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Supplementary Material for “Causal Feature
Selection with Dual Correction”

Xianjie Guo, Kui Yu*, Lin Liu, Fuyuan Cao, and Jiuyong Li

S-1: Tracing the DCMB algorithm

In this section, we give a tracing example as shown in
Fig. 1 to show how DCMB works. In Fig. 1, the yellow
feature denotes the class variable and the true MB of the
class variable in the BN is highlighted in orange. First,
Fig. 1(a) gives an example of a simple BN including 9
features, i.e., F={T,A,B,O,D,E,G,H,N}. Assuming T is
the class variable, then MB(T )={A,B,O,D}. Let k or = 0.5
and k and = 0.5, using the BN in Fig. 1(a), DCMB is
implemented as follows.

Algorithm 1 DCMB
Input: C: the class variable; k or∈ [0,1]; k and∈ [0,1]
Output: MB of C
{Phase I: Identify candidate parents and children}

1: [or rank, CPC] = IdenCPC(C)
{Phase II: The “OR” rule for recovering discarded PC}

2: orPC = ORPC(k or, or rank)
{Phase III: The “AND” rule for removing false PC}

3: andCPC = ANDPC(k and, CPC)
4: PC = andCPC∪ orPC
{Phase IV: Find spouses}

5: SP = ∅
6: for each X ∈ PC do
7: for each Y ∈ PC(X) and Y /∈ PC do
8: if ∃ S s.t. C⊥⊥Y|S and C 6⊥⊥Y|S∪{X} then
9: SP←− SP∪{Y}

10: end if
11: end for
12: end for
13: MB = PC ∪ SP

1) Phase I: At Line 1 of Algorithm 1, IdenCPC (Algorith-
m 2) is implemented to discover the candidate parents and
children of T (CPC) while adding the features currently
discarded to or rank which contains the possibly discard-
ed MB features. Initially, at Line 1 of Algorithm 2, let
CPC = ∅, or rank = ∅ and F={A,B,O,D,E,G,H,N}.
After running Lines 3-14 of Algorithm 2 for the first time,
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Algorithm 2 IdenCPC
Input: C; F: union of features and class variable
Output: or rank: possibly discarded true positives;

CPC: candidate parents and children features
1: Initialize or rank = ∅, CPC = ∅, F = F \ {C}
{Step 1: Forward step}

2: repeat
3: for each X ∈ F do
4: [Dep[X], Sep[X]] = argminS⊆CPCdep(C, X|S)
5: if C ⊥⊥ X|Sep[X] then
6: F = F \ {X}
7: if Sep[X] 6= ∅ then
8: or rank←− or rank∪{X}
9: end if

10: end if
11: end for
12: Y = argmaxX∈FDep(X)
13: CPC = CPC∪{Y}
14: F = F \ {Y}
15: until F = ∅
{Step 2: Backward step}

16: for each X ∈ CPC do
17: if ∃S⊆CPC\{X} such that C⊥⊥X|S then
18: CPC = CPC \ {X}
19: or rank←− or rank∪{X}
20: end if
21: end for

Algorithm 3 ORPC
Input: k or∈ [0,1]; or rank
Output: orPC: recovered PC by the “OR” rule

1: Initialize orPC = ∅
/*Descending order, F1 has the highest dependency*/

2: 〈F1, ..., F|or rank|〉 ←− or rank
3: for i = 1 to R(|or rank| × k or) do
4: [or rank2, CPC2] = IdenPC(Fi)
5: if C ∈ CPC2 then
6: orPC = orPC∪{Fi}
7: end if
8: end for
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Fig. 1. An example of tracing DCMB. (a) shows a simple BN; (b), (c), (d) and (e) demonstrate how to trace Phases I, II, III, and IV.

since D ⊥⊥ T |∅ and H ⊥⊥ T |∅ hold, {D,H} are neither
added to CPC nor to or rank. Meanwhile, O ⊥6⊥ T |∅
and O has the maximum relevancy with T among the
features in F\CPC, thus O is added to CPC. At present,
F={A,B,E,G,N}, CPC={O} and or rank = ∅. After
implementing Lines 3-14 of Algorithm 2 multiple times,
G, A, E and N are added to CPC successively. Clearly, if
and only if E⊥6⊥T |A and N ⊥6⊥T |A hold (false positives
error), E and N can be added to CPC. At this time,
since B ⊥⊥ T |O holds (false negatives error), B is not
added to CPC but it is added to or rank (Line 8 of
Algorithm 2). When Step 1 of Algorithm 2 is finished,
F=∅, CPC={O,G,A,E,N} and or rank = {B}. In Step
2 of Algorithm 2, as G⊥⊥ T |A holds, G is also added to
or rank after G is removed from CPC (Lines 17-20 of
Algorithm 2). Finally, as shown in Figure 1(b), we get
CPC = {O,A,E,N} and or rank = {B,G}.

2) Phase II: At Line 2 of Algorithm 1, ORPC (Algorithm 3)
runs to recover the discarded MB features from or rank.
By sorting the features within or rank in a descending
order at Line 2 of Algorithm 3, we obtain 〈B,G〉 ←−
or rank (i.e., the dependency between B and T is higher
than that between G and T ). The ORPC algorithm only
needs to examine whether CPC of B (CPC(B)) contains
T owing to k or = 0.5 (i.e., R(|or rank| × k or)=1).
Since T ∈ CPC(B) holds, as shown in Figure 1(c),
we retrieve B and get orPC = {B}. We can see that
ORPC successfully avoids adding G to orPC even if
T ∈ CPC(G) also holds. In addition, ORPC saves the
computational cost of discovering CPC(G).

