteration by conditioning
on CMB(C), KIAMB first adds to CMB1(C) the feature with the highest association with C among
all features excluding features currently in CMB(C). Then KIAMB randomly chooses a CanMB
subset from CMB1(C) with size max (1, .(|CMB(C)| - K)J) and adds to CMB(C) the feature with
the highest associations with C in this CanMB set. If setting K = 1, KIAMB is reduced to IAMB,
while if taking K = 0, KIAMB is a completely random approach that is expected to identify all the
MBs of C with a nonzero probability if running repeatedly for enough number of times. IAMB
and KIAMB are both correct under the composition assumption [70]. However, KIAMB does not
guarantee finding all MBs of the class variable and is computationally more expensive than IAMB,
because it has to be run multiple times.

TIE". Statnikov et al. [88] relaxed the composition assumption to the local composition assump-
tion and proposed a family of the TIE* (Target Information Equivalence) algorithm for multiple MB
learning. The joint probability distribution P(V) satisfies the local composition property with re-
spectto Cif C 1L Si|Zand C L S,|Z,C 1 (S; U S;)|Z. Specifically, TIE* mainly includes three steps.
In Step 1, TIE* uses an existing single MB learning algorithm to learn a MB(C) from a dataset D
defined on F (i.e., the original distribution) and outputs MB(C). In Step 2, TIE* uses a procedure to
generate a new dataset Dy, (i.€., the embedded distribution that is obtained by removing subsets
of features of MB(C) from the original distribution D). The motivation is that Dy, may lead to
identifying of a new MB(C) that was previously “invisible” to a single MB learning algorithm, since
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it was “masked” by another MB of C. Next, in Step 3 the MB learning algorithm employed in Step
1 is applied to Dy, resulting in a new candidate MB of C, called CMB,¢., (C) in the embedded
distribution. If CMB,;..,(C) is also an MB of C in the original distribution according to a criterion
(independence tests or classification accuracy), then CM B¢, (C) is considered as a new MB of C.
Steps 1-3 are repeated until all possible datasets Dy, generated by the procedure used in Step 2
have been considered. It has been proved that TIE* can output all possible MBs of the class variable
in a dataset when the faithfulness assumption is violated.

SGAL Due to computational problems, it may not be tractable for TIE* to learn all possible MBs
for feature selection. To deal with this problem, the SGAI (Selection via Group Alpha-Investing)
algorithm was proposed [108]. Compared to the standard MB learning algorithms discussed above,
SGAI combines the MB theory with the idea of classical feature selection. Instead of an exhaustive
search over a large number of MBs in a dataset, SGAI presents the concept of a representative
set, which consists of the features of all possible MBs. Each member in the representative set
is not a single feature, but a feature set (i.e., a group of features). SGAI first uses the existing
MB learning algorithms (e.g., HITIOM-MB) to learn the representative sets. Then SGAI presents
a group Alpha-investing procedure to select a best subset from representative sets. The group
Alpha-investing procedure can simultaneously optimize selections within each representative set
as well as between those sets to achieve a feature subset that maximizes the predictive power for
classification. Compared to TIE*, SGAI does not learn all possible MBs from a dataset, but chooses
a feature subset that maximizes the prediction power for classification instead. However, when
both the numbers of groups in the representative set and features in each group become large,
SGAI may not be efficient and effective. Furthermore, since the number of MBs in a dataset is not
known, the representative set cannot guarantee to include the features of all possible MBs in the
dataset. In this case, the final output of SGAI is not optimal for feature selection.

LCMB and WLCMB. To tackle incorrect independent tests, in Reference [51], the problem
of incorrect independent tests is described as swamping and masking. Swamping means a true
positive becomes a false negative, while masking means a true negative becomes a false positive.
Based on the KIAMB algorithm, the LRH algorithm [51] was proposed to tackle the problem of
swamping and masking and it is correct under the local composition assumption.

Compared to KIAMB, the innovation of LRH is that a selection-exclusion-inclusion (SEI) pro-
cedure was proposed to search for a candidate MB set of C that contains as few false positives as
possible. Specifically, in the SEI procedure, the selection phase selects the candidate MB features
of C conditioning on the MB currently selected, then for each feature in this MB set, the exclusion
phase removes this feature if it is independent of C conditioning on its neighbors in the MB set; fi-
nally, the inclusion phase chooses the K features in the current MB with the high associations with
C as the output of the SEI procedure at each iteration. Since IAMB and KIAMB remain correct un-
der the local composition assumption, in Reference [51], IAMB, KIAMB, and LRH were integrated
into a framework called LCMB (Local Composition MB). Furthermore, to tackle the violation of
the faithfulness assumption, based on the LCMB framework, WLCMB (Weak Local Composition
MB) was proposed [51]. WLCMB interleaves LCMB with a search-resuming procedure and has a
higher computational complexity than LCMB.

