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Causal feature selection has attracted much attention in recent years, since it has better
robustness than the traditional feature selection. Existing causal feature selection algo-
rithms aim to identify a Markov blanket (MB) of the class variable. The MB of the class vari-
able implies potential local causal relations around the class variable and has been proven
to be the optimal feature subset for feature selection. Since almost all existing causal fea-
ture selection methods employ conditional independence (CI) tests to learn MBs, in prac-
tical settings, existing causal feature selection algorithms encounter the problem of CI test
errors, which seriously deteriorates the performance of those existing methods. To solve
this issue, in this paper, we propose an Error-Aware Markov Blanket learning (EAMB) algo-
rithm with two novel subroutines to tackle the CI test error problem. Specifically, EAMB
first identifies the MB of the class variable using one subroutine, and then utilizes the other
subroutine to selectively recover the missed true MB features from the discarded features.
The extensive experiments on 13 real-world datasets validate the effectiveness of EAMB
against fourteen state-of-the-art causal feature selection algorithms and four well-
established traditional feature selection methods.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

Causal feature selection aims to discover a Markov blanket (MB) of a class variable for building accurate and robust pre-
diction models. The MB was first defined and discussed by Judea Pearl in the context of a Bayesian network (BN) [1]. Under
the faithfulness assumption (see Definition 3.5 in Section 3), the MB of a variable in a BN consists of its parents (direct
causes), children (direct effects), and spouses (the other parents of the children of the variable). As illustrated in Fig. 1,
the MB of variable Y consists of A;G and F (parents), B;C and D (children), and E and O (spouses).

Given the MB of a variable in a BN, all other variables are independent of this variable [1]. In theory, the MB of the class
variable is the optimal solution to the feature selection problem [2,3]. In addition, since the MB of a variable provides a com-
plete picture of the local causal structure around the variable, the variables in the MB are potential causally informative fea-
tures which can improve the explanatory capability of predictive models [2]. In recent years, many causal feature selection
gh@hfut.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2021.12.118&domain=pdf
https://doi.org/10.1016/j.ins.2021.12.118
mailto:xianjieguo@mail.hfut.edu.cn
mailto:yukui@hfut.edu.cn
mailto:cfy@sxu.edu.cn
mailto:peipeili@hfut.edu.cn
mailto:jsjxwangh@hfut.edu.cn
mailto:jsjxwangh@hfut.edu.cn
https://doi.org/10.1016/j.ins.2021.12.118
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins


Fig. 1. Example of Bayesian network and Markov blanket. The class variable Y is in orange and its MB are in green.
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methods have been proposed which are roughly divided into two different types: simultaneous MB learning and non-
simultaneous MB learning.

For a class variable Y, the first type of methods does not distinguish PC (parents and children) of Y from its SP (spouses)
during MB learning, such as the growth and shrink (GS) [4] algorithm and the incremental association MB (IAMB) [5]. At each
iteration, this type of methods uses the entire set of features currently selected as the conditioning set for conducting con-
ditional independence (CI) tests to calculate the dependence/independence relations between a variable and Y. For example,
in Fig. 1, assuming that we aim to identify the MB of Y and the set S ¼ fA;B;C;D; E; F;Og is the feature set currently selected,
to calculate the dependence/independence relations between Y and G (or other features outside of S), the first type of meth-
ods considers the entire set S as the conditioning set. This leads to the problem that the number of data samples required by
those methods will be exponential to the size of S [2].

To mitigate the problem mentioned above, the second type of algorithms was proposed, such as the min–max MB
(MMMB) [6] and the balanced MB (BAMB) [7] discoveries. This type of methods adopts a divide-and-conquer strategy to
reduce data sample requirements. Specifically, those methods first find the PC of Y, then learn SP of Y. For learning PC of
Y, instead of using the entire feature set S currently selected, the second type of algorithms explores all possible subsets
of S. Using the above example again, to determine the relation between Y and G, this type of methods searches for all possible
subsets within S for finding a subset to make Y and G independent. In the worst case, all subsets within S need to be
examined.

Based on the above discussions, it has been observed that both types of methods always encounter the following CI test
errors in real-world applications.

� For the first type of methods, given a conditioning set, those methods only need to perform one CI test to determine the
(in) dependence relations between variables, thus they are computationally efficient. However, when the size of the con-
ditioning set increases, the CI tests will become unreliable, leading to wrong CI test results.
� For the second type of methods, those algorithms need to conduct many times of CI tests to determine the (in) depen-
dence relations between variables, instead of one CI test. When the size of data samples is finite, more CI tests are per-
formed, less combined statistical power (i.e., combination of individual powers of all tests) is [8]. Unreliable CI tests will
greatly reduce the quality of CI tests, leading to incorrect results. Furthermore, when the size of a candidate MB becomes
large, the computation costs will be expensive or prohibitive [3].

Both types of CI test problems seriously deteriorates the performance of existing causal feature selection methods. How-
ever, few studies have been proposed to tackle the two types of CI test problems simultaneously so far. In this paper, our
contributions are as follows.

1. We propose an Error-Aware MB learning (EAMB) algorithm. The EAMB algorithm consists of two novel subroutines: the
Efficiently Simultaneous MB (ESMB) and Selectively Recover MB (SRMB) algorithms for tackling the problems mentioned
above simultaneously.

2. ESMB aims to tackle multiple CI test and expensive computational problems existing in the second type of methods. First,
it adopts the idea of simultaneous MB learning to speed up the computational efficiency of EAMB. Second, it proposes a
double-shrinking strategy to reduce the sizes of both conditioning set (the candidate MB features currently selected) and
candidate feature set (the set outside of the candidate MB features currently selected) simultaneously for reducing unre-
liable CI tests as many as possible.

3. To tackle the unreliable CI test problem existing in the first type of methods due to the large size of the conditional set, we
first present a relaxed AND (R-AND) rule. Then by the R-AND rule, SRMB proposes a selective strategy to find the MB of a
feature within the high-dimensional discarded features to efficiently identify missed MB features due to unreliable CI
tests.
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4. By comparing EAMB with fourteen state-of-the-art causal feature selection algorithms and four well-established tradi-
tional feature selection algorithms, we conduct extensive experiments to validate the effectiveness of EAMB.

The rest of this paper is organized as follows. Section 2 reviews the related work and Section 3 introduces the basic nota-
tions and definitions. In Section 4, we propose the EAMB algorithm and its two subroutines (ESMB and SRMB). The exper-
imental results and analysis are presented in Section 5. Finally, Section 6 concludes the paper.
2. Related work

Feature selection has been widely studied and used in the machine learning and pattern recognition community, since it
can reduce the complexity of the problem while improving the prediction accuracy, robustness and interpretability of the
learning algorithm. Given its importance, many excellent studies on feature selection methods have been proposed recently,
such as [9] for a review of classic feature selection methods, [10,11] for a comprehensive survey on information-theoretic
feature selection algorithms.

Traditional feature selection methods can be classified into three categories: filter, wrapper, and embedded methods. Fil-
ter methods try to find the subset of features that are most associated with the class variable. Yu et al. propose a fast
correlation-based filter (FCBF) method [12], which exploits symmetrical uncertainty for feature selection. Other filter meth-
ods, for example, Rodríguez-Luján et al. propose a quadratic programming feature selection (QPFS) method [13] which takes
into account simultaneously the mutual information between all pairs of features and the relevance of each feature to the
class variable, and Lohrmann et al. propose a filter feature ranking method for feature selection based on fuzzy similarity and
entropy measures (FSAE) [14]. Wrapper methods select the features according to classifier performance metrics. For
instance, Maldonado et al. propose a wrapper method for feature selection problems using support vector machines (SVMs)
[15]. But wrapper methods might suffer from high computational complexity especially for high-dimensional data [16].
Embedded methods combine the filter selection stage with the learning step and obtain the feature subsets by optimizing
the objective function, such as regression shrinkage and selection via the lasso (LASSO) [17].