3) Phase III: At Line 3 of Algorithm 1, the ANDPC
algorithm (Algorithm 4) aims to remove the false MB
features from CPC. At Line 1 of Algorithm 4, and-
CPC={O,A,E,N}. By sorting the features within CPC
in an ascending order at Line 2 of Algorithm 4, we
get 〈E,N,A,O〉 ←− or rank (i.e., E has the lowest
dependency with T ). Since k and = 0.5 (i.e., R(|CPC|×
k and)=2 at Line 3 of Algorithm 4), instead of checking
all features within CPC, ANDPC only needs to check
E and N . Since T /∈ CPC(E) and T /∈ CPC(N)
hold, E and N are deleted from andCPC (Lines 5-7
of Algorithm 4). Finally, as shown in Figure 1(d), we
obtain andCPC= {O,A}, i.e., PC = andCPC∪ orPC =
{O,A,B} at Line 4 of Algorithm 1.

4) Phase IV: Based on the corrected PC of T obtained

above, Phase IV finds the spouses of T by discovering
the PC of each feature in PC(T ), and then identifies the
spouses with regard to each feature. Specifically, since
D ⊥⊥ T |∅, D ∈ PC(O) and T ⊥6⊥ D|{∅ ∪ O} hold, D
is a spouse of T , i.e., SP = {D}. Finally, as shown in
Figure 1(e), we obtain MB = PC ∪ SP = {A,B,C,D}.

Algorithm 4 ANDPC
Input: k and∈ [0,1]; CPC
Output: andCPC: corrected CPC by the “AND” rule

1: Initialize andCPC = CPC
/*Ascending order, F1 has the lowest dependency*/

2: 〈F1, ..., F|CPC|〉 ←− CPC
3: for i = 1 to R(|CPC| × k and) do
4: [or rank2, CPC2] = IdenCPC(Fi)
5: if C /∈ CPC2 then
6: andCPC = andCPC \ {Fi}
7: end if
8: end for

S-2: Detailed experimental results on Benchmark BN datasets

In this section, we present the detailed experimental results
on all benchmark datasets as shown in Tables II and III. In
these tables, “-” denotes that a method fails to generate any
output with the corresponding dataset after running out of
memory, and the best results are highlighted in bold face.
Moreover, on a dataset, we only record the best results of
F1 metric of DCMB and the corresponding Precision, Recall
and Time metrics.

Datasets. We use 14 benchmark BNs with different number-
s of variables in our experiments, and details of the 14 bench-
mark BNs are summarized in Table I 1. Among them, Child3,
Insurance3 and Alarm3 were generated by tiling 3 copies of
the Child, Insurance, and Alarm networks, respectively [1].
Similarly, we also generated Child5, Child10, Insurance5,
Insurance10, Alarm5 and Alarm10. For each benchmark BN
network, we randomly generate three datasets including 500
data instances, 1,000 data instances and 5,000 data instances
respectively.

Comparison Methods. We compare DCMB with 12 state-
of-the-art causal feature selection algorithms, including I-

1Those benchmark BN networks are publicly available at http://www.
bnlearn.com/bnrepository/
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TABLE I
SUMMARY OF BENCHMARK BNS

Num. Num. Max In/out- Min/Max Variable
Network Vars Edges Degree |PCset| Domain

Child 20 25 2/7 1/8 2-6
Child3 60 79 3/7 1/8 2-6
Child5 100 126 2/7 1/8 2-6

Child10 200 257 2/7 1/8 2-6
Insurance 27 52 3/7 1/9 2-5

Insurance3 81 163 4/7 1/9 2-5
Insurance5 135 281 5/8 1/10 2-5
Insurance10 270 556 5/8 1/11 2-5

Alarm 37 46 4/5 1/6 2-4
Alarm3 111 149 4/5 1/6 2-4
Alarm5 185 265 4/6 1/8 2-4

Alarm10 370 570 4/7 1/9 2-4
Mildew 35 46 3/3 1/5 3-100
Barley 48 84 4/5 1/8 2-67

AMB [2], FBEDK [3], MMMB [4], PCMB [5], HITON-
MB [6], MBOR [7], IPCMB [8], STMB [9], BAMB [10],
CCMB [11], EEMB [12]2 and SRMB [13]. Note that PCMB
and IPCMB use the “AND” rule while MBOR, CCMB and
SRMB employ the “OR” rule.

Evaluation metrics. For benchmark BN networks, the MB
of each feature can be read from those networks. Accordingly,
in the experiments, we evaluate the algorithms using the
following metrics.
• Precision. The precision metric denotes the number of

true positives in the output (i.e., the features in the output
of an algorithm belonging to the true MB of a given target
in a test DAG) divided by the number of features in the
output of the algorithm.

• Recall. The recall metric represents the number of true
positives in the output divided by the number of true
positives (the number of the true MB of a given target)
in a test DAG.

• F1. F1 = 2∗Precision∗Recall/(Precision+Recall).
The F1 score is the harmonic average of the precision and
recall, where F1 = 1 is the best case (perfect precision
and recall) while F1 = 0 is the worst case.

• Time. We report running time (in seconds) as the effi-
ciency measure of different algorithms.

Implementation Details.
• All algorithms are implemented in C/C++. For the

FBEDK algorithm, the value of K is set to 1, which
is enough to make FBEDK converge.

• The conditional independence tests are G2 tests with a
statistical significance level of 0.01.

• For an algorithm, we identify the MBs of all features in
each BN and report the average results of F1, Precision,
Recall and Time.

