
Applied Intelligence
https://doi.org/10.1007/s10489-023-04999-2

A novel data enhancement approach to DAG learning with small data
samples

Xiaoling Huang1,2 · Xianjie Guo1 · Yuling Li1 · Kui Yu1

Accepted: 3 September 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Learning a directed acyclic graph (DAG) from observational data plays a crucial role in causal inference andmachine learning.
However, the scarcity of observational data is a common phenomenon in real-world applications, where the current DAG
learning methods may cause unsatisfactory performance in the context of small data samples. Data enhancement has been
recognized as one of the key techniques for improving the generalization abilities of learning models utilizing small data
samples. However, due to the inherent difficulty of sampling small datasets to generate high-quality new data samples, this
approach has not been widely used in DAG learning. To alleviate this problem, we propose a data enhancement-based DAG
learning (DE-DAG) approach. Specifically, DE-DAG first presents an integrated data sampling strategy for DAG learning
and data sampling, then constructs a sample-level adaptive distance computing algorithm for selecting high-quality samples
from the sampled datasets, and finally implements a DAG learning method on enhanced datasets consisting of high-quality
samples and the original data samples. Experimental results obtained on benchmark datasets demonstrate that our proposed
approach outperforms the state-of-the-art baselines.

Keywords Bootstrap sampling · Causal structure learning · DAG learning · Data enhancement

1 Introduction

Causal inference is one of the fundamental methods that is
capable of producing economic value and promoting social
development in the field of data science [1]. Learning a
directed acyclic graph (DAG) from observational data is
an important step for causal inference and robust machine
learning methods. Specifically, a high-quality DAG is of
critical significance for improving the effectiveness of these
approaches.
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In recent years, DAG learning methods have been exten-
sively proposed, and they can be mainly divided into
combinatorial-based optimization DAG learning [2, 3] and
continuous optimization-based DAG learning [4, 5]. In light
of the different learning strategies, the combinatorial opti-
mization DAG learning methods can be subdivided into
constraint-based DAG learning, score-based DAG learn-
ing and hybrid DAG learning approaches. Constraint-based
methods make use of conditional independence tests to learn
a DAG from observational data [6, 7], while score-based
methods such as GES [8] and GGSL [9] learn the best DAG
from observational data by taking advantage of score func-
tions.

Moreover, hybrid DAG learningmethods, such asMMHC
[10] andSLL+C/SLL+G[11], combine the ideasof constraint-
based and score-based methods. These fruitful methods con-
sist of three steps: first learning the local skeleton of each
variable from observational data, then constructing a global
skeleton by splicing the local skeletons of all variables,
and finally orienting the global skeleton by using inde-
pendence tests [12, 13] or score functions [8, 14–16]. To
solve the combinatorial-based constraint, continuous opti-
mization DAG learning methods [4, 5, 17–20], such as
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Notears andDAG-NoCurl, formulate theDAG learning prob-
lem as a continuous optimization problem, and learn a DAG
from observational data by optimizing a weighted adjacency
matrix.

Although the current DAG learning methods have made
remarkable progress in terms of both accuracy and efficiency,
they still achieve unsatisfactory DAG performance due to
the inevitable quality problems of observational data [21,
22], such as small samples. In particular, most of existing
DAG learning methods were designed for datasets with large
numbers of data samples [10, 21–23] (e.g., 500 samples
or more). When the number of data samples is insufficient
(e.g., a small data sample is utilized), conditional indepen-
dence (CI) testing or score computing becomes unreliable
[24], which demonstrates the poor performance of the exist-
ing DAG learning methods. However, datasets with few data
samples are a common phenomena inmany real-world appli-
cations, creating an obstacle to accurate DAG learning.

In a scenario with small data samples, some missing key
samples (or high-quality samples)will cause the results of the
statistical tests between some variables (conditional indepen-
dence tests) to contradict the real results. For example, the
results of variable A and the variable B which were origi-
nally independent, may now be incorrectly as dependent. In
contrast, if variable A and the variable B were originally
dependent, they may now be incorrectly judged as inde-
pendent. As a result, many additional erroneous edges are
learned, and some correct edges are deleted.

According to the above discussions, a question naturally
arises: can we generate new and key samples(or high-
quality samples) to enhance the originally observational data,
thereby yielding better performance using the DAG learning
methods with the help of enhanced data?

Data enhancement [25–27] is devoted to generating more
data, and it is widely applied in the fields of computer vision
[28] and natural language processing. However, relatively
few research findings have applied data enhancement tech-
niques to DAG learning. This is attributed to the fact that
DAG learning has strict restrictions and specifications. Fur-
thermore, it is difficult to generate high-quality new data
samples based on small data samples.

To address this issue, we propose a data enhancement
approach, and our contributions are summarized as follows:

(1) We propose a novel DAG learning method with the
capability of data enhancement capabilities, called DE-
DAG, which can learn a high-quality DAG from small
data samples. Specifically, DE-DAG first presents an
integrated data sampling strategy to generate several
subdatasets containing many new data samples, then
designs a high-quality dataset construction strategy for
selecting high-quality samples from the newly gener-
ated subdatasets, and finally performs a DAG learning

method on the enhanced data containing both the origi-
nally observational data and the newly high-quality data.

(2) The main idea of DE-DAG is that it designs a high-
quality dataset construction strategy. This strategy first
develops a sample-level attention-based distance com-
puting algorithm, calledadaptiveDis, to determinewhether
a sample derived from a newly generated subdataset is
close to the observational data in the distance space.
Then, based on the distances between each sample and
the observational data, this strategy selects high-quality
samples from the newly generated subdatasets that are
near the observational data in the distance space.

(3) Utilizing five benchmarkBNdatasets, we conduct exten-
sive experiments to verify the effectiveness of DE-DAG,
and the experimental results show that our proposed
DE-DAG approach achieves better performance than the
state-of-the-art DAG learning methods.

The remainder of the paper is organized as follows. The
related work is briefly introduced in Section 2. Several basic
notations, our proposed DE-DAG method and its corre-
sponding algorithm are presented in Section 3. Extensive
experiments used to evaluate the effectiveness of the pro-
posed algorithm are shown in Section 4 and the paper is
concluded in Section 5.

2 Related work

Causal inference is an important component of science and
human intelligence, and causal structure learning is a pre-
requisite for causal inference [20, 29]. To discover causal
structures from data, we typically make use of causal struc-
ture learning approaches [1], where a causal structure is
generally defined for DAG (i.e., a Bayesian network).

Hence, we primarily focus on DAG learning approaches.
In recent decades, many effective methods have been pro-
posed for learning DAGs from observational data [1].
According to their learning strategies, these methods can be
categorized as constraint-based [7], score-based, and hybrid-
based methods. In addition, the hybrid-based methods are
combinations of constraint-based methods and score-based
methods.