However, most of the traditional feature selection algorithms do not explicitly uncover cause relationships between fea-
tures and the class variable, and thus they are lack of interpretability and robustness [18–21]. To address this problem, causal
feature selection algorithms are presented. Causal feature selection algorithms can be applied not only to static environment,
but also to dynamic environment. For example, recently, Mastakouri et al. proposed a novel and sound causal feature selec-
tion algorithm to deal with time series data with latent variables [22]. In this paper, we focus on learning causal features by
finding the MB of the class variable [1] in a static environment. Koller and Sahami proposed the first MB discovery algorithm
(KS) [23] and they were the first to introduce the MB to feature selection. [24] have theoretically proved that the MB of the
class variable is the optimal set of features for supervised predictions.

Based on the work [23], in the past decade, numerous causality-based feature selection algorithms have been developed
[25]. According to the search strategy, existing causality-based feature selection algorithms can be divided into two cate-
gories: simultaneous MB learning and non-simultaneous MB learning. Simultaneous MB learning algorithm adopts a for-
ward–backward strategy to greedily find PC (parents and children) and SP (spouses) of the class variable simultaneously
without distinguishing PC of the class variable from its SP during MB learning. The GSMB [4] is the first sound algorithm
for the MB learning. IAMB [5] aims to improve the GSMB with a dynamic heuristic, which significantly improves the accu-
racy. Based on IAMB, many of its variants have been developed, such as Inter-IAMB [26], Fast-IAMB [27], LRH [28], FBEDK

[29] and TLMB [30]. Inter-IAMB utilizes an interleaving strategy to keep the size of currently selected feature set as small
as possible during the algorithm execution. To further improve the efficiency of IAMB, Fast-IAMB adopts an aggressively
greedy strategy and FBEDK employs an early dropping strategy to speed up IAMB in the forward phase. Different from IAMB
and its other variants discussed above, LRH is proposed to add as few false positives as possible to the candidate MB feature
set. To further improve the effectiveness of simultaneous MB learning algorithms, Wu et al. propose a tolerant MB discovery
(TLMB) algorithm [30], which maps the feature space and target space to a reproducing kernel Hilbert space through the
conditional covariance operator, to measure the causal information carried by a feature. However, existing simultaneous
MB learning algorithms are time efficient but require the number of samples to be exponential to the size of the MB, leading
to CI test errors when data samples are insufficient.

To alleviate the data inefficiency problem, non-simultaneous MB learning methods are proposed which employ a divide-
and-conquer strategy to learn PC and SP separately. The representative non-simultaneous MB learning algorithms include
MMMB [6], HITON-MB [31], PCMB [32], IPCMB [33], MBOR [34], STMB [35], CCMB [36], BAMB [7] and EEMB [37]. MMMB
is the first to adopt the divide-and-conquer strategy to search MBs, in which the subsets of PC are used as the conditioning
set for conditional independence tests. The difference with MMMB is that HITON-MB tries to remove false positives from the
PC set as early as possible by interleaving the shrinking phase and the growing phase. Although MMMB and HITON-MB
proved to be theoretically unsound under the faithfulness assumption [32], they provide a novel way for accurate MB dis-
covery. Compared to MMMB and HITON-MB, the Parents-Children-based MB (PCMB) algorithm and Iterative Parent–Child-
based search of MB (IPCMB) algorithm, are proved to be correct under the faithfulness assumption. De et al. propose the
MBOR algorithm [34], which first utilizes a fast but data inefficiency algorithm to obtain the initial MB and then corrects
the MB through a divide-and-conquer search. However, for SP discovery, all of the above algorithms need to discover the
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PC of each feature within the PC set of the class variable. To reduce the computational complexity, STMB [35] discovers
spouses from all features excluding the current PC set instead of the expensive step of discovering the PC of PC of the class
variable. Since existing MB learning algorithms rarely consider the true positives discarded during the MB search process,
Wu et al. propose a cross-check and complement MB discovery (CCMB) algorithm [36] to repair this problem and further
improve the accuracy of MB discovery. For achieving the trade-off between data efficiency and time efficiency, BAMB and
EEMB implement the PC discovery phase and the SP identifying phase alternatively instead of discovering PC and identifying
SP separately.

Although the second category of algorithms improves the data efficiency, the number of CI tests they need to conduct is
required to be exponential to the size of currently selected feature set. Thus, when the size of the MB becomes large, the
second category of algorithms not only significantly decreases the efficiency but also increases the probability of CI test
errors. In this paper, we design a novel approach to alleviate the CI test problems that two categories of algorithms face
on high-dimensional and small sample datasets while maintaining a reasonable time cost.

3. Notations and definitions

In this section, we introduce the key concepts, including Bayesian network, Markov blanket, and the relevant definitions
and propositions. Table 1 provides a summary of the notations frequently used in this paper.

Definition 3.1 (Bayesian Network, BN [1]). Let P denote the joint probability distribution over feature set F of a directed
acyclic graph (DAG) G. The triplet <F;G;P> is called a Bayesian network if and only if <F;G;P> satisfies the Markov
condition: every node of G is independent of any subset of its non-descendants conditioning on the parents of the node.
Definition 3.2 (Conditional Independence). Features Fi and Fj are conditionally independent given a feature set S if
PðFi; FjjSÞ=PðFijSÞPðFjjSÞ, denoting as Fi � FjjS. Similarly, Fi FjjS represents that Fi and Fj are conditionally dependent given
a feature set S.
Definition 3.3 (Blocked Path [1]). A path c from feature Fi to Fj is blocked by a feature set S, if any of the following holds true:
(1) c contains a chain Fi ! Fk ! Fj or a fork Fi  Fk ! Fj with the middle feature Fk 2 S and (2) c contains an inverted fork (or
collider) Fi ! Fk  Fj with Fk R S.
Definition 3.4 (D-Separation [1]). In a DAG G, two features Fi and Fj are d-separated by a feature set S � F iff S blocks every
path from Fi to Fj, denoting as d-sep(Fi; FjjS).
Definition 3.5 (Faithfulness [38]). Given a BN <F;G;P>;P is faithful toGwhen for any Fi; Fj 2 F and S # F n {Fi; Fj}, Fi �FjjS in
P iff d-sep(Fi; FjjS) in G.

Definition 3.5 shows that conditional independence and d-separation are equivalent if the dataset and its underlying BN
are faithful to each other.

In a BN, due to the symmetry relation of a node and its parents (or its children), the AND rule is defined as follows.

Definition 3.6 (AND rule). In a BN, if both Fi 2 PCðFjÞ and Fj 2 PCðFiÞ hold, Fi is a parent (or a child) of Fj, where PCðFiÞ
denotes the set of parents and children of Fi.
Definition 3.7 (Markov Blanket, MB [1]). Under the faithfulness assumption, the MB of any node in a Bayesian network is
unique and it consists of the node’s parents, children, and spouses (other parents of the node’s children).

In Bayesian networks, the MB of a node renders the node statistically independent of all the remaining nodes conditioning
on the MB [1], as shown in Proposition 3.1.

Proposition 3.1. In a BN, let MB(Fi) be the MB of node Fi;8Fj 2 F n (MB(Fi) [ Y), Fi � FjjMBðFiÞ holds.

Based on Proposition 3.1, Proposition 3.2 bridges the gap between MB learning and feature selection and illustrates that
learning the MB of the class variable is actually a procedure of optimal feature selection.