From Tables II and III, we have the following conclusions:
• F1 metric. On most datasets, DCMB achieves the highest

accuracy. Specially, on the Insurance benchmark BN
dataset with 5000 samples, the F1 metric of DCMB is at
least 3.5% higher than that of the other algorithms. For

2The source codes are available at https://github.com/kuiy/CausalFS

algorithms (e.g., PCMB and IPCMB) only adopting the
“AND” rule, on the benchmark BN dataset with small-
sized data samples (such as 500 and 1000 samples),
their F1 metric is generally lower than other algorithms.
This is because many CI tests will be unreliable when
implementing MB learning methods on small sample
datasets, leading to many true MB features being dis-
carded. Continuing to use the ”AND” rule to correct
CPC will cause more true MB features being abandoned.
For algorithms (e.g., MBOR, CCMB and SRMB) only
using the “OR” rule, on the benchmark BN dataset with
large-sized data samples (such as 5000 samples), their F1
metric values have not improved much compared with
the other algorithms. The explanation for this is that, on
datasets with large number of samples, reliable CI tests
guarantee that almost all MB features are successfully
discovered. In other words, the “OR” rule almost loses
its effect on MB learning and even bring adverse effects
due to non MB features being selected. The reason why
the overall performance of STMB is poor is that it
will add a lot of non MB features to MB of C as the
spouses of C. On the Mildew and Barley benchmark BN
datasets, since the value range of each variable is large,
the CI tests will become unreliable even on a datasets
with 5000 samples [14], which seriously deteriorates
the performance of all algorithms. In addition, on all
datasets, we observe that SRMB achieves a comparable
performance against CCMB.

• Precision and Recall metrics. On the whole, the pre-
cision metric of algorithms employing the “AND” rule
is higher than that of other algorithms, especially on
datasets with large number of samples, while the recall
metric of algorithms adopting the “OR” rule is higher
than that of other algorithms, especially on datasets with
small number of samples. Since DCMB uses both the
“AND” and “OR” rules, meanwhile, its selective strategy
prevents true MB features from being deleted and non
MB features from being selected, the precision and recall
metrics of DCMB are always high on all datasets. SRMB
and CCMB are all designed to recover false negatives.
However, the precision value of SRMB is always higher
than that of CCMB, and the recall value of SRMB is
always lower than that of CCMB, since CCMB tends to
obtain more features than SRMB, even if these features
are not the true MB features.

• Time metric. FBEDK is the fastest algorithm among all
MB learning algorithms under comparison. Algorithms
using the “AND” rule are slightly slower than algorithms
without using any of the two rules. In contrast, algorithms
without using any of the two rules are significantly faster
than algorithms using the “OR” rule, since (|F|−|PC|)�
|PC| holds on most datasets. Particularly, on the Mildew
and Barley benchmark BN datasets, (|F| − |PC|) < |PC|
holds, and thus algorithms adopting the “OR” rule are
faster than algorithms employing the “AND” rule on
these two datasets. Especially, although MBOR uses the
“OR” rule, it is not slow, since it utilizes a fast but data
inefficient algorithm to correct the MB features. As a
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divide-and-conquer MB learning method, EEMB shows
high efficiency on all datasets. On most datasets, the time
cost of DCMB is much lower than that of algorithms
adopting the “OR” rule and slightly higher than that
of algorithms employing the “AND” rule, since DCMB
adopts the dual selective correction strategy.

S-3: Experimental results of the single correction strategy
In this section, we validate the effectiveness of the single

correction strategy using either the “AND” rule or the “OR”
rule, respectively.

Using DCMB (Algorithm 1), Fig. 2 shows the experimental
results on the benchmark datasets (i.e., Child with 500 and
5000 samples, Insurance with 500 and 5000 samples, Alarm
with 500 and 5000 samples, Mildew with 500 and 5000
samples, Barley with 500 and 5000 samples). Specifically, we
set k and of DCMB to 0 (i.e., the “AND” rule does not work)
while traversing k or of DCMB from 0 to 1, and we record
the change process of F1 metric as shown in Figs. 2(a), (b),
(e), (g) and (h). In the same way, we set k or of DCMB to 0
(i.e., the “OR” rule does not work) while traversing k and of
DCMB from 0 to 1, and the experimental results are shown
in Figs. 2(c), (d), (f), (i) and (j).

Through the observation of the experimental results in
Fig. 2, we have the following interesting findings.

1) In Figs. 2(a), (b), (c) and (d), F1k or=1 (the value of
F1 metric when k or = 1) is greater than F1k or=0

and F1k and=1 is higher than F1k and=0. However, if the
selective correction strategy is adopted, we can get higher
MB discovery accuracy as shown in Figs. 2(a), (b) and
(d). For Fig. 2(c), when k > 0.25, F1 metric no longer
changes, and we do not need to utilize the “AND” rule
to correct all variables within CPC (candidate PC).

2) As shown in Figs. 2(e) and (f), the values of F1k or=1

and F1k or=0 are approximate, and F1k and=1 is almost
equal F1k and=0. But in Fig. 2(e), when k or = 0.4, F1
metric reaches a peak. Similarly, in Fig. 2(f), we find that
MB learning is more accurate when k and = 0.05.

3) From Figs. 2(g), (h), (i) and (j), we can see that
F1k or=1<F1k or=0 and F1k and=1<F1k and=0. This
suggests that the “OR” rule or the “AND” rule not only
fails to correct the false positive and false negative errors
but also hurts the performance of algorithms employing
two rules. However, in Figs. 2(h) and (j), F1 metric
starts with an increase and then goes down. In other
words, if the selective correction strategy is not employed,
the optimal solution of MB learning will be masked. In
Figs. 2(g) and (i), F1 metric has been declining, which
means the “OR” rule or the “AND” rule only brings
adverse effects to the algorithms adopting two rules.
Thus, on the Mildew with 500 samples and Insurance
with 5000 samples, k or and k and of DCMB should
be set to 0, respectively.