Constraint-based DAG learning approaches, such as PC
[6], PC-stable [30], MIIPC [2] and PC-CS PC [3], make use
of conditional independence tests to learn the independence
and correlation between variables derived fromobservational
data, and construct a corresponding DAG based on the inde-
pendence relationship between the variables. However, the
accuracy of the DAGs learned by such methods depends on
the quality of the input observational data. Specifically, when
the data are insufficient, the DAGs learned by such methods
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will have greatly deviate from the true structure, leading to
low accuracy of the DAG learned.

In contrast, the score-based DAG learning methods, such
as GES [8], GGSL [9] and MAHC [16], make use of a score
function to search for a DAG that exhibits the highest degree
of fitting with the observational data in all possible graph
structure spaces. The challenge of score-based DAG learn-
ing lies in how to find a DAG with the highest score from
the exponential graph structure search space. In an exhaus-
tive search, every possible graph is considered and scored.
Therefore, the utilized score functions and search strategies
are the main factors that impact the effectiveness of score-
based DAG learning methods.

To solve the combinatorial constraint, continuous
optimization-based DAG learning methods have been pro-
posed. For example, NOTEARS [4] learns a DAG from
observational data by optimizing a weighted adjacency
matrix, and formulates the acyclic constraint as a smooth
term and solves the problem using gradient-based numeri-
cal methods. DAG-NoCurl [5] is proposed based on Hodge
graph theory [31] to solve the resultant unconstrained opti-
mization problem in the DAG space. Thus, the performance
of the DAGs learned by these methods relies on not only the
number of variables but also the quality of the observational
data.

The abovementioned approaches improve the effective-
ness of DAG learning to some degree, but they still face the
scalability of the nodes in a DAG. Inspired by the combi-
nation of constraint-based and score-based methods, some
hybrid DAG learning approaches, such as MMHC [10],
SLL+G/C [11], PC+MCMC [32] and ADL [33] have been
proposed to improve the performance of DAGs. Specifically,
these methods first learn the local skeleton structure of each
variable from the input observational data. Furthermore, the
local skeleton structure of each variable is spliced into a
global skeleton structure. Finally, the undirected edges in
the global skeleton are oriented using a strategy built on
constraint-based methods or score-based methods. Hence,
a hybrid method not only avoids inaccurate orientation prob-
lem of constraint-based methods but also solves the problem
of high time complexity of score-based methods. However,
the impact of data quality on DAG learning methods has not
been fundamentally addressed.

Although the existing DAG learning algorithms have
achieved promising results, they rely heavily on the availabil-
ity of sufficient observational data. However, DAG learning
methods are developed under the assumption that “observa-
tion data is sufficient”, this has led to relatively few research
efforts related to DAG learning for small data samples. In
practice, the volumes of observational data is extremely small
in many cases. As a result, the existing DAG learning meth-
ods are incapable of achieving satisfactory performance with
sparse observational data.

To overcome the data scarcity problem, data enhancement
technology has been proposed in the field of computer vision
[34] and natural language processing [35, 36]. These meth-
ods increase the amount of original data by adding slightly
modified copies of the original data or synthetic data that
are newly created from the existing data. Shorten et al. [34]
investigated on the application of image-based data augmen-
tation, which artificially increases the size of the training
dataset through data distortion or oversampling. Li et al. [35]
conducted a survey related to data enhancement approaches
in natural language processing (NLP).

Although data enhancement is widely used in computer
vision and natural language processing, it has received less
attention in DAG learning scenarios. Different from images
and natural language, it is more difficult to adopt data
enhancement approaches in DAG learning. To alleviate sce-
narios with data scarcity in which DAG learning methods
may fail, in this study, we introduce a data enhancement
approach for generating abundant pseudo samples, which are
jointly trainedwith the original observational data to increase
both the quantity and the diversity of the observational data.

3 Proposed DE-DAG approach

In this section, we propose the DE-DAG approach which
consists of three learning phases as shown in Fig. 1.

Phase 1: Generating new sampling datasets DE-DAG first
samples datasets via the bootstrap method, and discovers
the DAGs from each sampling dataset by using an existing
DAG learning method. Furthermore, based on the sam-
pling datasets, DE-DAG learns conditional probability tables
for the learned DAGs using Bayesian network parameter
learning methods. Finally, a new batch of datasets is gen-
erated based on the learned conditional probability tables
and DAGs.

Phase 2: Selecting high-quality data samples Phase 2 first
computes the distances between the data samples derived
from the new batch of datasets obtained in Phase 1 and the
original dataset, then selects some high-quality samples that
match the original dataset, and finally places them into a
high-quality dataset.

Phase 3: Relearning the DAG from the enhanced dataset In
this phase, DE-DAG relearns a new DAG on the enhanced
dataset consisting of the high-quality dataset and the original
dataset.

Let D = {Dm×n
1 , . . . , Dm×n

i , . . . , Dm×n
Q } denote a set of

datasets named sam_datasets, and sam_dataset Dm×n
i =

{di1, . . . , di j , . . . , dim} denote the i-th dataset with n vari-
ables and m samples. Dm×n

0 = {d01, . . . , d0 j , . . . , d0m}
denotes the original dataset. Q represents the times of
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Fig. 1 The flow chart of our proposed DE-DAG approach

Bootstrap sampling. DAGi (1 ≤ i ≤ Q) named gen_DAG
denotes the learned DAG based on a sam_dataset Dm×n

i .
CPTi (1 ≤ i ≤ Q) means the parameter of condi-
tional probability tables for DAGi (1 ≤ i ≤ Q). D′ =
{D′m×n

1 , . . . , D′m×n
i , . . . , D′m×n

Q } are named gen_datasets,

and D′m×n
i = {d ′

i1, . . . , d
′
i j , . . . , d

′
im} is a newly generated

dataset based on a gen_DAG DAGi and CPTi .
In the following Sections 3.1 to 3.3, we focus on depicting

the details of the aforementioned three phases.

3.1 Generating new sample datasets (Phase 1)

In Phase 1, we design an integrated data sampling strategy
with the following Phases 1-1 and 1-2 for generating new
data samples.

3.1.1 Learning an initial DAG for each sample dataset
(Phase 1-1)

DE-DAG first samples new datasets from the original dataset
by making use of a sampling method, and then learns the
initial DAGs from these datasets.

Step 1 DE-DAG samples the original dataset Dm×n
0 into Q

datasets D = {Dm×n
1 , . . . , Dm×n

i , . . . , Dm×n
Q } by using the

bootstrap method [37].
The bootstrap method is a commonly used sampling

method in the field ofmachine learning. The bootstrap idea of
approximating a population by a sample becomesmore cred-
ible as the sample size decreases, making it more suitable for
even smaller datasets than other sampling methods. Because
it can ensure that the subdatasets obtained through bootstrap-
ping have the same dimensions as the original dataset, both in
terms of rows and columns. However, other sampling meth-
ods may sample much smaller subdatasets than the original
dataset, thus leading to unreliable statistical testing.