M3B. When the causal sufficiency assumption is violated, some constraint-based BN learning
algorithms have been proposed to learn a global Bayesian network structure with latent variables
and these algorithms are computationally expensive [20, 87]. To tackle variables in a dataset having
latent common causes, the maximal ancestral graph (MAG) has been developed to represent latent
common causes [77]. In contrast to DAGs, when learning a MAG with latent common causes, we
do not pre-determine the number of latent common causes and their exact locations with respect
to other features [77].
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In Reference [106], authors adopted the MAG to represent latent common causes. Since a MAG
is different from a DAG, the work in Reference [106] first defines the concept of MB of the class
variable in a MAG with latent common causes, i.e., MAG MB (MMB), and presents a theoretical
analysis of its properties. Then M3B was proposed to learn the MMB of the class variable. M3B
mainly includes two new algorithms to find the MMB of the class variable: the AdjV algorithm
using a backward strategy, as shown in Algorithm 7, to find the PC of the class variable; and the
RecSearch algorithm to discover the remaining features of the MMB of the class variable. Authors
have proved that M3B finds the correct MMB in a dataset with latent common causes.

3.3.5 Methods of MB Learning with Special Purpose. In the section, we will discuss the six
representative MB learning algorithms for some special purposes, i.e., MIMB for identifying an
MB of a class variable from multiple datasets [104], MCES for stable predictions with distribution
shift [107], MIAMB and MKIAMB for learning an MB of multiple class variables [52], and BASSUM
and Semi-IAMB for weak supervision learning [15, 85].

MIMB. The MB learning algorithms discussed above all learn MBs from a single observational
dataset. Yu et al. [104] recently studied the problems of MB learning in multiple interventional
datasets. This is the first work systematically studying the conditions for finding the correct MB
of a class variable and the conditions for identifying the parents of the class variable through
MB learning. Based on the theoretical analysis, authors designed the MIMB (Multiple Interven-
tional MB) algorithm to learn MB in multiple Interventional datasets. MIMB also adopts a divide-
and-conquer approach that consists of two new subroutines. One subroutine, called MIPC, was
designed for learning PC(C) from multiple interventional datasets using the IFBS framework as
presented in Algorithm 6, and the other was proposed to identify spouses of C based on the frame-
work as shown in Algorithm 8.

MCES. To achieve stable predictions for multiple datasets with different distributions, based
on the theoretical results in Reference [104], the MCFS (multi-source causal feature selection)
algorithm was proposed [107]. By utilizing the concept of causal invariance [63, 71] and mutual
information, MCFS formulates the problem of stable predictions in multiple datasets as a search for
an invariant set across different datasets. To speed up the search, this work analyzed the upper and
lower bounds of the invariant set and made MCEFS learn the best invariant set within the bounds
for stable predictions. MCFS outperforms some well-known existing feature selection algorithms
designed for a single dataset. In addition, this work demonstrated that for multiple datasets with
different distributions, the set of parents of a class variable is the promising invariant set for stable
predictions, while the MB or PC of the class feature may not be.

MIAMB and MKIAMB. The algorithms described above all focus on learning an MB of a single
class variable, e.g., MB(C), the MB of C. The work in Reference [52] recently explored the problem
of learning an MB of multiple class variables, e.g., one MB, MB(Cy, C;) for both class variables
C; and C,. This work first proved that under the local intersection assumption an MB of multiple
class variables can be constructed by simply taking the union of the MBs of the individual class
variable excluding the class variables from the union (if they are included in the union). Then
the MB learning problem for multiple class variables was transformed to a number of MB learning
problems of a single class variable. By considering the violation of faithfulness assumption, MIAMB
and MKIAMB were proposed in Reference [52]. For a set of class variables of interest, given an
ordering that determines which class variable’s MB needs to be learned in the current step, MIAMB
and MKIAMB first find an MB of two class variables and then learn an MB of three class variables
and so on until all the class variables are considered.

BASSUM. To leverage both unlabelled and labelled data to help MB learning (i.e., weak-
supervision MB learning), Cai et al. [15] proposed a novel BAyesian Semi-SUpervised Method
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Table 2. Representative Score-based Algorithms

Category Algorithm
Divide-and conquer MB learning SLL [61]
(learning PC and spouses separately S’TMB [31]
using a BN structure learning S*TMB* [31]
algorithm) fGES-MB [76]
Simultaneous MB learning (learning DMB [2]

PC and spouses simultaneously) RPDMB [2]

MB learning with relaxed BSS-MB [57]
assumptions LMB-CSEM [29]

(BASSUM). To the best of our knowledge, BASSUM was the first weak-supervision MB learning
algorithm. In the first phase, BASSUM learns the parents and children and then the spouses of C by
taking into account both labelled and unlabelled data examples using a modified version of the G*
test. The modified version of the G test can use unlabelled data examples to enhance the reliability
of the conditional independence tests. In the second phase, to prune the MB obtained in the first
phase using unlabelled data examples, a concept of effective feature sets was proposed. It is a sub-
set of the PC set of C obtained in the first phase. Using the effective feature sets, BASSUM prunes
the PC set of C without accessing the information of C in labeled data examples. However, there
are no guarantees that the modified G? test will follow a chi-squared distribution, and this may
lead to unpredictable results. Moreover, BASSUM cannot be applied in restricted semi-supervised
environments, which assume that labelled examples are only from one class while all unlabelled
data are labeled all positives or all negatives before learning starts [85].

Semi-IAMB. In restricted semi-supervised environments mentioned above, assuming that all
missing labels are negative or assuming that they are positive, References [84, 85] proposed a gen-
eralization of the conditional independence tests and then extended the work to semi-supervised
data, which contains a small number of binary labelled data and a large number of unlabelled
examples.