Based on the findings discussed above, we conclude that our
proposed correction strategy not only can significantly improve
the accuracy of MB discovery but also is less computational
expensive than the algorithms employing the “OR” rule or the
“AND” rule.
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Fig. 2. Experimental results on benchmark datasets for validating the
effectiveness using the single selective-correction strategy.

S-4: Statistical tests for verifying whether SA-DCMB is sig-
nificantly better than other methods

In this section, we adopt the Friedman test and Nemenyi
test [15] to further compare the performance of SA-DCMB
with that of its rivals.

We first perform the Friedman test at the 0.05 signifi-
cance level under the null-hypothesis which states that the
performance of all algorithms is the same on all datasets
(i.e., the average ranks of all algorithms are equivalent). The
average ranks of SA-DCMB and its rivals when using different
classifiers are summarized in Table IV. Since the IPCMB,
STMB, BAMB, CCMB, EEMB, SRMB and QPFS algorithms
cannot produce any output on some datasets, we do not record
their average ranks in this table. From Table IV, we can see
that the null hypothesis is rejected on these two classifiers. We
also note that SA-DCMB performs better than its rivals (the
lower rank value is better).
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TABLE II
COMPARISON OF DCMB WITH OTHER MB METHODS ON BENCHMARK BN DATASETS (1)

#Sample 500 1,000 5,000
Dataset Algorithm F1(↑) Precision(↑) Recall(↑) Time(↓) F1(↑) Precision(↑) Recall(↑) Time(↓) F1(↑) Precision(↑) Recall(↑) Time(↓)

Alarm

IAMB 0.746 0.887 0.673 0.001 0.817 0.892 0.781 0.002 0.922 0.941 0.927 0.008
FBED 0.740 0.887 0.666 0.000 0.820 0.892 0.784 0.001 0.927 0.953 0.924 0.005

MMMB 0.772 0.865 0.735 0.001 0.895 0.965 0.858 0.003 0.975 0.978 0.977 0.016
PCMB 0.686 0.818 0.642 0.004 0.837 0.935 0.787 0.009 0.974 1.000 0.956 0.062

HITON-MB 0.771 0.856 0.735 0.001 0.897 0.970 0.857 0.003 0.973 0.972 0.980 0.019
MBOR 0.797 0.886 0.751 0.001 0.891 0.943 0.870 0.003 0.975 0.983 0.973 0.022
IPCMB 0.675 0.820 0.622 0.002 0.836 0.934 0.785 0.005 0.979 1.000 0.964 0.041
STMB 0.605 0.616 0.718 0.001 0.707 0.693 0.841 0.002 0.795 0.764 0.961 0.016
BAMB 0.757 0.865 0.709 0.001 0.864 0.942 0.820 0.002 0.955 0.974 0.948 0.016
CCMB 0.804 0.853 0.796 0.012 0.911 0.951 0.898 0.027 0.967 0.961 0.984 0.149
EEMB 0.760 0.856 0.716 0.001 0.869 0.947 0.826 0.002 0.960 0.991 0.943 0.012
SRMB 0.801 0.861 0.786 0.013 0.908 0.958 0.887 0.029 0.963 0.966 0.977 0.157
DCMB 0.812 0.870 0.796 0.007 0.916 0.974 0.888 0.018 0.986 0.991 0.984 0.081

Alarm3

IAMB 0.654 0.787 0.620 0.002 0.701 0.774 0.697 0.005 0.798 0.798 0.857 0.029
FBED 0.665 0.803 0.622 0.001 0.709 0.797 0.691 0.002 0.841 0.869 0.852 0.012

MMMB 0.739 0.877 0.682 0.002 0.785 0.895 0.742 0.004 0.889 0.918 0.882 0.027
PCMB 0.689 0.863 0.620 0.007 0.766 0.923 0.695 0.015 0.893 0.953 0.856 0.104

HITON-MB 0.742 0.880 0.685 0.002 0.788 0.895 0.748 0.005 0.883 0.909 0.882 0.031
MBOR 0.752 0.868 0.705 0.003 0.797 0.879 0.764 0.006 0.889 0.919 0.877 0.048
IPCMB 0.673 0.856 0.601 0.003 0.786 0.932 0.719 0.006 0.889 0.943 0.859 0.053
STMB 0.551 0.576 0.654 0.002 0.583 0.554 0.755 0.005 0.641 0.569 0.883 0.030
BAMB 0.726 0.884 0.663 0.002 0.774 0.905 0.719 0.005 0.872 0.918 0.850 0.028
CCMB 0.768 0.853 0.745 0.067 0.794 0.852 0.789 0.143 0.866 0.865 0.897 0.784
EEMB 0.722 0.879 0.659 0.002 0.775 0.903 0.722 0.004 0.882 0.936 0.850 0.024
SRMB 0.766 0.859 0.739 0.069 0.797 0.861 0.786 0.148 0.868 0.871 0.894 0.813
DCMB 0.773 0.863 0.742 0.025 0.809 0.930 0.748 0.041 0.910 0.968 0.876 0.199

Alarm5

IAMB 0.634 0.742 0.623 0.003 0.685 0.757 0.701 0.008 0.697 0.675 0.823 0.059
FBED 0.657 0.789 0.627 0.002 0.697 0.793 0.687 0.004 0.777 0.791 0.820 0.021

MMMB 0.712 0.846 0.674 0.003 0.773 0.886 0.731 0.007 0.875 0.933 0.858 0.040
PCMB 0.673 0.857 0.608 0.011 0.734 0.903 0.663 0.021 0.872 0.964 0.825 0.152