Proposition 3.2 ([5,3]). Under the faithfulness assumption, 8Fi 2 F, Fi belongs to the MB of the class variable Y (MB(Y)), if
and only if Fi is a strongly relevant feature.
Proposition 3.3 ([1,38]). In a BN, if there is an edge between Fi and Y ;8S#F n fFig; Fi YjS holds.
852



Table 1
Summary of Notation.

Symbol Meaning

F feature set
Fi i-th feature
P a joint probability distribution over F
G a directed acyclic graph (DAG) over F
Y the class variable of dataset
S a feature set within F
Fi � Fj jS Fi is conditionally independent of Fj given S

Fi Fj jS Fi is conditionally dependent of Fj given S
FnFi all features in F excluding Fi
MB(Y) Markov blanket of Y
PC(Y) the set of parents and children of Y
SP(Y) the set of spouses of Y
CurMB(Y) the currently selected MB feature set of Y
CanF the candidate feature set
Q a feature queue within F
depð:Þ a measure of the strength of the dependence
b:c rounding down an integer
:[i] the i-th feature of a queue
j:j the size of a set
k recall coefficient (k 2 [0,1])
a the significance level of the statistical test
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Proposition 3.3 states that if Fi is a parent or a child of Y ; Fi and Y are not conditionally independent conditioning on any
feature subsets. Proposition 3.3 is the rationale of learning the PC set of a variable of all existing causal feature selection
algorithms.

Proposition 3.4 [38]. In a BN, assuming that Fi is adjacent to Fj; Fj is adjacent to Fk, and Fi is not adjacent to Fk (e.g.,
Fi ! Fj  Fk), if 9S#F n fFi; Fj; Fkg such that Fi � FkjS and Fi FkjfS; Fjg hold, Fi is a spouse of Fk.

Proposition 3.4 presents the relationship between a node and its spouses in a BN. It indicates that if Fi is a spouse of Fk and
Fj is their common child, there exists a subset S# F n fFi; Fj; Fkg such that Fi and Fk are independent given S but they are
dependent given S [ Fj. For instance, E is the spouse of Y in Fig. 1. E and Y are independent (S is an empty set), but they
are dependent conditioning on their common child D. Proposition 3.4 provides the idea of how to find a spouse of the class
variable.

4. Our method

In this section, we propose an Error-Aware Markov Blanket learning (EAMB) algorithm, as described in Algorithm 1. EAMB
consists of two subroutines: ESMB (Algorithm 2) and and SRMB (Algorithm 3).

Algorithm1: EAMB

Input: Y: class variable, F: feature set, k: recall coefficient (k 2 ½0;1�)
Output: MB: the Markov blanket of Y
Phase I: Learn the MB set of Y

1: CurMB = ESMB(Y , F)
Phase II: Recover the MB features missed in Phase I

2: MB = SRMB(Y , F, CurMB, k)
3: returnMB

In Phase I, the ESMB subroutine learns the MB feature set of the class variable Y. To address multiple CI test and compu-
tational problems existing in the second type of MB learning methods, ESMB extends the idea of the simultaneous MB learn-
ing approach for speeding up computational efficiency and reducing the unreliable tests. In Phase II, to tackle the unreliable
CI test problem due to a large size of conditioning sets, the SRMB subroutine recovers the MB features missed in Phase I from
the discarded features using a selective strategy.

4.1. The ESMB subroutine

Given a class variable Y, Step 1 (Lines 1–19) of ESMB aims to discover PC(Y) (the set of parent–child features of Y) and SP
(Y) (the set of spouse features of Y) simultaneously, and Step 2 (Lines 20–21) of ESMB is to recover missed spouses of Y and
853
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remove false positives from the CurMB(Y) (the currently selected MB feature set of Y) learnt at Lines 1–19. Specifically, we
discuss the two steps in detail as follows.

Step 1 (Lines 1–19). Assuming that CurMB(Y) is empty in advance and CanF stores the candidate features outside of cur-
rently selected features (i.e., FnCurMB(Y)). Existing simultaneous MB learning methods need to repeatedly calculate the (in)
dependency between Y and each feature within CanF. Those repeated CI tests increase time costs and easily produce incor-
rect results as well. To tackle the problem, ESMB adopts a double-shrinking strategy. At Lines 9–13, ESMB dynamically
shrinks the size of CanF as small as possible for avoiding repeated CI tests. At Lines 15–18, ESMB dynamically shrinks the
size of CurMB(Y) as small as possible for reducing the requirement of data samples.

Specifically, at Lines 4–7, ESMB first calculates the dependence between each feature Fi (Fi 2 CanF) and Y conditioning on
CurMB(Y), then adds the feature Fbest that has the maximum dependence with Y to CurMB(Y) if Fbest and Y are conditionally
dependent conditioning on CurMB(Y). Meanwhile, Fbest is removed from CanF. At Line 4, the function depðÞ can be instanti-
ated by chi-squared test, mutual information and so on.

At Lines 9–13, if Fi 2 CanF is independent of Y conditioning on CurMB(Y), Fi is removed from CanF and never considered
as candidate features again. This strategy can make the size of CanF as small as possible to avoid repeated CI tests. At Lines
15–18, ESMB checks whether each feature Fi in CurMB(Y) is independent of Y conditioning on CurMB(Y) n Fi. If so, Fi is
removed from CurMB(Y) to keep the size of CurMB(Y) as small as possible.

The above two shrinking strategies (i.e. Lines 9–13 and Lines 15–18) are performed repeatedly, until CurMB(Y) does not
changes, and at this time, CanF must be empty. That is to say, each feature in FnCurMB(Y) and Y are conditionally indepen-
dent given CurMB(Y). But Lines 2 to 19 has the following drawbacks.

1. Some true spouses of Ymay be discarded. Since CurMB(Y) is initialized to an empty set at Line 1, if a spouse of Y and Y are
conditionally independent conditioning on an empty set, such a spouse cannot be added to CurMB(Y) at Line 6 and will be
removed from CanF at Line 11. For example, as shown in Fig. 2(a), F1 � Yj£ holds. Thus, F1 cannot be added to CurMB(Y)
at Lines 2–19. In addition, according to Proposition 3.4, if the common child of a spouse of Y and Y is not added to CurMB
(Y) before the spouse, this spouse will be discarded at Lines 9 to 13. If those spouses of Y are not added to CurMB(Y), this
further leads to the following problem.

2. Some false MB features are added to CurMB(Y) at Lines 2–19. For instance, as shown in Fig. 2(b), if F1 is not added to
CurMB(Y), then the following holds: F3 Y j£; F3 YjF2 according to Definition 3.3. In this case, F3 as a false MB feature
of Y will be added to CurMB(Y). Otherwise, if F1 is added to CurMB(Y), the set fF2; F1gmakes F3 and Y conditionally inde-
pendent of Y : F3 �YjfF2; F1g due to the Markov condition.