Specifically, authors present a surrogate class variable for semi-supervised hypothesis testing.
Let Cy represent assigning 0 to all missing class labels and C; represent assigning 1 to all missing
class labels, authors use the surrogate test X IL Cy or X 1L C; to replace the true unlabelled class
variable test X 1L C. And they have proved that (1) both surrogate tests (i.e., X 1L Cy or X 1L C;)
have exactly the same false positive rate as the ideal test (i.e., X 1 C); (2) both surrogate tests will
have a higher false negative rate than the ideal test. To reduce the false negative rate, authors
suggested using more data samples (if possible) or prior knowledge of the class probability to
determine which one of the two surrogates will have the lower false negative rate. Moreover, in
the work, it has been proved that both surrogate tests produce exactly the same feature ranking as
X 1 C.Then, based on these theoretical results authors developed the Semi-IAMB algorithm [85],
which uses the surrogate tests. However, the theoretical results in the work now only can deal
with binary class variables and consequently Semi-IAMB cannot learn the MB of a class variable
with more than two classes.

4 SCORE-BASED METHODS

This type of method employs score-based BN structure learning algorithms to learn the MB or
PC of the class variable instead of using independence tests. Table 2 summarizes the representa-
tive score-based MB learning algorithms. Score-based MB learning algorithms are not the focus in
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MB learning research, thus the number of algorithms is much smaller than constraint-based algo-
rithms. In the following, Section 4.1 presents the basis of score-based methods. Section 4.2 gives
the brief discussions of score-based methods. Section 4.3 extensively reviews the representative
score-based methods.

4.1 Basis of Score-based Methods

Given a dataset D, score-based BN learning algorithms aim to find the structure of the BN, i.e., the
DAG, that maximizes a scoring function, which is usually defined as a measure of fitness between
the DAG and D. They use the scoring function in combination with a greedy search method to
measure the goodness of each explored structure from the space of feasible solutions.

The representative scoring functions designed based on different principles include K2 [21],
BDeu [14], BDe [38], MDL/BIC [46], AIC [4], and MIT [16]. The score-based BN learning problem
can be formulated as: given D, learning a DAG G* such that G* = argmaxgco f(G : D) where
f(G : D) is the scoring function and O is the family of all possible DAGs defined on D. A desirable
property for a scoring function is the decomposability that enables to compute the global score of
a DAG by aggregating local scores. (G : D) is decomposable if the score assigned to a structure
can be expressed as a combination of local scores of each node and its parents in G: f(G : D) =
Yviev f(Vispac(Vi) : Dy, pag(vi))-

Since scoring functions are decomposable, the main idea of score-based MB learning algorithms
is to learn a DAG of the features currently selected, C, and a new feature, then read the MB (or PC)
from the DAG at each iteration. Thus, the score-based algorithms can distinguish parents from
children of the class variable during MB learning, while the constraint-based algorithms cannot.

4.2 Overview of Score-based Methods

Existing score-based MB learning algorithms are mainly the score-based variants of the constraint-
based MB learning algorithms. Through learning a DAG around a class variable, these algorithms
read the MB of the class variable from the DAG. Since existing score-based MB learning algorithms
are motivated from constraint-based methods, in Table 2, we categorize these algorithms into three
types: divide-and-conquer MB learning, simultaneous MB learning, and MB learning with relaxed
assumptions.

The SLL algorithm [61] is a score-based variant of the divide-and-conquer MB learning algo-
rithms. In the PC learning and spouse identifying phases, SLL employs a BN structure learning
algorithm to learn PC and spouses separately. To remove false positives, SLL implements the sym-
metric check using the AND rule to remove false positives in the found PC set, while the symmet-
ric check using the OR rule removes false positives in the found spouse set. The symmetric check
makes SLL computationally expensive, as the size of the MB of the class variable becomes large.

To improve the search efficiency of SLL, the STMB algorithm [31] was proposed, which is
a score-based variant of STMB. S*TMB learns the spouses of C from F \ CPC(C) instead of the
union of parents and children of each feature in PC(C) and employs the found spouses and PC to
remove false positives instead of the symmetric check. S“TMB™ is an improved version of S*TMB
for further improving the computational efficiency of S*TMB.

Different from SLL and S?TMB, DMB and RPDMB [2] do not divide MB learning into the PC
learning step and the spouse identifying step. Instead DMB and RPDMB learn PC and spouses
of C simultaneously. The fGES-MB algorithm was developed based on the fGES algorithm [76].
By adopting several optimization techniques (e.g., score caching and parallelization), fGES greatly
speeds up the GES algorithm [19] and can deal with high-dimensional data. As fGES-MB is based
on fGES and given the high efficiency of fGES, fGES-MB can deal with high-dimensional data.
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ALGORITHM 9: Candidate PC Learning by SLL

1: Input: Feature set F and the class variable C
Output: CPC(C)
: CPC(C) = 0;
repeat
Select a feature X € F;
F=F\X;
//using an existing score-based BN learning algorithm
Learning a DAG on the set CPC(C) U {X} U {C};
Obtain CPC(C) from the learnt DAG;
9: until F is empty;
10: Output CPC(C).