HITON-MB 0.711 0.844 0.674 0.003 0.772 0.885 0.730 0.007 0.874 0.931 0.858 0.044
MBOR 0.731 0.852 0.690 0.004 0.787 0.879 0.751 0.009 0.879 0.941 0.852 0.069
IPCMB 0.664 0.851 0.599 0.004 0.732 0.899 0.663 0.008 0.847 0.946 0.802 0.063
STMB 0.495 0.509 0.654 0.003 0.550 0.531 0.723 0.007 0.578 0.507 0.856 0.044
BAMB 0.700 0.867 0.644 0.004 0.760 0.898 0.703 0.007 0.872 0.947 0.840 0.044
CCMB 0.729 0.808 0.725 0.178 0.794 0.852 0.786 0.356 0.860 0.887 0.879 1.975
EEMB 0.705 0.869 0.652 0.003 0.764 0.900 0.709 0.007 0.870 0.953 0.829 0.039
SRMB 0.726 0.814 0.716 0.181 0.793 0.856 0.782 0.364 0.863 0.895 0.876 2.034
DCMB 0.730 0.820 0.720 0.054 0.806 0.910 0.768 0.096 0.892 0.981 0.849 0.386

Alarm10

IAMB 0.545 0.632 0.559 0.008 0.600 0.637 0.657 0.019 0.630 0.588 0.790 0.249
FBED 0.580 0.697 0.568 0.004 0.645 0.713 0.659 0.008 0.731 0.735 0.793 0.083

MMMB 0.667 0.817 0.623 0.006 0.756 0.878 0.710 0.013 0.842 0.905 0.823 0.154
PCMB 0.634 0.843 0.563 0.022 0.728 0.903 0.652 0.048 0.847 0.967 0.786 0.646

HITON-MB 0.664 0.809 0.624 0.007 0.757 0.878 0.712 0.014 0.839 0.901 0.822 0.174
MBOR 0.690 0.855 0.629 0.008 0.766 0.885 0.717 0.019 0.852 0.917 0.828 0.268
IPCMB 0.616 0.832 0.543 0.007 0.729 0.905 0.651 0.016 0.830 0.954 0.768 0.235
STMB 0.385 0.361 0.597 0.006 0.443 0.380 0.708 0.013 0.487 0.399 0.836 0.180
BAMB 0.647 0.826 0.591 0.007 0.737 0.890 0.675 0.015 0.838 0.916 0.808 0.189
CCMB 0.684 0.773 0.673 0.708 0.760 0.835 0.745 1.406 0.825 0.845 0.850 16.420
EEMB 0.652 0.831 0.598 0.007 0.742 0.892 0.682 0.014 0.834 0.917 0.799 0.187
SRMB 0.683 0.779 0.667 0.716 0.758 0.841 0.737 1.425 0.829 0.857 0.846 16.671
DCMB 0.688 0.850 0.634 0.142 0.773 0.907 0.721 0.208 0.855 0.955 0.805 2.480

Child

IAMB 0.821 0.892 0.804 0.000 0.836 0.863 0.872 0.001 0.867 0.837 0.940 0.004
FBED 0.830 0.913 0.804 0.000 0.836 0.863 0.872 0.001 0.894 0.877 0.940 0.003

MMMB 0.879 0.971 0.830 0.001 0.860 0.898 0.881 0.003 1.000 1.000 1.000 0.022
PCMB 0.776 0.931 0.706 0.004 0.827 0.933 0.783 0.010 1.000 1.000 1.000 0.097

HITON-MB 0.866 0.981 0.810 0.001 0.852 0.888 0.875 0.003 1.000 1.000 1.000 0.026
MBOR 0.879 0.971 0.829 0.001 0.839 0.852 0.863 0.002 0.963 0.961 0.975 0.018
IPCMB 0.793 0.931 0.731 0.002 0.827 0.921 0.793 0.005 1.000 1.000 1.000 0.042
STMB 0.867 0.874 0.885 0.001 0.828 0.851 0.853 0.002 0.876 0.823 0.988 0.011
BAMB 0.881 0.981 0.833 0.001 0.875 0.925 0.885 0.002 0.988 0.992 0.988 0.017
CCMB 0.881 0.949 0.860 0.005 0.852 0.838 0.922 0.011 1.000 1.000 1.000 0.081
EEMB 0.857 0.955 0.810 0.001 0.859 0.903 0.875 0.001 0.976 0.971 0.988 0.010
SRMB 0.882 0.952 0.859 0.005 0.854 0.845 0.919 0.012 1.000 1.000 1.000 0.085
DCMB 0.887 0.981 0.837 0.004 0.893 0.958 0.868 0.009 1.000 1.000 1.000 0.059

Child3

IAMB 0.698 0.749 0.737 0.001 0.696 0.695 0.803 0.003 0.756 0.704 0.920 0.017
FBED 0.707 0.763 0.729 0.001 0.732 0.748 0.798 0.001 0.849 0.822 0.927 0.007

MMMB 0.805 0.885 0.780 0.002 0.863 0.949 0.837 0.004 0.944 0.948 0.963 0.027
PCMB 0.732 0.872 0.676 0.006 0.816 0.951 0.758 0.015 0.956 0.981 0.950 0.114