Furthermore, we select the bootstrap method for dataset
sampling, because the bootstrapmethod is able to have 36.8%
of its samples be different from those in the original dataset
[37]. The sample difference can increase the diversity of the
original dataset, which may be beneficial for learning more
accurate DAGs from the sampled datasets than the DAGs
derived from theoriginal dataset.Hence, improving the diver-
sity of the original dataset can help the DE-DAG (Phase 1
sampling_based method) to better generalize to unseen test-
ing data.
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Step 2: Based on each sam_dataset Dm×n
i obtained in Step

1,DE-DAG learns aDAGnamed gen_DAG DAGi (1 ≤ i ≤
Q) by using an existing DAG learning algorithm that is able
to learn complete directed acyclic graphs without generating
equivalent classes in a DAG.

3.1.2 Generating new sampling datasets (Phase 1-2)

Utilizing the DAGs learned in Phase 1-1, DE-DAG generates
new datasets with the following two steps.

Step 1: Parameter learning DE-DAG learns the parame-
ters of conditional probability tables for each DAG based
on the sam_dataset and gen_DAG using the Bayesian
network parameter learning method. Given a sam_dataset
Dm×n
i (1 ≤ i ≤ Q), DE-DAG constructs a Bayesian net-

work bneti (1 ≤ i ≤ Q) based on gen_DAG DAGi (1 ≤
i ≤ Q). BN = {bnet1, . . . , bneti , . . . , bnetQ} denotes a set
of Bayesian networks containing both the learned DAGs and
their conditional probability tables. Then, it learns the param-
eter of conditional probability table CPTi (1 ≤ i ≤ Q) by
making use of Dm×n

i and bneti (1 ≤ i ≤ Q)

Step 2: Generating a new sampling dataset DE-DAG ran-
domly generates new sampling datasets based on the BNs
obtained in Step 1, which ensures that the newly generated
samples conform to the data distribution of samp-Datasets.
Specifically, DE-DAG constructs a new set of Bayesian net-
works named BN ′ = {bnet ′1, . . . , bnet ′i , . . . , bnet ′Q}, where
bnet ′i (1 ≤ i ≤ Q) consists of the parameter CPTi (1 ≤ i ≤
Q) and the corresponding structure information gen_DAG
DAGi . Furthermore, each new dataset named gen_dataset
D′m×n
i (1 ≤ i ≤ Q) is generated by the corresponding

Bayesian network bnet ′i (1 ≤ i ≤ Q). Accordingly, a set
of gen_datasets D′ = {D′m×n

1 , . . . , D′m×n
i , . . . , D′m×n

Q } is
generated.

3.2 Selecting high-quality data samples (Phase 2)

Althoughweobtain a set of newly generated datasets in Phase
1, the quality of these datasets is different at each time due
to the quality of the learned DAGs and their parameters. In
addition, the newly generated samples increase the quantity
of the original dataset, but there may exist some duplicate
or noisy samples may be included, which may influence the
performance of DAG learning. Therefore, it is necessary to
select high-quality samples that match the original dataset
from these newly generated datasets.

To select high-quality data samples, we first design an
effective strategy for computing the distances between the
original dataset and samples taken from the newly gen-
erated datasets. More detailed information is described in

Section 3.2.1. Furthermore, according to these distances
between theoriginal dataset and thenewlygenerateddatasets,
we select the samples from the newly generated datasets that
are close to the original dataset in the distance space, and the
detailed information is described in Section 3.2.2.

3.2.1 Computing the distances between the original
dataset and the newly generated datasets (Phase 2-1)

Commonly-used distance metric methods cannot be directly
employed to compute the distance between a sample point
and a cloud of samples (i.e., the original dataset). Intuitively,
this problem can be converted to computing the distance
between the sample and the centre of the sample points
acquired from the dataset. The conventional approach for
computing the centre of sample points is to compute the aver-
age vectors of the sample points. Due to the sparsity of the
data samples, the issue that one sample may be far from other
samples can cause a massive deviation in the centre points
of the dataset.

Inspired by the fruitful research [38] focusing more on the
samples in relation to newly generated samples, we construct
a sample-level adaptive distance computing algorithm (called
adaptiveDis) to determine whether a sample obtained from
the newly generated datasets belongs to the data distribution
of the original dataset.

The detailed process of adaptiveDis is shown in Algo-
rithm 1.

Algorithm 1 adaptiveDis
Require: Original dataset Dm×n

0 , gen_datasets D′ =
{D′m×n

1 , . . . , D′m×n
i , . . . , D′m×n

Q }.
Ensure: The distance matrix Distance between D′ and Dm×n

0 .
1: Initialization: Distance = zeros(Q × m, n + 1). � Construct a

matrix containing Q × m rows and n + 1 columns;
2: for i = 1 to Q do
3: SamDistance = zeros(m, n + 1).
4: for each sample d ′

i j (1 ≤ j ≤ m) in D′m×n
i do

5: SamDistance ← SamDistance ∪ d ′
i j . � Copy each sample

d ′
i j in D′m×n

i to SamDistance;

6: for each sample d0k(1 ≤ k ≤ m) in Dm×n
0 do

7: weight jk ← distance(d ′
i j , d0k) based on Equation (1).

8: end for
9: end for
10: CenterMati xm×n

i = Weightm×m
i × Dm×n

0 . � Obtain an
adaptive class centre for each sample in D′m×n

i ;
11: for j = 1 to m do
12: SamDistance( j, n+1) ← distance(d ′

i j ,CenterMati xi j )
based on Equations (1) and (2).

13: end for
14: Distance ← Distance ∪ SamDistance.
15: end for
16: return Distance.
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Line 1 in Algorithm 1 Initializing the distance matrix. In
Line 1, adaptiveDis constructs a distance matrix Distance
containing Q × m rows and n + 1 columns.

Lines 2 to 9 in Algorithm 1 Obtaining the weight of the
adaptive centre of the original dataset for each sample of the
newly generated datasets. In Lines 4 to 5 of Algorithm 1, the
top n columns of each SamDistance are used to store samples
from the i-th dataset D′m×n

i (1 ≤ i ≤ Q). In Lines 6 to 8 of
Algorithm 1, we argue that not all high-quality samples are
always near the same centre of the original dataset. Hence,
given the i-th dataset D′m×n

i , each sample d ′
i j (1 ≤ j ≤ m) in

D′m×n
i is set to a weight weight jk(1 ≤ j ≤ m, 1 ≤ k ≤ m)

by computing the distance between the sample d ′
i j and each

sample d0k(1 ≤ k ≤ m) in the original dataset Dm×n
0 , which

measures the deviation exhibited by the centre of the original
dataset. All the samples weights are stored in the i-th matrix
of Weightm×m

i .