A A R o

When the faithfulness assumption is violated, BSS-MB [57] was proposed to learn multiple MBs
using a score criterion that is a score-based variant of KIAMB. When the causal sufficiency as-
sumption is violated, LMB-CSEM [29] was the first score-based algorithm to learn the MB of C
with latent variables in a DAG. BSS-MB does not guarantee finding all possible MBs, and it does
not show significant advantages over KIAMB or TIE* in terms of time efficiency and learning ac-
curacy. LMB-CSEM needs to use the EM algorithm to tackle the missing values of latent variables,
and thus it will be computationally expensive when the size of data samples is large.

In summary, so far it is not easy to use score criteria for MB learning when the faithfulness
or causal sufficiency is violated, and existing algorithms may suffer the computational problem
of BN structure learning and they are still based on the framework of the constraint-based MB
learning. These algorithms do not show significant advantages over the constraint-based methods,
and thus they have not attached as much attention as constraint-based methods in the causality-
based feature selection research.

4.3 Detailed Review of Score-based Methods

4.3.1 Divide-and-conquer Methods. In this subsection, we discuss the three representative
score-based methods with the divide-and conquer strategy as follows:

SLL. The SLL (Score-based Local Learning) algorithm [61] first learns the PC set of a class vari-
able as shown in Algorithms 9 and 10, and then it identifies the spouses of the class variable as
shown in Algorithm 11. Specifically, SLL includes the following four steps:

e (Step 1) Finding candidate PC of C. In Algorithm 9, initially CPC(C) = 0. At each iteration,
SLL randomly selects a feature X € F and removes X from F, then uses a score-based BN
learning algorithm, such as those in References [19, 44], to learn a DAG of the set (C U
CPC(C) U X). SLL obtains a new CPC(C) from the learnt DAG. The final CPC(C) will be
obtained until the set F is empty.

e (Step 2) Symmetry checks for pruning CPC(C). SLL uses a score-based variant of symmetric
checks as shown in Algorithm 10. SLL learns the PC of each feature X in CPC(C) using
Algorithm 9. If C ¢ CPC(X), then SLL removes X from the CPC(C).

o (Step 3) Identifying the spouses of C as shown in Algorithm 11. Let SP(C) = 0. SLL first
uses Algorithm 9 to find the union of PC of each feature in PC(C) obtained in Step 2 as the
candidate spouses of C, called CSP(C) \ PC(C) U C. Then for each feature X in this union,
SLL learns a DAG of (C U PC(C) U X U SP(C)) and obtains a new SP(C) from the learnt
DAG until the union is empty.
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ALGORITHM 10: PC Learning with Symmetric Check by SLL

1:

= e e
SO O N

R AT A o

Input: Feature set F and the class variable C
Output: PC(C)

: Find CPC(C) using Algorithm 9;
: //Symmetric check whether C € PC(X)(X € CPC(C))

repeat
Select a feature X € CPC(C);
CPC(C) = CPC(C) \ X;
Obtain CPC(X) using Algorithm 9;
if C ¢ CPC(X) then
CPC(C) = CPC(C) \ X;
end if

: until CPC(C) is empty;
. PC(C) = CPC(C);
: Output PC(C).

ALGORITHM 11: Spouse Learning by SLL

1:

—_
(=1

R AR A

Input: Feature set F and PC(C)
Output: SP(C)

: Find candidate spouses CSP(C), i.e., PC of each feature in PC(C) using Algorithm 10;
. CSP(C) = CSP(C) \ PC(C) U C; SP(C) = 0;

repeat
Select a feature X € CSP(C);
CSP(C) = CSP(C) \ X;
Learning a DAG on the set PC(C) U {X} U {C} U SP(C);
Obtain SP(C) from the learnt DAG;

: until CSP(C) is empty;
: Output SP(C).

o (Step 4) Finalizing spouses of C by the OR-rule symmetry constraint. In this step, SLL per-
forms symmetric checks for finalizing spouses. That is, if C € SP(X) but X ¢ SP(C), using
the OR rule, X should be added to SP(C). SLL first uses Algorithm 11 to find SP(C). Then
SLL learns the spouses of all features in F \ PC(C) using Algorithm 11. If the spouse set
of a feature includes C, the feature will be added to SP(C). The symmetric check will be

computationally expensive when the size of F \ PC(C) is large.

S?TMB. SLL is computationally expensive to learn DAGs for symmetric checks in Steps 2 and 4,
especially with a large size of the MB of C. The STMB (Score-based Simultaneous MB) algorithm
aims to improve the search efficiency of SLL by removing the symmetry checks in both PC and
spouse search steps (i.e., Steps 2 and 4 of SLL). S>TMB mainly consists of the following two steps.

e (Step 1) S’TMB shares the same Step 1 as SLL for learning CPC(C).