Algorithm2: ESMB

Input: Y , F
Output: CurMB: the currently selected MB feature set of Y
{Step 1: Discover the PC features of Y and the spouse features of Y simultaneously.}
1: Initialization: CurMB  £, CanF  F
2: repeat
3: // Select the best feature from CanF to CurMB
4: Fbest  argmaxFi2CanFdep(Fi, Y jCurMB)
5: if Fbest YjCurMB then
6: CurMB  CurMB [ Fbest , CanF  CanF n Fbest
7: end if
8: // Shrink the candidate feature space CanF
9: for each Fi 2 CanF do
10: ifFi � Y jCurMB then
11: CanF  CanF n Fi
12: end if
13: end for
14: // Shrink the currently selected feature space CurMB
15: Fworst  argminFi2CurMBdep(Fi, YjCurMBnFi)
16: ifFworst � Y jCurMBnFworst then
17: CurMB  CurMB n Fworst

18: end if
19: untilCurMB does not change
{Step 2: Recover the missed spouse features and remove the false PC features.}

20: CanF  F n CurMB
21: Execute Lines 2–19 again.
22: returnCurMB
854



Fig. 2. Two Examples for illustrating the drawbacks of Lines 2–19.
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Step 2 (Lines 20–21) is proposed to deal with the drawbacks mentioned above and is discussed as follows.
Step 2 (Lines 20–21). Step 2 first recovers the missed spouses from the discarded feature set CanF (i.e., FnCurMB(Y)). After

re-running Lines 4 to 7, ESMB can identify all missed spouses, since by Proposition 3.3, at Step 1, all PC features will be added
to CurMB(Y). For example, in Fig. 2(b), at Step 1, assuming that F1 is discarded before F2 being added to CurMB(Y). Since F2 as
the common child of F1 and Y is added to CurMB(Y) after Step 1, by Proposition 3.4, F1 will be recovered from CanF when
ESMB re-runs Lines 4 to 7 at Step 2.

Second, since F1 is added to CurMB(Y) at Step 2. In this case, CurMB(Y) includes all parents of F3, i.e., F1 and F2. By the
Markov condition, at Lines 15 to 18, in Fig. 2(b), the false MB feature F3 is removed from CurMB(Y).

In summery, Step 1 (Lines 1–19 of Algorithm 2) discovers all PC(Y) and part of SP(Y), and Step 2 re-runs Lines 2–19 to
recover the missed spouses and remove false MB features. To illustrate the correctness of ESMB, Theorem 4.1 is proposed
and proved as follows.

Theorem 4.1 (Correctness of ESMB). Under the faithfulness assumption, excluding CI test errors, ESMB outputs all and only the
MB of the given target variable.
Proof. In Step I, ESMB (Algorithm 2) finds all true PC and several spouses of Y. All PC features of Y are conditionally depen-
dent on Y given any CurMB(Y) based on Theorem 3.3. Thus, ESMB eventually adds all the true PC of Y to CurMB(Y) (Lines 4–7).
Meanwhile, some false positives (such as Fi) are deleted from CurMB(Y) if Fi � Y jCurMBðYÞ n fFig holds (Lines 15–18). In
addition, some spouses of Y may belong to CurMB(Y) when the path between spouse and Y cannot be blocked given
CurMB(Y). For instance, a path Y  F1 ! F3 ! F2  Y (F3 is the spouse of Y and F2 is the child of Y) makes F3 Yj£ hold,
and when F2 2 CurMBðYÞ; F3 YjCurMBðYÞ holds (see Definition 3.3). So some spouses are added to CurMB(Y).

In Step II, ESMB (Algorithm 2) retrieves all spouse of Y while removing false positives in the PC set of Y. After
implementing the Step I, in theory, all true PC features of Y belong to CurMB(Y), i.e., the true child of Y is added to CurMB(Y),
and the spouses independent of Y in Step I are added to CanF (Line 20). According to Definition 3.3, all true spouses of Y are
conditionally dependent on Y given the children of Y. Thus, ESMB can retrieve all spouse of Y. Finally, ESMB directly applies
Proposition 3.1 to remove all false positives and obtains the exact MB of Y.

ESMB adopts a double-shrinking strategy to shrink the sizes of both CurMB(Y) and CanF to reduce unreliable tests as
many as possible, however, it still adopts the idea of the simultaneous MB learning approach, that is, using the entire
CurMB(Y) as conditioning set at each computation. To perform a reliable conditional independence (CI) test between fea-
tures Fi and Fj given condition set S, the average number of instances per cell of the contingency table of {Fi; Fj} [ CurMB
must be at least t [27], i.e.,
N
dFi � dFj � dCurMB

P t: ð1Þ
where dFi and dCurMB denote the number of values that feature Fi and the features in set CurMB (jointly) take, respectively. N
denotes the number of instances in a dataset. t is a constant and its value is always set to 5 or 10.

From Eq. (1), we can see that the number of data samples required by ESMB is still exponential to the size of CurMB.
Therefore, when the size of CurMB(Y) is large enough and the number of data samples is insufficient, ESMB will miss some
true MB features of Y. To solve this problem, we propose the SRMB subroutine next section.

4.2. The SRMB subroutine

The Selectively Recover MB (SRMB) algorithm is as shown in Algorithm 3. To solve the reliability of CI tests due to the
large size of conditioning sets, we relax the AND rule (Definition 3.6) and propose the R-AND rule as follows.
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Algorithm3: SRMB

Input: Y , F, CurMB, k
Output: MB
1: Descending sort Fi 2 F n CurMB, according to relevancy
2: Add the top k% features to queue Q
3: MB = CurMB
// Recover the missed MB features from queue Q

4: for i = 1 to jQ j do
5: CurMB(Q[i]) = ESMB(Q[i], F)
6: if Y 2 CurMB(Q[i]) then
7: MB  MB [ Q[i]
8: end if
9: end for
10: return MB
Definition 4.1 (R-AND Rule). In a BN, (1) if Fj 2 PCðFiÞ or Fi 2 PCðFjÞ; Fj is a parent (or a child) of Fi. (2) if Fj 2 SPðFiÞ or
Fi 2 SPðFjÞ; Fj is a spouse of Fi.
Clearly the R-AND rule is less strict than the AND rule. In real-world settings, in a BN, the size of the MB of the class vari-
able Y is large, while the size of the MB of each feature within the MB of Y is always small, as shown in Fig. 3. In this case, by
the R-AND rule, if the size of the MB of Y is large and data samples are finite, we are able to learn the MB of each variable
within the MB of Y to get the MB of Y. Motivated by the idea, to recover the MB features missed by ESMB, SRMB learns those
missed MB features from the discarded feature set FnCurMB(Y). Using this strategy, SRMB can mitigate the CI test problem
existing in the first type of methods (i.e., simultaneous MB learning).

However, for a high-dimensional dataset, the size of CurMB(Y) is alway relatively small, while the size of FnCurMB(Y) is
high dimensional. Then we propose a selective strategy to find the missed MB features from FnCurMB(Y). SRMB only exam-
ines the features that have high dependencies with Y. The rationale behind this strategy has two aspects. First, after imple-
menting ESMB, the number of the missed MB features within FnCurMB(Y) is small, then it is not necessary to examine all
features in FnCurMB(Y). Second, the features within FnCurMB(Y) that have high dependencies with Y have a high probability
to be identified as the missed MB features.

SRMB is performed as follows. At Lines 1–2, SRMB first ranks the features within FnCurMB(Y) in descending according to
their dependency with Y. Then it adds the top k% features to the queue Q (the analysis of parameter k please see Section 5.4).
At Lines 4–9, with the R-AND rule, SRMB recovers the missed MB features by using the ESMB algorithm to find the MB of
each feature in the queue Q.

4.3. Computational complexity of EAMB

The computational complexity of the state-of-the-art causal feature selection methods depends on the number of condi-
tional independence (CI) tests [2]. Since EAMB (Algorithm 1) needs to execute ESMB (Algorithm 2) and SRMB (Algorithm 3)
sequentially and SRMB is to call ESMB multiple times, we first analyze computational complexity of ESMB.