HITON-MB 0.797 0.882 0.770 0.002 0.867 0.947 0.844 0.005 0.944 0.948 0.963 0.033
MBOR 0.820 0.916 0.772 0.002 0.855 0.919 0.850 0.004 0.957 0.972 0.956 0.033
IPCMB 0.728 0.825 0.686 0.003 0.793 0.906 0.745 0.008 0.956 0.981 0.950 0.053
STMB 0.652 0.616 0.774 0.001 0.699 0.680 0.831 0.003 0.788 0.710 0.973 0.022
BAMB 0.833 0.913 0.801 0.002 0.863 0.931 0.852 0.003 0.945 0.953 0.957 0.023
CCMB 0.825 0.850 0.843 0.025 0.870 0.913 0.880 0.055 0.934 0.930 0.967 0.340
EEMB 0.815 0.904 0.780 0.001 0.860 0.926 0.853 0.003 0.953 0.963 0.963 0.017
SRMB 0.828 0.861 0.839 0.026 0.872 0.919 0.878 0.058 0.935 0.934 0.965 0.357
DCMB 0.845 0.899 0.829 0.009 0.880 0.934 0.877 0.024 0.960 0.979 0.959 0.133

Child5

IAMB 0.617 0.648 0.711 0.002 0.657 0.627 0.857 0.005 0.674 0.590 0.948 0.033
FBED 0.660 0.706 0.710 0.001 0.728 0.708 0.848 0.002 0.784 0.711 0.951 0.011

MMMB 0.826 0.902 0.803 0.002 0.880 0.910 0.887 0.005 0.949 0.928 0.992 0.036
PCMB 0.757 0.851 0.722 0.009 0.823 0.915 0.777 0.019 0.980 0.985 0.982 0.151

HITON-MB 0.811 0.899 0.783 0.003 0.883 0.912 0.892 0.006 0.949 0.932 0.990 0.043
MBOR 0.826 0.927 0.786 0.003 0.881 0.902 0.893 0.006 0.959 0.951 0.983 0.042
IPCMB 0.755 0.851 0.714 0.003 0.821 0.901 0.778 0.009 0.977 0.980 0.982 0.062
STMB 0.619 0.557 0.808 0.002 0.671 0.583 0.894 0.005 0.747 0.644 0.987 0.030
BAMB 0.823 0.894 0.806 0.002 0.879 0.919 0.882 0.005 0.945 0.924 0.988 0.032
CCMB 0.834 0.880 0.844 0.060 0.882 0.871 0.930 0.130 0.928 0.892 1.000 0.764
EEMB 0.812 0.889 0.790 0.002 0.891 0.920 0.903 0.004 0.947 0.922 0.994 0.025
SRMB 0.837 0.889 0.841 0.062 0.883 0.875 0.928 0.135 0.928 0.893 1.000 0.797
DCMB 0.845 0.915 0.834 0.015 0.903 0.971 0.871 0.056 0.981 0.980 0.990 0.295

Child10

IAMB 0.544 0.528 0.724 0.005 0.580 0.527 0.841 0.012 0.575 0.472 0.941 0.081
FBED 0.603 0.604 0.713 0.002 0.691 0.648 0.846 0.004 0.709 0.607 0.943 0.023

MMMB 0.796 0.851 0.791 0.004 0.878 0.927 0.872 0.008 0.944 0.916 0.994 0.055
PCMB 0.748 0.861 0.703 0.016 0.811 0.922 0.762 0.031 0.970 0.962 0.986 0.237

HITON-MB 0.787 0.854 0.778 0.005 0.879 0.925 0.874 0.009 0.943 0.915 0.992 0.060
MBOR 0.797 0.898 0.758 0.005 0.882 0.936 0.864 0.011 0.942 0.920 0.985 0.067
IPCMB 0.742 0.846 0.699 0.005 0.805 0.916 0.752 0.012 0.979 0.976 0.986 0.081
STMB 0.487 0.395 0.798 0.004 0.510 0.391 0.882 0.008 0.601 0.469 0.991 0.052
BAMB 0.805 0.873 0.796 0.005 0.891 0.941 0.882 0.009 0.945 0.924 0.986 0.054
CCMB 0.792 0.798 0.839 0.220 0.888 0.892 0.926 0.455 0.924 0.885 0.995 2.499
EEMB 0.795 0.874 0.778 0.004 0.885 0.925 0.885 0.008 0.951 0.929 0.991 0.046
SRMB 0.794 0.805 0.836 0.225 0.889 0.897 0.923 0.467 0.925 0.890 0.992 2.580
DCMB 0.810 0.923 0.768 0.046 0.901 0.934 0.901 0.126 0.975 0.966 0.991 0.807
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TABLE III
COMPARISON OF DCMB WITH OTHER MB METHODS ON BENCHMARK BN DATASETS (2)

#Sample 500 1,000 5,000
Dataset Algorithm F1(↑) Precision(↑) Recall(↑) Time(↓) F1(↑) Precision(↑) Recall(↑) Time(↓) F1(↑) Precision(↑) Recall(↑) Time(↓)

Insurance

IAMB 0.582 0.818 0.499 0.001 0.646 0.877 0.559 0.001 0.784 0.909 0.728 0.006
FBED 0.580 0.809 0.499 0.000 0.651 0.883 0.559 0.001 0.773 0.909 0.704 0.004

MMMB 0.638 0.851 0.551 0.001 0.708 0.881 0.628 0.003 0.817 0.915 0.764 0.033
PCMB 0.530 0.837 0.412 0.004 0.661 0.869 0.563 0.012 0.762 0.901 0.685 0.148