e (Step 2) Pruning CPC(C) and identifying SP(C). Let SP(C) = @ and R = F \ CPC(C). S*TMB
learns the spouses of C (i.e., SP(C)) from R instead of the union of parents and children of
each feature in PC(C). It prunes CPC(C) and identifies SP(C) simultaneously at Step 2. For
each feature X € R, STMB learns iteratively a DAG of the subset of C U CPC(C) U SP(C) U
X and prunes CPC(C) and obtains SP(C) using the learnt DAG, until R is empty.
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S’TMB™. However, in Step 2, the size of CPC(C) U SP(C) may grow uncontrollably large, lead-
ing to the same expensive computational cost as BN structure learning. To make the size of BN
structures learnt at each iteration as small as possible, STMB* decomposes Step 2 of STMB into
two steps as follows: At Step 2(a), S“TMB* only learns a DAG of C U CPC(C) U X to prune CPC(C)
and obtain SP(C) instead of C U CPC(C) U SP(C) U X. And Step 2(b) uses the features in SP(C)
one-by-one to prune both CPC(C) and SP(C).

e (Step 1) S’TMB™ uses the same method as S?TMB for learning CPC(C).

e (Step 2a) Pruning CPC(C) and learning SP(C). Let SP(C) = 0 and R = F \ CPC(C) initially.
For each feature X € R, S’TMB" learns iteratively a DAG of the subset of C U CPC(C) U X
instead of C U CPC(C) U SP(C) U X and prunes CPC(C) and obtains SP(C) using the learnt
DAG until R is empty.

e (Step 2b) Pruning spouses and CPC(C). In this step, let R = SP(C) and SP(C) = 0. For each
feature X in R, S’TMB" learns iteratively a DAG of the subset C U CPC(C) U X U SP(C),
then obtain CPC(C) and SP(C) from the learnt DAG until R is empty.

fGES-MB. The fGES-MB algorithm [76] has the forward and backward phases. In the forward
phase, by adding an edge between variables at each iteration, f{GES-MB selects the variables that
have the highest scores with the class variable as the class variable’s candidate PC, then it learns
the candidate PC of each of the variables in the candidate PC set of the class variable (i.e., candidate
spouses of the class variable). To keep the size of the candidate MB in the forward phase as small
as possible, f{GES-MB assumes that if the score of X and C is negative, X is not considered as a
candidate PC of C [18]. In the backward phase f{GES-MB removes false positives by removing an
edge at each time in the MB found in the forward phase until no more improvements in the score.

4.3.2  Simultaneous MB Learning Methods. DMB and RPDMB [2] are different from SLL and
S?TMB. They do not divide MB learning into the PC learning step and the spouse identifying step.
Instead, DMB and RPDMB learn PC and spouses of C simultaneously. These two algorithms only
need to learn a local DAG around the class variable to obtain an MB of the class variable instead of
learning many local DAGs. Specially, they first define two restricted search spaces, that is, CDAGs
(Class-focused DAGs; see Definition 1 in Reference [2]) and CRPDAGs (Class-focused Restricted
Partially Directed Acyclic Graphs; see Proposition 1 in Reference [2]). Then starting from an empty
graph, using the hill-climbing-based search operators proposed in Reference [1], DMB carries out a
local search in the space of CDAGs while RPDMB implements the search in the space of CRPDAG.
Both algorithms terminate until the scoring function does not improve. Finally, the two algorithms
read off MB(C) in the obtained graphs, respectively. Compared to SLL, S*TMB and fGES-MB, DMB,
and RPDMB do not need to learn DAGs many times. But the problem is of how to obtain the two
restricted search spaces is not clear in the paper [1]. If the size of the restricted search space is
large, the computational cost of learning DAGs may be expensive.

4.3.3 MB Learning Methods with Relaxed Assumptions. In this section, we will discuss two rep-
resentative score-based MB learning algorithms, BSS-MB and LMB-CSEM, for tackling the situa-
tions when the assumptions of faithfulness or causal sufficiency is violated.

BSS-MB. The BSS-MB (Bayesian stochastic search of MBs) algorithm [57] is a score-based vari-
ant of KIAMB for learning multiple MBs when the the faithfulness assumption is violated. BSS-MB
adopts a strategy similar to that used by KIAMB with K = 0, but it uses a Bayesian score framework
instead of conditional independence tests. In the growing phase, BSS-MB incrementally adds new
features to the candidate MB sets by computing the posterior probability of a conditional inde-
pendence statement. In the shrinking phase, BSS-MB removes from the MB sets the false positives
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identified using a Bayesian score. In addition, compared to KIAMB, each MB set found by BSS-MB
has an associated score that measures how well this feature subset acts as an MB.

LMB-CSEM [29]. When the causal sufficiency assumption is violated, we can use score-based
BN learning algorithms with latent variables to learn a global Bayesian network structure and
then get the MB [25]. However, it is very computationally expensive. LMB-CSEM [29] is specially
designed for MB learning with latent variables. It treats identifying the latent features included
in the MB as a missing value problem. It first assumes the existences of latent features in the MB
of C, then assigns these latent features into different non-overlapping latent subspaces. Within
each subspace, LMB-CSEM employs a constrained structure expectation-maximization (CSEM)
algorithm to greedily learn the MB with latent features. Then the final MB is obtained from the
optimal MBs within each subspace. LMB-CSEM has three major steps. At Step 1, LMB-CSEM uses
a standard MB discovery algorithm to find an MB of C from observed features as the baseline. At
Step 2, using the baseline MB set, it employs CSEM to learn an MB with one latent feature within
each subspace. At Step 3, if the score of the learned MB with one latent feature in one subspace is
higher than that of the baseline MB, the learned MB will be considered as a new baseline MB, and
Steps 2 and 3 are repeated to learn another latent feature until adding more latent features into
the learned MB no longer improves the MB score or violates the size constraint.