The computational complexity of Algorithm 2: ESMB consists of Step 1 and Step 2. Step 1 first calculates the dependence
between each feature and Y, then selects the feature Fbest that has the maximum dependence with Y at each iteration. When-
ever ESMB adds a feature Fbest to the currently selected MB set at each iteration, we also remove the false MB features at the
same time. In theory, this ‘‘interleave” approach will keep only the true MB set in CurMB(Y), so the computational complex-
ity of ESMB is proportional to the size of the MB set. Therefore, Step 1 of ESMB takes OðjFjjMBjÞ CI tests, similarly, Step 2 also
takes OðjFjjMBjÞ CI tests because of jCurMBj � jFj. Thus, ESMB takes OðjFjjMBj þ jFjjMBjÞ=OðjFjjMBjÞ CI tests.

The computational complexity of Algorithm 3: Considering that SRMB treats each feature in feature queue Q as a target
variable and implements the ESMB algorithm, it needs to execute ESMB jQ j times, i.e., SRMB takes
OðjQ jjFjjMBjÞ=Oðbk � jFjcjFjjMBjÞ CI tests (b:c denotes the rounding down of an integer).

Overall, EAMB takes OðjFjjMBj þ bk � jFjcjFjjMBjÞ=Oðbk � jFjcjFjjMBjÞ CI tests. Specifically, when k = 0, we think that EAMB

takes OðjFjjMBjÞ CI tests. When k = 1, EAMB takes OðjFj2jMBjÞ CI tests. We summarize the computational complexity of the
state-of-the-art causal feature selection algorithms in Table 2. From the table, Fast-IAMB is the fastest among all algorithms,
and EAMB is as fast as Inter-IAMB in the best case. Moreover, EAMB is always faster than LRH, MMMB, HITON-MB, PCMB,
IPCMB, MBOR, STMB, BAMB and EEMB algorithms.
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Fig. 3. An example of which the size of the MB of Y is large while the size of the MB of each feature in the MB of Y is small. The class variable Y is in yellow,
the MB of Y is in green and other features are in gray.
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4.4. Similarities and differences between our method and existing methods

In this section, we first briefly introduce the similarities and differences between EAMB and other causal feature selection
algorithms, and then describe the shortcoming of existing methods and the advantages of our proposed method. EAMB con-
sists of two subroutines: ESMB (Algorithm 2) and and SRMB (Algorithm 3).

� Similarities. Our proposed ESMB algorithm adopts the similar strategy to existing Inter-IAMB [26] and FBEDK [29] algo-
rithms for shrinking the size of the candidate feature set and the size of the currently selected MB feature set. However,
Inter-IAMB only shrinks the size of the currently selected MB feature set, while FBEDK shrinks the size of the candidate
feature set.
� Differences. In the ESMB algorithm, first, we propose a dynamical double-shrinking strategy, i.e., shrinking both the size
of the candidate feature set and the size of the currently selected MB feature set simultaneously to speeds up computa-
tional efficiency and reduces the unreliable (or redundant) CI tests. Second, we design a relaxed AND rule, R-AND rule.
Based on this rule, we propose the SRMB algorithm and design a novel selective strategy to find the missed MB features
from the currently discarded feature set with high dimensionality. Thus, SRMB can effectively and efficiently recover the
missed MB features due to the CI test problem existing in the simultaneous MB learning methods.

In the following, we give the detailed descriptions about the disadvantages of existing causal feature selection algorithms
and the advantages of EAMB.

� The disadvantages of existing methods. Existing simultaneous MB learning algorithms are time efficient but data inef-
ficient. Specifically, they require the number of samples exponential to the size of the MB and thus when data samples are
insufficient (e.g. small data samples), the CI tests will become unreliable, which seriously deteriorates the performance of
those existing methods. In contrast, existing non-simultaneous MB learning methods are computationally expensive,
Table 2
Computational Complexity of Causal Feature
Selection Algorithms.

Algorithms Computational Complexity

GSMB OðjFj2Þ
IAMB OðjFj2Þ
Inter-IAMB OðjFjjMBjÞ
Fast-IAMB OðjFjÞ
LRH OðjFj3Þ
FBEDK

OððK þ 1Þ � jFj2Þ
MMMB Oð2jPCj jFjjPCjÞ
HITON-MB Oð2jPCj jFjjPCjÞ
PCMB Oð2jPCj jFjjPCj2Þ
IPCMB Oð2jFj jFjjPCjÞ
MBOR OðjFj2jMBjÞ
STMB Oð2jFj jFjÞ
BAMB Oð2jPCj jFjÞ
EEMB Oð2jPCj jFjÞ
EAMB Oðbk � jFjcjFjjMBjÞ
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Table 3
Description of datasets used in the experiments.

No. Dataset Number of instances Number of classes Number of features

1 colon 62 2 2,000
2 srbct 63 4 2,308
3 leuk 72 2 7,070
4 leukemia 72 2 7,129
5 arcene 100 2 10,000
6 prostate 102 2 6,033
7 dexter 300 2 20,000
8 madelon 2,000 2 500
9 splice 3,175 3 60
10 spambase 4,601 2 57
11 bankrupty 7,063 2 147
12 dnatest 1,186 3 180
13 semeion 1,593 10 256
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even if they achieve better performance. Specifically, compared to the simultaneous MB learning algorithms, they need to
conduct many times of CI tests to determine the dependence/independence relationships between variables. When the
size of the currently selected MB feature set becomes large, the computational costs of non-simultaneous MB learning
methods will be expensive or even prohibitive. In addition, when the size of data samples is finite, more CI tests are per-
formed, less combined statistical power is, leading to incorrect results.
� The advantages of our method. (1) In terms of effectiveness, by calling the ESMB subroutine with the double-shrinking
strategy, EAMB can reduce unreliable CI tests as many as possible; by calling the SRMB subroutine with the selective
retrieval strategy, EAMB can retrieve the missed MB features due to the unreliable CI test problem, especially on the data-
sets with high dimensionality and small data samples. (2) In terms of efficiency, in Phase I of EAMB, EAMB adopts the
efficient ESMB subroutine to tackle multiple CI test and expensive computational problems existing in the existing
non-simultaneous MB learning methods. In Phase II of EAMB, although the SRMB subroutine will call the ESMB subrou-
tine many times (Lines 4–5 of Algorithm 3), even in the worst case (i.e., the parameter k of EAMB takes the maximum
value: 1), the time complexity of EAMB is still lower than that of most non-simultaneous MB learning algorithms (see
Table 2 for details). In fact, on most real-world datasets, when the parameter k of EAMB is 0.05 to 0.25, the EAMB algo-
rithm can reach the optimal solution (please see Section 5.3).

5. Experiments

In this section, we evaluate the effectiveness of our proposed EAMB by comparing with its rivals, including 6 simultane-
ous MB discovery algorithms, i.e., GSMB [4], IAMB [5], Inter-IAMB [26], Fast-IAMB [27], LRH [28] and FBEDK [29], 8 non-
simultaneous MB discovery algorithms, i.e., MMMB [6], HITON-MB [31], PCMB [32], IPCMB [33], MBOR [34], STMB [35],
BAMB [7] and EEMB [37], and 4 well-established feature selection algorithms, i.e., LASSO [17], FCBF [12], QPFS [13] and FSAE
[14].

Section 5 is organized as follows. Section 5.1 describes the experimental settings. Section 5.2 presents experiments of
EAMB with 18 state-of-the-art algorithms. Section 5.3 analyzes the impact of parameter k on EAMB and Section 5.4 verifies
the rationality of selective strategy of SRMB.

5.1. Experiment settings

Datasets. We use 13 real-world datasets: colon, srbct, leuk, leukemia, arcene, prostate, dexter, madelon, splice, spambase,
bankrupty, dnatest and semeion to evaluate EAMB against its rivals. These 13 real-world datasets are from the UCI Machine
Learning Repository and NIPS2003 feature selection challenge datasets. Details of the datasets are summarized in Table 3,
and we can see that most of datasets are high-dimensional small samples. In addition, srbct, splice dnatest and semeion
are multi-class datasets,madelon includes a lot of artificial noise, and bankrupty is a class-imbalance dataset (the ratio of pos-
itive and negative classes is about 1:9).