To calculate the distance(d ′
i j , d0k) function, we employ

the Euclidean distance measure, which is a commonly-
used method for measuring spatial distance. Let d ′

i j =
(s′

j1, s
′
j2, . . . , s

′
jn) and d0k = (sk1, sk2, . . . , skn) denote a

sample from D′m×n
i and a sample from the original dataset

Dm×n
0 , respectively. Formally, thedistancedistance(d ′

i j , d0k)
between d ′

i j and d0k is defined as follows.

distance(d ′
i j , d0k) = (|s′

j1 − sk1|2+|s′
j2 − sk2|2

+ · · · + |s′
jn − skn|2) 1

2 (1)

Line 10 in Algorithm 1 The adaptive centre of each sample
in gen_dataset D′m×n

i is stored into CenterMati xm×n by
using the product of the normalized matrixWeightm×m

i and
the original dataset Dm×n

0 , where Weightm×m
i is normal-

ized between 0-1 to ensure the unification of its statistical
probability distribution. Therefore, the element α0k of the
normalized matrixWeightm×m

i can be expressed as follows:

α0k = exp(distance(d ′
i j , d0k))

∑ m
p=1exp(distance(d

′
i j , d0p))

(2)

Lines 11 to 16 in Algorithm 1 Computing the distance
between each sample and the adaptive centre of the origi-
nal dataset. The (n + 1)−th column of SamDistance is used
to store the distance between each sample and the adaptive
centre of the original dataset by using the Euclidean distance
according to Equation (1). All the computed distances are
stored in the Distance matrix.

3.2.2 Selecting the K -nearest neighbour samples from the
newly generated datasets (Phase 2-2)

DE-DAG aims to select the nearest neighbour samples rel-
ative to the original dataset based on the computed distance
Distance. Distance is sorted according to the (n + 1)−th
column of Distance in an ascending order, Then, we select
the top-K samples from the sorted Distance matrix as high-
quality samples.

3.3 Relearning the DAG from the enhanced dataset
(Phase 3)

In this phase, DE-DAG first merges the high-quality sam-
ples obtained in Phase 2 into the original dataset to achieve
data enhancement. In addition, it relearns a new DAG on
the enhanced dataset consisting of the high-quality dataset
and the original dataset by using an existing DAG learning
method. In particular, we can employ any state-of-the-art
DAG learning methods to learn the DAG without the con-
straint of generating a complete directed acyclic graph, as
mentioned in Section 3.1.

4 Experiments

In this section, we design extensive experiments to demon-
strate the effectiveness of the proposed DE-DAG approach.

4.1 Experimental settings

Comparison Methods. We compare the proposed approach
with 9 state-of-the-art DAG learning methods, i.e., Peter-
Clark (PC) [6], GES [8], MMHC [10], PC-stable [30],
Notears [4], DAG-NoCurl [5], SLL+C/SLL+G [11] and
GGSL [9].

Implementation details. PC, MMHC, PC-stable and our
proposed DE-DAG approach are implemented in MATLAB.
Furthermore, SLL+C/SLL+G andGGSL are implemented in
C++, and the other approaches are implemented in Python.
G2 tests are utilized for the conditional independence tests
with a statistical significance level of 0.01. The parameter
Q of DE-DAG is set to 10. The random seed is set to -12
during the process of generating the original dataset, which
ensures that generated data will be the same every time.With
respect to Phase 1-2 of DE-DAG, we take advantage of the
well-known Bayes Net Toolbox1 named BNT to generate
new sampling datasets. In addition, the other parameters in

1 https://github.com/bayesnet/bnt
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the compared algorithms are set as suggested in the corre-
sponding literature. The source codes of PC, MMHC, and
PC-stable are listed in the causal feature selection and struc-
ture learning package named CausalLearner [39], while the
other source codes of GES, Notears and DAG-NoCurl are
contained in the Causal Discovery Toolbox named gCastle
[40].

Evaluation Metrics We adapt three metrics to evaluate the
tested methods:

(1) Ar_F1. Ar_F1= 2×Ar_Precision×Ar_Recall
Ar_Precision+Ar_Recall .

Ar_Precision represents the proportion of correctly
directed edges in the learned graph among the edges
output by an algorithm and Ar_Recall denotes the pro-
portion of correctly directed edges in the learned graph
out of the total edges in the true graph. The Ar_F1
score is the harmonic average of the Ar_Precision and
Ar_Recall.

(2) Structural Hamming Distance (SHD): The SHD is the
number of error edges including undirected edges,
reverse edges, extra edges and missing edges.

(3) Running time (Running time): The Running time is the
running time (in seconds) of each method.

In the following figures, (↑) means that higher values are
better, and (↓) means that lower values are the better.

4.2 Benchmark datasets

We generate the original datasets according to five bench-
mark Bayesian networks (BNs) (as shown in Table 1)
implemented in the R programming language by using the
toolbox of CausalLearner toolbox. Each BN is used to gen-
erate 2 datasets with 50 and 100 samples, respectively, which
is consistent with the scenario for small samples scenarios of
DAG learning. Moreover, we choose the number of variables
from 20 to 70 for the benchmark BNs.

Table 1 Summary of Benchmark BNs

Network Num. Vars Num. Edges Data Size

Child 20 25 50/100

Insurance 27 52 50/100

Alarm 37 46 50/100

Haifinder 56 66 50/100

Hepar2 70 123 50/100

4.3 Comparison with the baselines

Figures 2, 3, 4 and 5 summarize the Ar_F1 and SHD values
achievedwith BNs utilizing 50 and 100 data samples. Specif-
ically, DE-DAG first employs MMHC as the initial DAG
learning method to learn a set of DAGs from divese sampled
datasets, and then relearns the DAGs on an enhanced dataset
usingMMHC. In addition, we implement all the baselines on
benchmark BNs with 50 samples and 100 samples, respec-
tively. Taking the 50 samples case as an example, the results
of DE-DAG are obtained on the enhanced dataset with 100
samples, which contains the 50 original data samples and
50 generated high-quality samples. Furthermore, when the
volume of the benchmark BN dataset is 100, DE-DAG is
performed on the enhanced dataset with 200 samples con-
sisting of the 100 original data samples and 100 generated
high-quality samples.

From Figs. 2-5, we can easily conclude that: 1) the perfor-
mances of all the DAG learning methods drop dramatically
when the volume of the original dataset volume is small, and
2) these methods achieve better results on the benchmark BN
datasets with 100 samples than on those with 50 samples. It
is proven that the volume of observational data volume is
one of the important factors affecting DAG learning meth-
ods, and the results also indirectly indicates that our proposed
DE-DAG approach based on data enhancement technology
is of practical significance.