5 METHODS FOR DISTINGUISHING PARENTS FROM CHILDREN

Distinguishing parents (direct causes) and children (direct effects) of a class variable is critical
to the prediction of the consequence of the actions/interventions in decision making or robust
predictions in machine learning. Existing studies have illustrated that the set of direct causes of a
class variable can be used as the set of stable or invariant features for achieving robust predications
when the training data and testing data are obtained from different distributions [107]. However,
existing causality-based feature selection methods using conditional independence tests do not
distinguish parents from children. To address this problem, Table 3 summarizes the approaches of
global BN structure learning, local structure learning, neural networks for structuring learning,
and learning cause-effect relationships.

Global structure learning. The local-to-global structure learning approach, such as GSBN
[56], MMHC [96], and SLL+C/G [61], first learns each feature’s MB (or PC) using existing causality-
based feature selection methods, then constructs a DAG skeleton (i.e., an undirected graph) using
the found MBs (or PCs), and finally orients the edges of the skeleton using independence tests or
score criteria. To improve the MB learning efficiency, the TC algorithm [67] was proposed to use
the Relief feature selection algorithm to identify an approximate MB and conditional independence
tests to orient edges. Instead of finding the MBs of all features first, the GGSL algorithm [27] starts
with a randomly selected feature, then gradually expands the learned structure through a series of
local structure learning steps using a score-based MB learning algorithm. Developed from GGSL,
the PSL algorithm is a parallel Bayesian network structure learning algorithm [32].

Local structure learning. The local-to-global BN learning approach can deal with a dataset
with thousands of features. However, in many real-world applications, we are only interested in
the causal relationships around a class variable (e.g., causal genes of a disease in a gene dataset),
and it is not necessary to waste time and memory to learn a global BN structure. Then several local
learning algorithms have been designed for learning a local causal structure around a class variable,
such as CMB [28], PCD-by-PCD [103], MB-by-MB algorithms [97], and LCS-FS [49]. Given a class
variable, these algorithms first find an MB or PC of the class variable and construct a local structure
among the class variable and the features in the MB or PC, then sequentially find the MB or PC
of the features connected to the class variable and simultaneously construct local structures along
the paths starting from the class variable until the parents and children of the class variable have
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Table 3. Representative Methods for Distinguishing Parents from Children

Category Algorithm

GSBN [56]

MMHLC [96]

TC [67]

SLL+C and SLL+G [61]
GGSL [27]

PSL [32]
PCD-by-PCD [103]
CMB [28]

MB-by-MB [97]
LCS-FS [49]
DAG-GNN [109]
D-VAE [113]
Bengio-method [11]
ODLP and ODLP*[89]
DA [53]

Learning cause-effect relationships LiNGAM [86]

IGCT [22]

ANM [39]

Global BN structure learning

Local BN structure learning

Neural networks for BN structuring
learning

been distinguished or it is clear that the parents and children cannot be distinguished further
by continuing the process. For a class variable in a large network, the local learning algorithms
are able to greatly reduce CPU time compared with the entire BN network learning methods.
However, the existing local BN learning algorithms need to sequentially find the MBs or PCs of
the features until the causes and effects of the class variable have been distinguished, and thus
their time complexity may not be controllable.

Neural networks for structuring learning. Recently some work has been proposed for learn-
ing BN structures using neural networks. Yu et al. [109] proposed a deep generative model to
learn BN structures. Zhang et al. [113] proposed a structure learning algorithm using a varia-
tional autoencoder. However, these algorithms are computationally expensive for learning global
BN structures. Instead of learning a BN structure among multiple variables, the recent work in
Reference [11] employed meta-learning for distinguishing causes from effects in the two-variable
case (i.e., a dataset only containing data observations of two variables). In summary, using neural
networks for BN structure learning is still a new research topic, and more work could be done
along this direction.

Learning cause-effect relationships. Using purely observational data, on the one hand, the
BN structure learning methods discussed above always obtain the Markov equivalence class of a
BN structure and leave the directions of many edges unidentified [19]; on the other hand, these
methods may not uncover true causal relationships in data [65]. It is well-known that intervention
experiments can allow us to distinguish causes from effects [24]. Statnikov et al. [89] proposed
the ODLP and ODLP* algorithms for distinguishing causes and effects of a variable of interest
using both observational data and intervention experiments. Under the faithfulness assumption,
since the MB of a variable is unique, ODLP* first uses MMPC/HITON-PC to learn the PC set of
a variable, then identifies causes from the found PC set using intervention experiments. When a
dataset violates the faithfulness assumption, the MB of a variable may not be unique [89]. Then
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ODLP employs the TIE* algorithm to learn multiple PC sets of the variable and identifies causes
from the union of the multiple PC sets using intervention experiments.