Parameter setting. In the following, we illustrate the parameter settings of all algorithms.

� The conditional independence tests are G2 tests with the statistical significance level of 0.01, and the information thresh-
old of FCBF is set to 0.01. For the FBEDK algorithm, the value of K is set to 1, which is enough to make FBEDK converge.
� We apply 10-fold cross-validation for all datasets and adopt four classifiers, i.e., NB (Naive Bayes), KNN (K-Nearest Neigh-
bors), DT (Decision Tree) and ANN (Artificial Neural Network) to compute their classification accuracies achieved by using
the selected feature subsets. The value of k for the KNN classifier is set to 10 and KNN uses the linear kernel.

Evaluation metrics. We use the following metrics for the feature selection evaluation.
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Table 4
Classification Accuracy (in %) of EAMB and Other Simultaneous MB learning Algorithms.

Classifier Dataset GSMB IAMB Inter-IAMB Fast-IAMB LRH FBED EAMB

arcene 69.05 73.05 73.05 63.85 63.14 73.05 84.16
dexter 70.33 79.00 79.00 74.33 77.00 79.00 90.33
leuk 73.75 94.46 94.46 94.46 98.57 94.46 98.57

leukemia 75.24 89.23 89.23 94.58 93.57 89.23 100.00
prostate 66.64 91.00 91.00 93.00 92.00 91.00 96.00
colon 51.43 71.90 71.90 71.90 75.48 71.90 83.33

NB srbct 47.29 64.57 64.57 67.43 85.00 64.57 100.00
madelon 57.45 60.70 60.70 58.75 60.10 60.35 61.35
splice 51.91 79.62 79.62 89.16 77.48 79.62 96.28

spambase 79.18 89.54 89.54 89.02 88.04 89.54 91.15
bankrupty 88.56 89.35 89.35 79.34 85.16 89.32 89.57
dnatest 49.66 89.12 89.12 88.96 89.71 89.12 95.02
semeion 19.20 49.35 49.35 27.11 53.04 49.35 78.42
arcene 65.83 67.94 67.94 62.05 55.92 66.94 82.16
dexter 69.33 75.33 75.33 74.00 76.33 75.33 86.67
leuk 73.75 94.46 94.46 94.46 95.71 94.46 98.57

leukemia 71.07 89.05 89.05 95.00 93.57 89.05 98.75
prostate 50.09 90.00 90.00 94.00 92.00 90.00 95.00
colon 56.43 66.19 66.19 66.19 73.81 66.19 83.57

KNN srbct 47.29 47.29 47.29 48.71 78.14 47.29 100.00
madelon 55.45 60.95 60.95 58.70 62.95 60.50 61.15
splice 45.04 79.72 79.72 88.28 76.91 79.72 87.97

spambase 79.52 90.22 90.22 90.04 88.61 90.22 91.76
bankrupty 88.36 90.09 90.09 86.04 86.63 90.22 90.22
dnatest 41.56 88.45 88.45 87.95 88.79 88.45 89.55
semeion 16.30 43.95 43.95 25.30 50.01 43.95 82.62
arcene 68.05 71.05 71.05 64.25 63.14 70.05 77.16
dexter 70.33 78.67 78.67 70.33 78.67 78.67 86.67
leuk 73.75 94.46 94.46 94.46 95.89 94.46 95.89

leukemia 72.74 90.48 90.48 93.15 91.90 90.48 94.58
prostate 64.82 91.00 91.00 94.09 92.00 91.00 91.00
colon 51.43 71.90 71.90 71.90 72.38 71.90 73.57

DT srbct 47.29 64.57 64.57 68.86 83.57 64.57 89.19
madelon 55.85 63.85 63.85 60.45 66.30 64.35 62.20
splice 51.28 79.97 79.97 89.29 77.89 79.97 93.61

spambase 80.61 90.98 90.98 90.59 89.00 90.98 91.81
bankrupty 88.56 90.61 90.61 88.56 88.60 90.50 90.51
dnatest 48.39 89.80 89.80 87.19 88.87 89.80 91.15
semeion 19.20 49.47 49.47 29.69 52.03 49.47 72.65
arcene 58.41 69.05 63.23 58.16 64.14 60.05 75.83
dexter 68.67 74.67 77.33 74.00 72.00 73.33 88.67
leuk 72.32 93.04 91.61 93.04 90.18 93.21 95.89

leukemia 65.18 86.37 87.80 90.48 93.57 89.05 98.75
prostate 61.73 93.00 92.00 92.09 91.00 78.36 93.00
colon 54.76 63.33 71.90 68.57 69.05 70.24 82.38

ANN srbct 44.43 64.57 64.57 67.19 79.57 64.57 97.14
madelon 56.25 61.10 59.30 57.40 59.35 61.45 61.00
splice 51.02 76.66 76.85 83.84 75.94 76.19 86.08

spambase 78.85 90.09 90.57 90.28 89.15 90.63 92.33
bankrupty 87.91 89.64 89.76 88.52 88.56 89.38 89.89
dnatest 48.22 87.69 88.79 88.28 87.20 88.79 92.58
semeion 18.57 47.64 48.97 27.05 49.71 48.85 76.01
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� Classification Accuracy. Classification accuracy is the percentage of the correctly classified test instances that are previ-
ously unseen.
� Precision. The number of true positives divided by the number of positives in the prediction label.
� Recall. The number of true positives divided by the number of positives in the test label.
� F1 ¼ ð2 	 Precision 	 RecallÞ=ðPrecisionþ RecallÞ. The F1 score is the harmonic average of the precision and recall, where
F1 = 1 is the best case (perfect precision and recall) while F1 = 0 is the worst case.
� Running Time. We report running time (in seconds) as the efficiency measure of different algorithms.
� Number of Selected Features. The size of the feature subset selected by an algorithm.

Implementation details. (1) All algorithms are implemented in MATLAB, and all experiments are conducted on a com-
puter with Inter Core i5-8400 2.80-GHz CPU and 16-GB memory. (2) Considering that the performance of LASSO, QPFS and
FSAE depends on the number of selected features (f) and EAMB algorithm relies on the parameter k, we traverse the number
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Table 5
Precision Metric (in %) of EAMB and Other Simultaneous MB learning Algorithms.

Classifier Dataset GSMB IAMB Inter-IAMB Fast-IAMB LRH FBED EAMB

arcene 62.13 64.71 64.71 58.17 56.28 64.71 80.67
dexter 90.44 93.84 93.84 67.48 74.09 93.84 95.30
leuk 83.95 100.00 100.00 100.00 100.00 100.00 100.00

leukemia 58.33 90.17 90.17 96.67 97.50 90.17 100.00
prostate 74.25 90.64 90.64 95.50 93.14 90.64 98.33
colon 66.76 72.83 72.83 72.83 81.33 72.83 89.00

NB srbct 29.83 39.24 39.24 42.15 70.00 39.24 100.00
madelon 58.75 60.86 60.86 57.57 58.71 61.81 61.69
splice 17.30 77.93 77.93 87.23 76.48 77.93 95.59

spambase 77.21 88.32 88.32 88.45 87.36 88.32 91.92
bankrupty 0.00 75.14 75.14 30.23 34.54 77.40 77.40
dnatest 30.92 87.01 87.01 87.22 87.82 87.01 94.36
semeion 12.67 49.37 49.37 21.27 55.38 49.37 79.30
arcene 49.08 62.05 62.05 53.67 24.17 61.33 80.50
dexter 85.40 81.09 81.09 67.05 82.72 81.09 95.90
leuk 83.95 100.00 100.00 100.00 96.67 100.00 100.00

leukemia 41.67 92.50 92.50 100.00 97.50 92.50 100.00
prostate 15.00 95.50 95.50 98.00 93.14 95.50 98.00
colon 70.83 74.83 74.83 74.83 80.00 74.83 87.33