Table 2 shows the effectiveness and efficiency of all
approaches on different benchmark datasets with 50 and 100
data samples. From Table 2, we can obtain the following
observations.

(1) DE-DAG performs significantly better than the other
methods with respect to the Ar_F1 metrics achieved
on all datasets with 50 and 100 samples. Since DE-DAG
achieves more balanced Ar_Precision and Ar_Recall
values than its rivals, it is concluded that DE-DAG can
learn more high-quality DAGs than the other methods.
Furthermore, DE-DAG is better or at least has the simi-
lar SHD values to those of the best-performing baseline
methods on all datasets. It is proven that DE-DAG is
more suitable for original datasets with small samples
than the other methods.

(2) The performance of DE-DAG does not depend on that of
MMHC.AlthoughMMHChas lower Ar_F1 values than
the other methods on the datasets Child, Insurance and
Hailfinder datasets with 50 samples, DE-DAG achieves
the highest Ar_F1 values on all datasets. DE-DAG
generates high-quality samples to enhance the original
dataset, and thereby improves the accuracy of the learned
DAG.
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Fig. 2 Comparing results on benchmark BNs with 50 samples under Ar_F1

Fig. 3 Comparing results on benchmark BNs with 50 samples under SHD

Fig. 4 Comparing results on benchmark BNs with 100 samples under Ar_F1

Fig. 5 Comparing results on benchmark BNs with 100 samples under SHD
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Table 2 Comparing our proposed approach with different methods on 5 benchmark datasets when the size of original dataset is 50 and 100,
repectively

Dataset Method #Samples Ar_F1(↑) Ar_Precision(↑) Ar_Recall(↑) SHD(↓) Running time(↓)
Child PC 50 0.07 0.05 0.12 63 0.31

GES 0.25 0.20 0.32 43 15.91

PC-stable 0.07 0.05 0.12 63 0.32

MMHC 0.06 0.13 0.04 27 0.32

Notears 0.19 0.43 0.12 22 0.97

Dag-NoCurl 0.09 0.06 0.20 86 0.51

GGSL 0.19 0.24 0.16 27 0.23

SLL+C 0.20 0.40 0.13 29 0.06

SLL+G 0.27 0.42 0.20 21 0.06

DE-DAG 0.32 0.37 0.28 27 4.95

Insurance PC 50 0.18 0.12 0.35 150 1.67

GES 0.17 0.23 0.13 63 21.20

PC-stable 0.18 0.12 0.35 150 1.58

MMHC 0.16 0.25 0.12 58 0.41

Notears 0.18 0.38 0.12 53 2.44

Dag-NoCurl 0.09 0.06 0.13 131 2.15

GGSL 0.13 0.44 0.08 53 0.50

SLL+C 0.14 0.24 0.1 55 0.11

SLL+G 0.19 0.28 0.14 61 0.08

DE-DAG 0.24 0.33 0.19 58 4.65

Alarm PC 50 0.19 0.12 0.48 171 2.91

GES 0.21 0.23 0.20 57 25.51

PC-stable 0.19 0.12 0.48 171 2.76

MMHC 0.39 0.48 0.33 43 0.49

Notears 0.14 0.36 0.09 47 1.90

Dag-NoCurl 0.13 0.08 0.50 296 9.01

GGSL 0 0 0 46 0.01

SLL+C 0.28 0.31 0.26 62 1.20

SLL+G 0.42 0.47 0.38 43 0.88

DE-DAG 0.45 0.47 0.43 43 5.53

Hailfinder PC 50 0.05 0.03 0.45 1162 1.79

GES 0.09 0.15 0.06 76 46.34

PC-stable 0.05 0.03 0.45 1162 1.77

MMHC 0.12 0.31 0.08 66 0.96

Notears 0.14 0.13 0.14 96 38.25

Dag-NoCurl 0.05 0.02 0.30 822 31.86

GGSL 0.06 1.00 0.03 64 0.10

SLL+C 0.06 0.07 0.06 66 1.61

SLL+G 0.17 0.18 0.16 106 1.48

DE-DAG 0.23 0.39 0.17 68 7.80

Hepar2 PC 50 0.13 0.14 0.12 198 0.82

GES 0.08 0.12 0.07 168 49.15

PC-stable 0.13 0.14 0.12 198 0.95

MMHC 0.08 0.19 0.05 135 0.97
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Table 2 continued

Dataset Method #Samples Ar_F1(↑) Ar_Precision(↑) Ar_Recall(↑) SHD(↓) Running time(↓)
Notears 0.02 0.25 0.01 124 3.24

Dag-NoCurl 0.05 0.03 0.24 1196 138.04

GGSL 0.08 0.08 0.09 238 48.49

SLL+C 0.07 0.08 0.07 199 4.99

SLL+G 0.08 0.09 0.07 192 4.78

DE-DAG 0.15 0.23 0.11 135 11.72

Child PC 100 0.24 0.21 0.28 35 0.14

GES 0.34 0.32 0.36 26 24.16

PC-stable 0.24 0.21 0.28 34 0.13

MMHC 0.43 0.53 0.36 21 0.38

Notears 0.30 0.63 0.20 21 0.61

Dag-NoCurl 0.16 0.12 0.24 55 1.18

GGSL 0.4 0.42 0.38 20 0.20

SLL+C 0.45 0.53 0.40 18 0.11

SLL+G 0.45 0.53 0.40 18 0.07

DE-DAG 0.5 0.58 0.44 19 4.41

Insurance PC 100 0.24 0.21 0.29 82 0.20

GES 0.22 0.29 0.17 55 32.50

PC-stable 0.25 0.22 0.29 80 0.36

MMHC 0.39 0.52 0.31 45 0.52

Notears 0.19 0.60 0.12 46 2.26

Dag-NoCurl 0.16 0.12 0.23 110 2.22

GGSL 0.42 0.53 0.35 46 0.85

SLL+C 0.36 0.48 0.29 46 0.17

SLL+G 0.38 0.56 0.29 45 0.14

DE-DAG 0.45 0.59 0.37 42 5.92

Alarm PC 100 0.25 0.22 0.30 71 0.23

GES 0.31 0.31 0.30 49 37.32

PC-stable 0.26 0.22 0.30 70 0.27

MMHC 0.45 0.50 0.41 35 0.63

Notears 0.14 0.36 0.09 46 2.11

Dag-NoCurl 0.16 0.10 0.39 183 5.96

GGSL 0.38 0.42 0.35 42 2.51

SLL+C 0.35 0.39 0.32 52 0.49

SLL+G 0.48 0.47 0.49 37 0.43

DE-DAG 0.53 0.53 0.52 36 7.30

Hailfinder PC 100 0.15 0.09 0.52 358 1.46

GES 0.19 0.32 0.14 72 52.77

PC-stable 0.15 0.09 0.52 358 1.45

MMHC 0.42 0.53 0.35 59 0.79

Notears 0.30 0.37 0.26 67 39.43

Dag-NoCurl 0.07 0.04 0.26 440 7.90

GGSL 0.11 1.00 0.06 62 0.17

SLL+C 0.24 0.26 0.23 84 4.23
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Table 2 continued