However, intervention experiments are not always feasible in practice [73]. Pearl [62] proposed
the structural causal model (SCM) and invented the do-calculus to simulate physical intervention
experiments [62], which opens a new door to infer causal effects from observational data with-
out requiring any actual intervention experiments. By combining existing BN structure learning
algorithms with the do-calculus, the IDA algorithm [53] is well-established for inferring causal ef-
fects directly from observational data. Meanwhile, based on SCM, in the past decade, researchers
have proposed many methods for distinguishing causes from effects purely from observational
data in the two-variable case [72, 74]. These methods are divided into two types: methods based
on additive noise models, such as LINGAM and ANM [39, 86]; and methods based on information
geometric causal inference, such as IGCI [22, 41]. Mooij et al. [59] proposed an excellent survey on
the advancement in learning causal relationships in the two-variable case and thus more references
on this topic can be found in this survey.

6 THE TOOLBOX

There are several open-source toolboxes for Bayesian or causal network learning, such as the well-
known BNT in MATLAB [60], PGM in R!, bnlearn in R [83], tetrad in JAVA [81], and pcalg in R [42].
But these tools do not focus on causality-based feature selection, but Bayesian network structure
learning. For example, the bnlearn toolbox contains the several causality-based feature selection
algorithms, such as GSMB, IAMB, Inter-IAMB, Fast-IAMB, MMPC, and HITON-PC, but it aims
to use these algorithms for implementing algorithms of BN learning, inference, and classification.
The Causal Explorer package [90] is a well-known local causal discovery package in MATLAB,
including several representative causality-based feature selection algorithms, but it is not provided
with source code and not available for public use now.

In this article, we have developed the CausalFS toolbox for causality-based feature selection.
The CausalFS toolbox provides the first comprehensive open-source library for use in C/C++ that
implements the state-of-the-art algorithms of causality-based feature selection. The toolbox is de-
signed to facilitate the development of new algorithms in this exciting research direction and
make it easy to compare new methods and existing ones. The CausalFS toolbox is available from
https://github.com/kuiy/CausalFS.

CausalFS was developed in Linux systems. The architecture of the CausalFS toolbox in Figure 5
contains three layers: application, algorithm, and data. The three layers are designed indepen-
dently. This makes it easy to implement and extend CausalFS. One can easily add a new algorithm
to the CausalFS toolbox and share it through the CausalFS framework without modifying the other
layers. In the algorithm layer, CausalFS mainly implements 28 representative causality-based fea-
ture selection methods, including 24 constraint-based algorithms (i.e., 16 algorithms for learning a
single MB, 2 algorithms for learning multiple MBs, and 6 algorithms for learning PC and 4 score-
based MB and PC learning algorithms.

The algorithm layer of CausalFS can also support local-to-global BN structure learning. By ap-
plying the MB and PC learning algorithms in the algorithm layer, using CausalFS, it is easy to de-
sign different local-to-global structure learning methods. For example, using the MMMB algorithm,
we can generate MMMB-based local-to-global structure learning algorithm. All implementation
details are included in the detailed documentation available at https://github.com/kuiy/CausalFS,
where all algorithms and related data structures are explained in detail.

Thttp://mensxmachina.org/en/software/probabilistic- graphical-model-toolbox/.
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Fig. 5. Architecture of the causality-based feature selection toolbox.

7 EVALUATIONS OF CAUSALITY-BASED FEATURE SELECTION METHODS

In this section, we systematically evaluate the causality-based feature selection algorithms using
the CausalFS package using synthetic and real-world datasets. For a synthetic dataset, we can read
the MB or PC or parents of a feature in the corresponding benchmark BN. We evaluate the quality
of the MB or PC of a variable learnt by an algorithm by comparing the MB or PC of the variable
with the true MB or PC of the variable in the BN, and the experimental results and findings are
given in Section S-1 in the Supplement. We also evaluate these algorithms on the dense variables
that have either large-sized MBs or take a large number of discrete values in Section S-2 in the
Supplement. For a real-world dataset, we evaluate a causality-based feature selection algorithm
based on the classification performance of the selected features and compare them with three well-
established non-causal feature selection algorithms. Using eight real-world datasets from the UCI
Machine Learning Repository and NIPS2003 feature selection challenge datasets, the evaluation
results and findings are reported in Section S-3 in the Supplement. Here, we only summarize some
main findings as follows:

e The backward strategy or the symmetry check is a double-edged sword. First, an algorithm
using a forward strategy for learning the MB/PC set of a class variable may be faster than
an algorithm using the backward strategy. For example, the experimental results have illus-
trated that MMPC, HITON-PC, and semi-HITON-PC are faster than Recognize-PC. Using
synthetic data, Recognize-PC and its corresponding MB learning algorithm IPCMB are bet-
ter than the other 11 constraint-based PC/MB learning algorithms on the two large-sized
BN networks in learning accuracy. Second, the symmetry check (the AND or OR rule) will
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make an MB/PC learning algorithm very computationally expensive. However, this sym-
metry check can make MB/PC learning more accurate using large-sized data samples, while
the OR rule will make MB/PC learning more accurate using small-sized data samples. For
example, in the experiments, we found that IPCMB, PCMB, and MBOR are better than the
other 11 constraint-based MB learning algorithms on the two large-sized BN networks.
However, for real datasets, the symmetry check (i.e., the AND rule) may not be helpful for
selecting a good feature subset for classification. PCMB and IPCMB using the AND rule are
inferior to MMMB, HITON-MB, and semi-HITON-MB, the algorithms that do not use the
AND rule. The possible explanation is that an algorithm using the AND rule may remove
many true positives due to unreliable independence tests when a dataset has dimensionality
and a small number of data samples. However, using the OR rule, MBOR always achieves
stable and good prediction accuracy, especially with a dataset of high dimensionality and
containing small-sized data samples. Thus, it is an interesting problem for studying regard-
ing the conditions for using the AND rule or the OR rule or combining both to make MB
learning more accurate.