KNN srbct 29.83 31.25 31.25 30.29 62.08 31.25 100.00
madelon 63.72 70.20 70.20 76.83 67.99 68.71 72.60
splice 36.56 78.35 78.35 86.34 76.13 78.35 86.12

spambase 80.45 90.92 90.92 91.83 89.02 90.92 92.28
bankrupty 1.82 65.84 65.84 20.46 33.89 67.79 67.79
dnatest 35.91 86.34 86.34 85.97 86.84 86.34 87.90
semeion 15.43 48.25 48.25 24.05 52.42 48.25 84.98
arcene 60.25 64.43 64.43 59.49 56.28 63.71 74.83
dexter 89.68 93.75 93.75 83.94 80.77 93.75 93.75
leuk 83.95 100.00 100.00 100.00 96.67 100.00 100.00

leukemia 48.33 93.50 93.50 95.00 91.67 93.50 100.00
prostate 72.58 90.64 90.64 96.57 93.14 90.64 90.64
colon 66.76 72.83 72.83 72.83 79.33 72.83 78.00

DT srbct 29.83 39.24 39.24 43.19 69.75 39.24 82.50
madelon 56.56 65.75 65.75 66.54 68.03 66.69 64.26
splice 34.76 78.03 78.03 87.36 77.00 78.03 92.47

spambase 83.09 90.18 90.18 90.74 88.75 90.18 91.42
bankrupty 0.00 70.54 70.54 5.00 48.00 71.43 71.58
dnatest 33.81 87.96 87.96 85.04 87.27 87.96 89.81
semeion 12.67 47.37 47.37 33.96 53.26 47.37 73.15
arcene 42.71 57.33 54.07 52.83 52.78 49.38 70.98
dexter 90.19 86.23 86.45 76.28 73.33 85.14 90.98
leuk 86.81 96.33 93.00 98.00 96.33 97.14 100.00

leukemia 56.19 87.00 87.67 92.67 96.67 90.17 100.00
prostate 59.96 92.64 92.64 94.07 90.64 78.31 94.33
colon 59.38 73.17 76.17 74.83 78.00 74.83 89.00

ANN srbct 25.88 39.24 39.24 42.57 62.71 39.24 98.33
madelon 57.63 62.14 59.20 60.84 60.94 63.66 64.48
splice 18.99 72.85 74.85 81.90 74.72 71.52 83.62

spambase 81.80 89.28 89.30 88.88 89.99 89.27 91.92
bankrupty 0.00 56.71 57.90 0.00 0.00 69.72 75.58
dnatest 25.03 85.88 86.89 86.34 85.07 86.97 91.54
semeion 11.95 41.31 44.80 24.49 49.19 45.27 78.21
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of selected features of LASSO, QPFS and FSAE from 5 to 50 with the interval 5 features and the value of k of EAMB from 0 to 1
with the interval 0.05, and then record the highest classification accuracy (as well as precision, recall and F1) as the final
result of each algorithm on a dataset. And we only record the running time and the number of selected features of an algo-
rithm when using a KNN classifier.
5.2. Experimental results on real-world dataset

In this section, we present the results obtained by EAMB in comparison with 14 causal feature selection algorithms
(GSMB, IAMB, Inter-IAMB, Fast-IAMB, LRH, FBEDK, MMMB, HITON-MB, PCMB, IPCMB, MBOR, STMB, BAMB and EEMB)1

and 4 non-causal feature selection algorithms (LASSO, FCBF, QPFS and FSAE).
1 The source codes are available at https://github.com/kuiy
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Table 6
Recall Metric (in %) of EAMB and Other Simultaneous MB learning Algorithms.

Classifier Dataset GSMB IAMB Inter-IAMB Fast-IAMB LRH FBED EAMB

arcene 79.50 77.50 77.50 68.50 66.50 77.50 84.50
dexter 46.00 62.67 62.67 94.67 90.00 62.67 86.67
leuk 79.00 91.00 91.00 91.00 97.50 91.00 100.00

leukemia 41.67 85.00 85.00 90.00 86.67 85.00 100.00
prostate 61.67 92.00 92.00 90.00 92.00 92.00 94.00
colon 67.50 90.00 90.00 90.00 82.50 90.00 90.00

NB srbct 45.42 49.58 49.58 52.08 77.50 49.58 100.00
madelon 51.90 61.60 61.60 67.20 68.90 55.20 61.30
splice 33.33 79.06 79.06 89.79 75.29 79.06 96.23

spambase 66.96 84.66 84.66 83.01 81.46 84.66 85.66
bankrupty 0.00 10.16 10.16 60.89 27.95 9.41 31.30
dnatest 34.08 88.62 88.62 88.70 89.50 88.62 94.55
semeion 19.06 49.25 49.25 27.07 52.87 49.25 78.42
arcene 57.00 54.00 54.00 54.00 25.00 54.00 87.00
dexter 46.67 80.00 80.00 95.33 70.67 80.00 80.00
leuk 79.00 91.00 91.00 91.00 95.00 91.00 100.00

leukemia 23.33 78.33 78.33 86.67 86.67 78.33 96.67
prostate 4.00 84.00 84.00 90.00 92.00 84.00 94.00
colon 65.00 77.50 77.50 77.50 82.50 77.50 90.00

KNN srbct 45.42 44.17 44.17 46.67 70.83 44.17 100.00
madelon 27.90 39.10 39.10 25.50 49.70 40.70 42.00
splice 35.51 80.06 80.06 89.36 74.25 80.06 89.81

spambase 63.49 83.73 83.73 82.13 81.35 83.73 87.42
bankrupty 0.49 31.33 31.33 23.29 18.06 30.71 32.57
dnatest 35.66 87.81 87.81 87.43 88.62 87.81 90.91
semeion 16.29 43.81 43.81 25.34 49.92 43.81 82.50
arcene 82.00 71.50 71.50 64.00 66.50 71.50 77.00
dexter 46.00 62.00 62.00 63.33 80.00 62.00 84.67
leuk 79.00 91.00 91.00 91.00 97.50 91.00 97.50

leukemia 35.00 85.00 85.00 88.33 88.33 85.00 85.00
prostate 61.67 92.00 92.00 92.00 92.00 92.00 94.00
colon 67.50 90.00 90.00 90.00 80.00 90.00 90.00

DT srbct 45.42 49.58 49.58 53.33 76.25 49.58 85.42
madelon 54.10 58.50 58.50 42.80 61.70 59.60 57.70
splice 34.50 79.21 79.21 89.75 74.85 79.21 93.22

spambase 63.93 86.54 86.54 84.77 82.51 86.54 88.19
bankrupty 0.00 31.19 31.19 0.25 2.98 30.44 41.08
dnatest 34.17 89.12 89.12 85.87 88.28 89.12 90.44
semeion 19.06 49.38 49.38 29.81 51.98 49.38 72.54
arcene 57.00 65.50 69.50 52.00 64.00 54.00 77.50
dexter 42.67 62.00 70.67 82.00 77.33 63.33 88.67
leuk 73.00 93.00 93.00 91.00 89.50 93.00 97.50

leukemia 46.67 85.00 81.67 85.00 86.67 85.00 100.00
prostate 58.67 94.00 92.00 90.00 92.00 84.00 92.00
colon 82.50 67.50 80.00 75.00 75.00 80.00 90.00

ANN srbct 41.67 49.58 49.58 53.33 69.58 49.58 97.92
madelon 51.20 57.80 60.80 48.40 56.20 55.10 57.60
splice 33.42 75.32 75.14 83.00 72.64 74.25 85.70

spambase 59.96 85.05 86.43 86.15 81.63 86.65 89.02
bankrupty 0.00 13.64 16.97 0.00 0.00 10.25 20.93
dnatest 32.94 86.62 88.27 87.74 85.90 87.59 92.86
semeion 18.44 47.49 48.85 27.07 49.58 48.75 75.97
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In Tables 4–21 ‘‘-” denotes that a method fails to generate any output with the corresponding dataset after running more
than one day or no feature selected and the best results are highlighted in bold face.