Dataset Method #Samples Ar_F1(↑) Ar_Precision(↑) Ar_Recall(↑) SHD(↓) Running time(↓)
SLL+G 0.28 0.42 0.21 62 2.43

DE-DAG 0.44 0.50 0.40 62 13.98

Hepar2 PC 100 0.14 0.43 0.08 122 0.32

GES 0.11 0.18 0.08 150 57.74

PC-stable 0.14 0.48 0.08 120 0.28

MMHC 0.10 0.22 0.07 137 1.08

Notears 0.02 0.50 0.01 122 2.97

Dag-NoCurl 0.09 0.06 0.25 596 67.20

GGSL 0.07 0.10 0.06 176 43.83

SLL+C 0.08 0.09 0.07 187 2.84

SLL+G 0.10 0.20 0.07 137 1.82

DE-DAG 0.16 0.3 0.11 135 13.89

(3) The baselines perform poorly, due to the small data sam-
ples, leading to that these methods missing many true
edges. SLL+C/SLL+G achieves a comparable perfor-
mance to that of DE-DAG on Child with 100 samples
due to its use of local learning methods. On most BNs,
the performances of PC and PC-stable are close because
they implement conditional independence tests, which
require large numbers of data samples. Additionally,
DAG-NoCurl has higher SHD values than the other
methods on most datasets due to its strong theoretical
assumptions.

(4) From the Running time metrics, we can easily see that
although the proposed DE-DAG approach requires some
calculations, it is not the slowest approach. GES runs
slowly since it is a score-based algorithm, and its search
space is relatively large. In general, the running times
of all methods are not regular. For example, the running
times of some methods under 50 samples are not nec-
essarily shorter than those observed under 100 samples.
Sometimes, hybridDAG learningmethods (e.g. SLL+G)
have shorter running times than constraint-based DAG
learning methods (e.g. PC), which may be caused by the
small data samples environment.

To better understand the improvement provided by our
proposedDE-DAGmethod,weemployDE-DAGas abasis to
examine the growth and speedupmetrics of all DAG learning
approaches, where growth and speedup are defined by the
following formulas, respectively.

growth = T0 − T1
T1

(3)

where T0 is the Ar_F1 value of our proposed DE-DAG
method, and T1 is the Ar_F1 value of the baseline DAG
learning methods.

speedup(X) = X1

X0
(4)

where if X is the metrics of SHD, then X0 denotes the SHD
value of our proposed DE-DAG method, and X1 denotes the
SHD value of the baseline DAG learning methods. Hence,
we name speedup(SHD) as speedup(S) for short. Similarly,
if X is the metrics of Running time, then X0 denotes the
Running time of our proposed DE-DAG method, and X1 is
the Running time of baseline DAG learning methods. Hence,
we name speedup(Running time) as speedup(R) for short.

Tables 3 and 4 further present changes in the growth and
speedup metrics achieved on all datasets with 50 and 100
samples, respectively. DE-DAG increases the growth met-
rics by 7.14%-650.00% compared to those of the baseline
approaches on all datasets with 50 samples, while the results
of DE-DAG are increased by 4.76%-700.00% compared to
those of baseline approaches on all datasetswith 100 samples.
For speedup(S), the values vary from 0.78 to 17.09 com-
pared to those of baseline approaches on all datasets with
50 samples, while the values change from 0.90 to 7.10 com-
pared to those of baseline approaches on all datasets with
100 samples. From these evaluations, we can easily find that
our proposed DE-DAG method outperforms the baselines in
terms of Ar_F1 and achieves similar SHD values to those of
the best-performing baseline.

For speedup(R), the values vary from 0.01 to 11.78 com-
pared to those of baseline approaches on all datasets with 50
samples, while the values change from0.02 to 5.49 compared
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Table 3 The outperformance of
growth and speedup under our
proposed DE-DAG against other
approaches with 50 samples

Dataset Method #Samples growth(↑) speedup(S)(↑) speedup(R)(↑)
Child PC 50 357.14% 2.33 0.06

GES 28.00% 1.59 3.21

PC-stable 357.14% 2.33 0.06

MMHC 433.33% 1.00 0.06

Notears 68.42% 0.81 0.20

Dag-NoCurl 255.56% 3.19 0.10

GGSL 68.42% 1.00 0.05

SLL+C 60.00% 1.07 0.01

SLL+G 18.52% 0.78 0.01

Insurance PC 50 33.33% 2.59 0.36

GES 41.18% 1.09 4.56

PC-stable 33.33% 2.59 0.34

MMHC 50.00% 1.00 0.09

Notears 33.33% 0.91 0.52

Dag-NoCurl 166.67% 2.26 0.46

GGSL 84.62% 0.91 0.11

SLL+C 71.43% 0.95 0.02

SLL+G 26.32% 1.05 0.02

Alarm PC 50 136.84% 3.98 0.53

GES 114.29% 1.33 4.61

PC-stable 136.84% 3.98 0.50

MMHC 15.38% 1.00 0.09

Notears 221.43% 1.09 0.34

Dag-NoCurl 246.15% 6.88 1.63

GGSL 450.00% 1.07 0.00

SLL+C 60.71% 1.44 0.22

SLL+G 7.14% 1.00 0.16

Hailfinder PC 50 360.00% 17.09 0.23

GES 155.56% 1.12 5.94

PC-stable 360.00% 17.09 0.23

MMHC 91.67% 0.97 0.12

Notears 64.29% 1.41 4.90

Dag-NoCurl 360.00% 12.09 4.08

GGSL 283.33% 0.94 0.01

SLL+C 283.33% 0.97 0.21

SLL+G 35.29% 1.56 0.19

Hepar2 PC 50 15.38% 1.47 0.07

GES 87.50% 1.24 4.19

PC-stable 15.38% 1.47 0.08

MMHC 87.50% 1.00 0.08

Notears 650.00% 0.92 0.28

Dag-NoCurl 200.00% 8.86 11.78

GGSL 87.50% 1.76 4.14

SLL+C 114.29% 1.47 0.43

SLL+G 87.50% 1.42 0.41
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Table 4 The outperformance of
growth and speedup under our
proposed DE-DAG against other
approaches with 100 samples

Dataset Method #Samples growth(↑) speedup(S)(↑) speedup(R)(↑)
Child PC 100 108.33% 1.84 0.03