o In the experiments, we have validated that the simultaneous MB learning methods are the
fastest algorithms among all MB algorithms using both synthetic and real datasets. As a
score-based method, fGES-MB is very computationally efficient and it is the fastest one
among the three score-based methods. When the number of data samples is large, the si-
multaneous MB learning methods achieve very competitive prediction accuracy with their
rivals, while they are inferior to the constraint-based MB learning algorithms when the size
of data samples is small. Surprisingly, FBED is the fastest algorithm and its performance is
comparable with the others.

e The classification performance using the PC set of a class variable is not inferior to that
of using the MB of the class variable. And learning the PC set of the class variable for
feature selection is much more efficient than learning the MB of the class variable. These
findings are consistent with the results in Reference [5]. Thus, in terms of feature selection,
PC learning algorithms are practical in real-world applications. In addition, all types of
causality-based feature selection methods cannot deal with a variable with both a large-
sized MB and a large number of discrete values.

e For three non-causal feature selection algorithms, we have observed that the computational
efficiency of FCBF is very competitive with the simultaneous MB learning methods, and the
three algorithms are faster than the divide-and-conquer MB learning methods. The com-
putational efficiency of mRMR is related to the number of the selected features. SPEC_CMI
is the most computationally expensive and it cannot produce results for some real-world
datasets within three days. Regarding learning accuracy, FCBF and mRMR also achieve
good performance. However, the performance of FCBF and mRMR is determined by the
user-defined parameter, i.e., the number of selected features, and it is hard to determine a
well-performing value for the parameter.

8 CONCLUSION AND OPEN PROBLEMS

In this article, we first reviewed the state-of-the art causality-based feature selection algorithms,
then described our developed open-source software package that implements the representative
causality-based feature selection algorithms, and finally, we evaluated the representative algo-
rithms using synthetic and real-world datasets. Although a significant number of causality-based
feature selection algorithms have been developed in the past decade, many issues in big data an-
alytics are still not addressed at all. In the future, more efforts are still required in this research
direction to tackle the following challenges:
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e Non-IID data. Almost all existing causality-based feature selection methods are limited to
the IID data. For the non-IID data, these methods still face great challenges. One type of
the non-IID scenario is that the training data and testing data have different distributions
(i.e., distribution shift data). For this type of data, it is reasonable to assume that the causal
mechanism of the system (i.e., direct causes) is invariant in different conditions or environ-
ments, and thus the direct causes can be used as the set of invariant features for obtaining
stable predications [54, 107]. Causality-based feature selection has the potential to deal with
distribution shift data, but they cannot identify causes of a class variable from data without
intervention experiments. Another type of the non-IID situation is that data observations
are highly interdependent (i.e., correlated data). It has shown that ignoring the correlation
between data observations may significantly deteriorate the performance of BN structure
learning [10], and the same problem may persist with existing causality-based feature selec-
tion methods. So far, little research has been done in development of causality-based feature
selection algorithms to address the issue of correlated data.

e Low-quality data. Missing or noise data are ubiquitous in many real-world application do-
mains, which means that the values for one or more features in a dataset are incorrect or
missing from recorded observations. All existing causality-based feature selection meth-
ods assume that all features involved in a dataset do not have missing or noise values. It is
challenging to address causality-based feature selection methods with low-quality big data.

e Streaming data. Existing causality-based feature selection methods assume that all data in-
stances in a dataset are given in advance. In fact, many real-world datasets are available in
streams. There is a need to develop online causality-based feature selection algorithms to
deal with streaming data.

e Weak-supervision data. In practice, a dataset may have very few labeled data instances,
while abundant unlabeled data instances are available. However, existing causality-based
feature selection algorithms are unable to work well with such datasets. Thus, it is inter-
esting to exploit unlabeled data instances to help causality-based feature selection methods
with a few labeled data instances.

e Imbalanced class data. The majority of existing causality-based methods cannot deal with
datasets with imbalanced classes, which, however, exist in many real-world applications. It
is important to develop new feature selection methods to address this problem.

e Causal effect estimation. Existing causality-based feature selection methods do not distin-
guish parents from children, and thus they cannot directly help with causal effect estimation
or prediction of the effects of actions (causes). However, existing causality-based feature
selection methods provide the basis for efficient local causal structure learning from high-
dimensional data, which in turn lays the foundation for estimating the causal effect of a
cause variable on its effect variable using existing causal effect estimation methods [17, 40].
It is interesting to apply causality-based feature selection methods to calculate causal effects
with high-dimensional data.

e Causality for neural networks. Recently, using causality for neural network learning has
become a hot topic [8, 34, 78, 91], and using causal knowledge to solve problems in neu-
ral network learning is a right direction to follow. However, it is challenging to develop
causality-based feature selection algorithms to identify features in neural network repre-
sentation.
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