HITON-MB 0.643 0.865 0.557 0.001 0.704 0.881 0.623 0.003 0.801 0.897 0.751 0.035
MBOR 0.652 0.837 0.585 0.001 0.709 0.885 0.626 0.004 0.803 0.891 0.767 0.046
IPCMB 0.524 0.837 0.407 0.002 0.661 0.869 0.563 0.005 0.738 0.875 0.666 0.062
STMB 0.551 0.724 0.493 0.001 0.595 0.651 0.595 0.002 0.726 0.753 0.801 0.021
BAMB 0.637 0.840 0.556 0.001 0.690 0.880 0.599 0.003 0.799 0.915 0.740 0.027
CCMB 0.643 0.790 0.602 0.008 0.707 0.827 0.649 0.019 0.800 0.839 0.801 0.162
EEMB 0.647 0.856 0.563 0.001 0.699 0.894 0.614 0.002 0.796 0.931 0.723 0.015
SRMB 0.642 0.793 0.597 0.009 0.707 0.829 0.646 0.021 0.801 0.844 0.798 0.169
DCMB 0.653 0.875 0.557 0.006 0.718 0.893 0.635 0.014 0.852 0.943 0.801 0.133

Insurance3

IAMB 0.631 0.842 0.556 0.001 0.679 0.834 0.621 0.003 0.729 0.794 0.739 0.022
FBED 0.636 0.851 0.554 0.001 0.697 0.852 0.624 0.002 0.737 0.818 0.713 0.010

MMMB 0.685 0.818 0.640 0.003 0.764 0.876 0.719 0.007 0.820 0.896 0.810 0.065
PCMB 0.679 0.877 0.597 0.011 0.762 0.937 0.676 0.031 0.817 0.928 0.762 0.348

HITON-MB 0.679 0.804 0.640 0.003 0.767 0.884 0.716 0.008 0.820 0.895 0.810 0.075
MBOR 0.704 0.871 0.638 0.004 0.776 0.907 0.709 0.009 0.825 0.904 0.803 0.106
IPCMB 0.642 0.858 0.565 0.004 0.749 0.911 0.672 0.011 0.802 0.889 0.768 0.148
STMB 0.560 0.535 0.715 0.003 0.586 0.530 0.778 0.006 0.554 0.476 0.821 0.054
BAMB 0.705 0.865 0.653 0.003 0.776 0.914 0.708 0.007 0.819 0.892 0.808 0.067
CCMB 0.690 0.762 0.689 0.048 0.754 0.809 0.750 0.108 0.806 0.818 0.853 0.848
EEMB 0.698 0.855 0.647 0.003 0.769 0.897 0.706 0.006 0.816 0.905 0.789 0.043
SRMB 0.695 0.780 0.681 0.050 0.757 0.819 0.746 0.111 0.805 0.821 0.848 0.871
DCMB 0.710 0.856 0.648 0.017 0.782 0.884 0.736 0.037 0.849 0.932 0.823 0.578

Insurance5

IAMB 0.574 0.760 0.522 0.003 0.616 0.741 0.600 0.006 0.688 0.755 0.727 0.040
FBED 0.598 0.799 0.529 0.001 0.632 0.764 0.598 0.003 0.717 0.808 0.705 0.015

MMMB 0.671 0.845 0.610 0.004 0.738 0.874 0.687 0.009 0.811 0.899 0.790 0.081
PCMB 0.646 0.898 0.546 0.015 0.726 0.927 0.637 0.040 0.816 0.934 0.757 0.419

HITON-MB 0.672 0.846 0.613 0.004 0.736 0.871 0.689 0.010 0.816 0.909 0.789 0.093
MBOR 0.659 0.881 0.572 0.005 0.737 0.889 0.676 0.013 0.814 0.892 0.788 0.138
IPCMB 0.630 0.876 0.536 0.005 0.706 0.883 0.630 0.014 0.803 0.908 0.757 0.160
STMB 0.527 0.483 0.690 0.004 0.514 0.431 0.755 0.009 0.557 0.497 0.820 0.075
BAMB 0.686 0.878 0.614 0.004 0.738 0.898 0.677 0.010 0.818 0.903 0.791 0.085
CCMB 0.674 0.784 0.647 0.111 0.734 0.801 0.729 0.253 0.803 0.838 0.826 1.835
EEMB 0.682 0.872 0.611 0.004 0.728 0.891 0.664 0.008 0.805 0.898 0.775 0.058
SRMB 0.677 0.793 0.643 0.114 0.735 0.806 0.726 0.259 0.803 0.840 0.825 1.875
DCMB 0.689 0.868 0.618 0.026 0.764 0.888 0.716 0.063 0.838 0.943 0.795 0.652

Insurance10

IAMB 0.546 0.687 0.538 0.005 0.578 0.684 0.595 0.012 0.637 0.672 0.728 0.090
FBED 0.575 0.746 0.536 0.002 0.617 0.738 0.599 0.005 0.681 0.730 0.715 0.031

MMMB 0.672 0.806 0.635 0.006 0.730 0.851 0.689 0.014 0.805 0.886 0.793 0.105
PCMB 0.670 0.896 0.579 0.025 0.726 0.922 0.643 0.064 0.803 0.940 0.740 0.550

HITON-MB 0.674 0.809 0.637 0.007 0.728 0.848 0.688 0.015 0.806 0.893 0.793 0.122
MBOR 0.676 0.879 0.601 0.008 0.738 0.874 0.684 0.021 0.803 0.876 0.788 0.188
IPCMB 0.645 0.882 0.556 0.007 0.706 0.887 0.632 0.020 0.791 0.896 0.746 0.175
STMB 0.418 0.340 0.673 0.007 0.419 0.327 0.737 0.016 0.438 0.344 0.820 0.110
BAMB 0.680 0.836 0.630 0.008 0.737 0.889 0.681 0.018 0.809 0.895 0.788 0.123
CCMB 0.666 0.744 0.665 0.391 0.721 0.786 0.719 0.854 0.793 0.812 0.836 5.376
EEMB 0.679 0.839 0.628 0.007 0.725 0.879 0.667 0.015 0.805 0.898 0.776 0.099
SRMB 0.670 0.761 0.658 0.397 0.723 0.792 0.716 0.867 0.792 0.816 0.831 5.567
DCMB 0.686 0.842 0.631 0.051 0.745 0.896 0.684 0.108 0.830 0.947 0.781 0.814