GES 47.06% 1.37 5.48

PC-stable 108.33% 1.79 0.03

MMHC 16.28% 1.11 0.09

Notears 66.67% 1.11 0.14

Dag-NoCurl 212.50% 2.89 0.27

GGSL 25.00% 1.05 0.05

SLL+C 11.11% 0.95 0.02

SLL+G 11.11% 0.95 0.02

Insurance PC 100 87.5% 1.95 0.03

GES 104.55% 1.31 5.49

PC-stable 80.00% 1.90 0.06

MMHC 15.38% 1.07 0.09

Notears 136.84% 1.10 0.38

Dag-NoCurl 181.25% 2.62 0.38

GGSL 7.14% 1.10 0.14

SLL+C 25.00% 1.10 0.03

SLL+G 18.42% 1.07 0.02

Alarm PC 100 112.00% 1.97 0.03

GES 70.97% 1.36 5.11

PC-stable 103.85% 1.94 0.04

MMHC 17.78% 0.97 0.09

Notears 278.57% 1.28 0.29

Dag-NoCurl 231.25% 5.08 0.82

GGSL 39.47% 1.17 0.34

SLL+C 51.43% 1.44 0.07

SLL+G 10.42% 1.03 0.06

Hailfinder PC 100 193.33% 5.77 0.10

GES 131.58% 1.16 3.77

PC-stable 193.33% 5.77 0.10

MMHC 4.76% 0.95 0.79

Notears 46.67% 1.08 2.82

Dag-NoCurl 528.57% 7.10 0.57

GGSL 300.00% 1.00 0.01

SLL+C 83.33% 1.35 0.30

SLL+G 57.14% 1.00 0.17

Hepar2 PC 100 14.29% 0.90 0.02

GES 45.45% 1.11 4.16

PC-stable 14.29% 0.89 0.02

MMHC 60.00% 1.01 0.08

Notears 700.00% 0.90 0.21

Dag-NoCurl 77.78% 4.41 4.84

GGSL 128.57% 1.30 3.16

SLL+C 100.00% 1.39 0.20

SLL+G 60.00% 1.01 0.13
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to those of baseline approaches on all datasets with 100
samples, which indicates that the running time spent by the
proposed DE-DAG method is of the same order of magni-
tude as those of the baseline methods. Furthermore, although
the proposed DE-DAG approach requires some calculations,
such as the distance matrix calculation, we can see that our
DE-DAG is not the slowest approach. This is because the
complexity of our proposed algorithm is O(m2), where m is
the number of initial data samples. The problem studied in
our work is aimed at small data samples, so the calculation
cost of DE-DAG is not high.

To further compare the performance (in terms of Ar_F1)
of DE-DAG with that of its rivals, we employ the Nemenyi
test [41], which compares the difference between the average
rankings of each pair of algorithms with a critical difference
(CD) value. The CD for the Nemenyi test is defined as fol-
lows:

CD = qα,r

√
r(r + 1)

6N
(5)

where α is the significance level, |r | is the number of com-
parison approaches, N is the number of datasets. In our
experiments, r=10, N=5, qα=0.05,r=10=3.164 at a signifi-
cance level of α =0.05, and thus CD = 6.06.

Figure 6 provides the obtained CD diagrams, where the
average rankof each approach ismarked along the axis (lower
ranks are shown to the right). We observe that DE-DAG is
the only approach that achieves the lowest rank for different
observational data. Specifically, when the size of the data
samples increases, the rank value of DE-DAG is always 1.

4.4 Parameter sensitivity analysis

As mentioned in Section 3.2, we need to set the number of
the original dataset’s neighbours K in advance. To evaluate
the influence of the parameter K when incorporating it into
DE-DAG, we provide a sensitivity analysis of this parameter
K in DE-DAG on different benchmark BN datasets.

To avoid the randomness of bootstrap sampling and
verify our constructed adaptiveDis algorithm, DE-DAG is

conducted on the same generated DAGs and datasets for a
given benchmark dataset as the parameter K changes. Fur-
thermore, we implement DE-DAG by varying the value of
parameter K using the rates of 10%, 20%, 50%, 100%, 150%,
200%, 300%, and 400% of the size of the original dataset.

Figure 7 shows the sensitivity analysis conducted for the
parameter K in DE-DAG on benchmark BNs. From the vari-
ational curves of Ar_F1 shown in Fig. 7(a) and (b), we can
observe that DE-DAG achieves almost the best Ar_F1 value
and achieves better SHD performance when the value of K is
set to 50-75 and 100 on benchmark datasets with 50 and 100
samples respectively, which correspond to a rate of 100%-
150% of the size of the original dataset.

From the variational SHD curves of depicted in Fig. 7(c)
and (d), DE-DAG exhibits little change in the SHD metrics
as the value of K increases. In particular, DE-DAG does
not always have the lowest SHD when Ar_F1 is very high
on benchmark datasets such as Hailfinder and Hepar2. The
reason for this is that SHD only considers erroneous edges,
while Ar_F1 considers not only erroneous edges, but also
correct edges. DE-DAG achieves the highest Ar_F1 because
it finds fewer missing edges, but obtains more extra edges
than that of MMHC (K = 0) in the learned DAG.

Thus, the parameter K of DE-DAG is set to the rate 100%
of the size of the original benchmark BNdataset in our exper-
iments. Specifically, K is set to 50 when the size of the
original benchmark BN has 50 samples, while K is set to
100 when the size of the original benchmark BN has 100
samples.

4.5 Effect of the adaptive distance computing
algorithm

Todemonstrate the effect of the high-quality samples selected
by our proposed algorithm adaptiveDis algorithm, we select
Child to show the distributions of the new generated samples
and the original dataset by utilizing t-distributed stochastic
neighbour embedding (t-SNE), which uses a probabilistic
model to construct a mapping relationship between high-
dimensional data points and low-dimensional embedding

Fig. 6 Crucial difference diagram of the Nemenyi test for Ar_F1 on 5 benchmark BNs with different data samples
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Fig. 7 Ar_F1 and SHD of DE-DAG on original datasets with 50 and 100 samples varying the value of K under benchmark BNs

points. In this subsection, we discuss the following two sce-
narios from a data distribution perspective.

Scenario 1: We employ Child to show the distributions
of the high-quality samples produced by adaptiveDis and
the original datasets from a graphic perspective. Figure 8
presents the distributions of the high-quality samples and
the original datasets with 50 and 100 samples, respectively,
where the samples from the original dataset are indicated as
blue points, while the high-quality samples are indicated as
red points. In Fig. 8, the x and y coordinates represent the
coordinates of the data points in the reduced feature space,
respectively. These coordinate values do not directly corre-
spond to the original data feature values of the original data

but rather represent a new feature representation obtained
through a nonlinear mapping.

From Fig. 8, we can find that the high-quality samples
often have three characteristics: 1) they increase the diversity
of the original dataset, 2) the distribution of the new samples
is close to that of the original dataset, and 3) the new samples
can evenfill the sparse areas in the distributions of the original
datasets.