Mildew

IAMB 0.289 0.600 0.199 0.000 0.338 0.624 0.251 0.001 0.529 0.688 0.463 0.004
FBED 0.289 0.600 0.199 0.000 0.340 0.633 0.251 0.000 0.474 0.657 0.387 0.002

MMMB 0.344 0.496 0.324 0.001 0.384 0.408 0.446 0.002 0.455 0.392 0.711 0.025
PCMB 0.342 0.500 0.310 0.004 0.385 0.446 0.423 0.019 0.466 0.448 0.651 0.260

HITON-MB 0.156 0.171 0.171 0.001 0.299 0.292 0.376 0.002 0.457 0.380 0.775 0.032
MBOR 0.331 0.622 0.247 0.001 0.420 0.639 0.338 0.004 - - - -
IPCMB 0.268 0.202 0.532 0.007 0.357 0.322 0.617 42.319 - - - -
STMB 0.266 0.196 0.548 0.000 0.337 0.280 0.641 1.540 - - - -
BAMB 0.162 0.173 0.183 0.000 0.319 0.299 0.431 0.001 - - - -
CCMB 0.346 0.492 0.333 0.004 0.386 0.391 0.466 0.011 0.445 0.364 0.754 0.096
EEMB 0.160 0.174 0.180 0.000 0.317 0.298 0.421 0.001 - - - -
SRMB 0.342 0.497 0.320 0.004 0.388 0.401 0.459 0.012 0.445 0.380 0.740 0.102
DCMB 0.352 0.500 0.333 0.004 0.398 0.449 0.443 0.018 0.482 0.445 0.702 0.233

Barley

IAMB 0.284 0.667 0.192 0.000 0.326 0.615 0.237 0.001 0.489 0.736 0.402 0.005
FBED 0.284 0.667 0.192 0.000 0.334 0.625 0.244 0.000 0.492 0.736 0.406 0.004

MMMB 0.379 0.335 0.558 0.003 0.414 0.340 0.645 0.006 0.630 0.581 0.787 0.050
PCMB 0.379 0.339 0.544 0.038 0.409 0.362 0.611 0.086 0.629 0.620 0.748 0.423

HITON-MB 0.344 0.303 0.522 0.003 0.384 0.311 0.620 0.008 0.632 0.583 0.785 0.071
MBOR 0.343 0.618 0.271 0.002 0.421 0.565 0.377 0.004 - - - -
IPCMB 0.363 0.306 0.565 0.008 0.398 0.336 0.602 0.015 0.634 0.624 0.744 0.117
STMB 0.353 0.285 0.581 0.001 0.368 0.285 0.638 0.002 - - - -
BAMB 0.342 0.300 0.522 0.001 0.389 0.315 0.623 0.005 - - - -
CCMB 0.378 0.328 0.569 0.011 0.411 0.334 0.672 0.027 0.624 0.548 0.814 0.288
EEMB 0.343 0.301 0.520 0.001 0.386 0.314 0.612 0.004 - - - -
SRMB 0.380 0.334 0.567 0.011 0.411 0.340 0.667 0.029 0.623 0.551 0.810 0.294
DCMB 0.389 0.343 0.567 0.029 0.423 0.347 0.661 0.075 0.645 0.592 0.794 0.209

TABLE IV
THE AVERAGE RANKS OF SA-DCMB AND ITS RIVALS USING NB AND KNN CLASSIFIERS.

Algorithm IAMB FBED MMMB PCMB HITON-MB MBOR FCBF LASSO FSAE SA-DCMB

Avg rank NB 5.75 5.25 6.21 7.67 6.13 3.71 5.54 6.54 6.38 1.83
KNN 6.63 6.54 4.38 7.21 4.58 4.63 5.13 7.21 7.33 1.38
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Fig. 3. Crucial difference diagram of the Nemenyi test for NB and KNN classifier on 12 real-world datasets (Since IPCMB, STMB, BAMB, CCMB, EEMB,
SRMB and QPFS fail to generate any output on some datasets, their results are not shown in the crucial difference diagram.)

To further analyze the significant difference between SA-
DCMB and its rivals, we perform the Nemenyi test, which
states that the performance levels of two algorithms are sig-
nificantly different if the corresponding average ranks differ by
at least one critical difference (CD). The CD for the Nemenyi
test is calculated as follows (i.e., Eq. (1)).

CD = qα,m

√
m(m+ 1)

6|D|
(1)

where α is the significance level, |m| is the number of com-
parison algorithms, and |D| denotes the number of real-world
datasets. In our experiments, m = 10, qα=0.05,m=10 = 3.164
at significance level α = 0.05. Whether using NB or KNN
classifiers, |D| = 12, and thus CD=3.91.

Figs. 3(a) and (b) provide the CD diagrams, where the
average rank of each algorithm is marked along the axis (lower
ranks to the right). Using NB classifier, we observe that SA-
DCMB achieves a comparable performance against MBOR,
FBEDK and FCBF, and SA-DCMB significantly outperforms
the other algorithms. Using KNN classifier, we note that
SA-DCMB significantly outperforms IAMB, FBEDK , PCMB,
LASSO and FSAE, and SA-DCMB achieves a comparable
performance against the other algorithms. SA-DCMB is the
only algorithm that achieves the lowest rank value whether
using NB or KNN classifiers.
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