Scenario 2: We compare the distributions of the original
datasets with those of the nonselected data samples, as shown
in Fig. 9. In Fig. 9, we generate 500 samples on Child with
50 original data samples (indicated as blue points), select-
ing K=50 high-quality samples by using adaptiveDis, thus
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Fig. 8 Comparing original data samples with high-quality samples

Fig. 9 Comparing original data samples with nonselected samples
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leaving 450 nonselected samples (indicated as red points).
Similarly, we generate 1000 samples onChild with 100 orig-
inal data samples (indicated as blue points), selectingK=100
high-quality samples by using adaptiveDis, thus leaving 900
nonselected samples (indicated as red points).

From Fig. 9, we can observe that the nonselected data
samples greatly overlap with the original data samples while
deviating significantly from the original data samples.

Compared with Fig. 9, the high-quality samples in Fig. 8
are within the distribution of the original data, while the non-
selected samples are outside the distribution of the original
data. It is proven that the nearest neighbours of the adaptive
centre selected for the original dataset can better select the
high-quality samples, thereby improving the performance of
DAG learning.

4.6 Rationale of the adaptive distance computing
algorithm

In this subsection, we implement two other distance comput-
ing algorithms for DAG learning to demonstrate the rationale
of the adaptive distance computing algorithm adaptiveDis.

Distance computing Algorithm 1 We construct a distance
computing algorithm named avgK to select high-quality
samples. Specifically, we first compute the distances between
each candidate sample from the new sampling datasets and
each sample from the original dataset by using the Euclidean
distance measure, then take the average of these distances
for each candidate sample, and finally sort these candidate

samples according to their average distances and select the
top-K candidate samples as high-quality samples.

Distance computing Algorithm 2 We design another dis-
tance computing algorithm for high-quality sample selection,
namely minK . With the second distance computing algo-
rithm,we first calculate the distances between each candidate
sample from the new sampling datasets and each sample from
the original dataset by using the Euclidean distance measure.
Then, we find the minimal distance for each candidate sam-
ple among these distances. Finally, we sort these candidate
samples according to their minimal distances in descending
order and select the top-K candidate samples as high-quality
samples.

In our experiments, given the same new samples datasets
generated in Phase 1, we conduct avgK , minK and adap-
tiveDis to select high-quality samples, and combine them
with the original dataset to relearn the DAGs. Table 5
depicts comparisons between the results of different dis-
tance computing algorithms and DE-DAG. We can see that
our proposed adaptiveDis algorithm is significantly better
than the other two algorithms on all the benchmark datasets,
while the samples selected by the other two distance com-
puting methods cannot effectively improve the performance
of DAG learning well. This is because of the sparsity of the
features in small data samples, whichmakes it difficult to find
high-quality samples around the centre of the original data.
Since adaptiveDis constructs a sample-level adaptive dis-
tance computing algorithm, it can better select high-quality
samples for improving the effect of DAG learning with small
data samples.

Table 5 Comparing our proposed approach with different distance computing algorithms on 5 benchmark datasets when the size of original dataset
is 50 and 100, repectively

Dataset Method #Samples Ar_F1(↑) SHD(↓) #Samples Ar_F1(↑) SHD(↓)

Child DE-DAG-minK 50 0.17 34 100 0.29 27

DE-DAG-avgK 0.14 31 0.33 22

DE-DAG-adaptiveDis 0.32 27 0.5 19

Insurance DE-DAG-minK 50 0.19 62 100 0.29 50

DE-DAG-avgK 0.17 63 0.22 55

DE-DAG-adaptiveDis 0.24 58 0.45 42

Alarm DE-DAG-minK 50 0.44 41 100 0.44 39

DE-DAG-avgK 0.43 44 0.48 37

DE-DAG-adaptiveDis 0.45 43 0.53 36

Hailfinder DE-DAG-minK 50 0.18 75 100 0.25 76

DE-DAG-avgK 0.14 87 0.34 69

DE-DAG-adaptiveDis 0.23 68 0.44 62

Hepar2 DE-DAG-minK 50 0.1 150 100 0.1 155

DE-DAG-avgK 0.1 151 0.07 177

DE-DAG-adaptiveDis 0.15 135 0.16 135
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Case study To further validate the rationale of the adaptive
distance computing algorithm of (adaptiveDis), we con-
ducted a Kolmogorov-Smirnov test(KS test for short), which
is a statistical method used to determinewhether two datasets
are drawn from the same underlying probability distribution.
The KS test produces a p-value that quantifies the degree of
similarity between the two distributions. The larger the p-
value, the more similar the cumulative distribution functions
of the two datasets are.

In our experiments, we use Child with 100 samples as the
original dataset, then select 3 datasets composed of K=100
high-quality samples by using the avgK , minK and adap-
tiveDis algorithms, and finally compare the distributions of
these high-quality datasets with that of the same original
dataset.

When we utilize the minK algorithm for selecting high-
quality samples, the p-value between the distribution of
the high-quality samples and that of the original dataset
is 6.45842e-15, while the p-value between the distribu-
tion of the high-quality samples and that of the original
dataset is 4.98033e-15 when the avgK algorithm is used
for high-quality sample selection. When we use the adap-
tiveDis algorithm to select high-quality samples, the p-value
between the distribution of the high-quality samples and that
of the original dataset is 1.16899e-3. From these p-values,
we find that although the distribution of high-quality sam-
ples selected by these algorithms are all inconsistent with
that of the original dataset when the significance level α is
set as 0.05, the distribution of high-quality samples selected
by the adaptiveDis algorithm is the closest to that of the
original dataset among those of the three algorithms. This
further verifies that the samples selected by adaptiveDis
possess higher-quality. Therefore, our proposed DE-DAG
method selects high-quality samples by using adaptiveDis,
and DE-DAG-adaptiveDis and DE-DAG refer to the same
method.

5 Conclusions

In this paper, we propose a novel DE-DAG approach for
performing DAG learning with small samples via data
enhancement technology. DE-DAG first presents an inte-
grated data sampling strategy for obtaining a set of newly
generated datasets, then constructs a sample-level adaptive
distance computing algorithm for selecting high-quality sam-
ples from those datasets to match the distribution of the
original dataset, andfinally learns amore accurateDAGusing
the enhanced dataset. Experimental results show that DE-
DAG outperforms the baseline methods, and can be easily
instantiated by any DAG learning algorithm that can produce
complete directed acyclic graphs. Therefore, in the future,
we intend to design a unified framework for improving the

efficiency of existing DAG learning algorithms in cases with
small data samples. In addition, DE-DAG achieves better
performance than the existing DAG learning methods, but
it cannot be applied to high-dimensional datasets. Our pro-
posed distance computing algorithm is not sufficiently robust
to adapt to datasets with very large networks(> 1000 nodes).
Hence, we will consider designing a new high-quality sam-
ple selection method for performing DAG learning on very
large networks.
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