5.2.1. Comparison of EAMB with simultaneous MB learning methods
In this section, we report the results obtained by EAMB and the state-of-the-art simultaneous MB learning algorithms,

including GSMB, IAMB, Inter-IAMB, Fast-IAMB, LRH and FBEDK.

� Classification accuracy: Table 4 summarizes the classification accuracy of EAMB against GSMB, IAMB, Inter-IAMB, Fast-
IAMB, LRH and FBEDK using NB, KNN, DT and ANN classifiers respectively. We observe that using NB classifier, EAMB
is never worse than its six rivals in classification accuracy. Since the simultaneous MB learning algorithms suffer from
the data efficiency problem, they are much lower than EAMB on accuracy, especially on the high-dimensional datasets
with smal data samples. In particular, on the srbct dataset, no matter which classifier is used, GSMB, IAMB, Inter-
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Table 7
F1 Metric (in %) of EAMB and Other Simultaneous MB learning Algorithms.

Classifier Dataset GSMB IAMB Inter-IAMB Fast-IAMB LRH FBED EAMB

arcene 68.56 68.97 68.97 61.48 58.72 68.97 81.64
dexter 60.10 74.72 74.72 78.71 79.23 74.72 89.78
leuk 78.90 94.44 94.44 94.44 98.57 94.44 98.89

leukemia 45.71 85.40 85.40 91.00 89.57 85.40 100.00
prostate 62.22 91.00 91.00 92.44 91.83 91.00 95.48
colon 62.26 79.91 79.91 79.91 80.32 79.91 87.06

NB srbct 35.72 43.75 43.75 46.47 73.41 43.75 100.00
madelon 54.89 60.76 60.76 61.93 63.31 58.07 61.14
splice 22.78 78.47 78.47 88.49 75.87 78.47 95.91

spambase 71.62 86.39 86.39 85.60 84.26 86.39 88.28
bankrupty 0.00 17.73 17.73 40.28 28.70 16.63 39.84
dnatest 31.89 87.80 87.80 87.95 88.65 87.80 94.41
semeion 14.99 49.20 49.20 23.53 54.08 49.20 78.85
arcene 51.57 53.58 53.58 52.40 23.81 52.97 80.87
dexter 59.77 76.24 76.24 78.63 73.16 76.24 85.25
leuk 78.90 94.44 94.44 94.44 95.71 94.44 98.89

leukemia 28.33 83.24 83.24 91.00 89.57 83.24 98.00
prostate 6.19 87.88 87.88 93.28 91.83 87.88 94.39
colon 64.10 71.69 71.69 71.69 79.43 71.69 86.90

KNN srbct 35.72 36.22 36.22 36.30 66.08 36.22 100.00
madelon 38.34 49.60 49.60 38.03 57.11 50.27 51.25
splice 36.02 79.17 79.17 87.83 75.16 79.17 87.92

spambase 70.85 87.04 87.04 86.64 84.92 87.04 89.28
bankrupty 0.78 41.61 41.61 17.63 21.40 41.33 42.48
dnatest 35.70 87.06 87.06 86.69 87.72 87.06 89.26
semeion 15.63 45.86 45.86 24.42 51.12 45.86 83.70
arcene 68.97 64.85 64.85 59.39 58.72 64.24 73.66
dexter 60.17 74.23 74.23 64.49 78.05 74.23 86.10
leuk 78.90 94.44 94.44 94.44 96.75 94.44 96.75

leukemia 37.71 86.74 86.74 89.81 88.48 86.74 90.67
prostate 61.27 91.00 91.00 93.62 91.83 91.00 91.00
colon 62.26 79.91 79.91 79.91 77.30 79.91 80.96

DT srbct 35.72 43.75 43.75 47.61 72.61 43.75 83.78
madelon 54.66 61.63 61.63 51.80 64.57 62.44 60.24
splice 33.97 78.59 78.59 88.54 75.90 78.59 92.76

spambase 72.09 88.28 88.28 87.61 85.50 88.28 89.38
bankrupty 0.00 43.07 43.07 0.47 5.49 41.90 47.67
dnatest 33.62 88.53 88.53 85.45 87.77 88.53 90.12
semeion 14.99 48.33 48.33 31.57 52.60 48.33 72.84
arcene 48.25 59.22 59.64 48.62 55.56 48.49 66.30
dexter 55.86 71.53 75.53 74.60 72.74 70.37 88.51
leuk 76.28 93.54 92.58 93.33 92.11 93.89 96.67

leukemia 44.11 82.33 82.83 86.83 89.00 84.74 98.00
prostate 54.15 93.00 91.89 91.68 91.00 80.32 92.67
colon 68.46 67.45 77.34 74.17 74.41 76.45 86.27

ANN srbct 31.54 43.75 43.75 47.18 65.85 43.75 98.12
madelon 53.61 59.61 59.73 52.11 58.21 58.27 58.90
splice 23.92 73.93 74.98 82.44 73.66 72.75 84.64

spambase 69.02 87.09 87.79 87.43 85.50 87.90 90.05
bankrupty 0.00 21.37 25.52 0.00 0.00 17.05 30.87
dnatest 28.15 86.24 87.57 87.03 85.47 87.27 92.06
semeion 14.06 44.08 46.72 25.35 49.32 46.85 77.06
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IAMB, Fast-IAMB and FBEDK significantly less accurate than EAMB. This is because the srbct dataset has many classes but
few instances, which makes the simultaneous MB learning methods difficult to identify the true MB of Y due to the data
inefficiency. For the madelon dataset, owing to the inclusion of a lot of artificial noise, the classification accuracy of all the
algorithms is not ideal. Since GSMB does not rank features based on dependency, it works very poorly. Furthermore, we
note that the classification accuracy of IAMB, Inter-IAMB and FBEDK algorithms is almost the same on most datasets.
Through further research, we find that due to data inefficiency, the simultaneous MB learning methods only select few
features with high dependency to Y, and IAMB, Inter-IAMB and FBEDK almost select the same feature subset on the data-
sets with small-sized data samples.
� Precision, Recall and F1 metrics: From Table 5–7 we can see that on most datasets (such as leuk, colon, srbct, splice, spam-
base, dnatest and semeion), no matter which classifier (i.e., NB, KNN, DT and ANN classifiers) is used, our method achieves
the highest values of precision, recall and F1. Specifically, on the leuk, leukemia and srbct datasets, EAMB achieves 100%
precision metric using both NB and KNN classifiers, and 100% recall metric using NB classifier; on the srbct and semeion
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Table 8
Running Time (in Seconds) of EAMB and Other Simultaneous MB learning Algorithms based on KNN.

Dataset GSMB IAMB Inter-IAMB Fast-IAMB LRH FBED EAMB

arcene 0.08 0.87 0.87 0.27 0.30 0.60 27.64
dexter 1.15 2.71 2.84 0.50 1.53 1.62 17.24
leuk 0.03 0.20 0.20 0.18 0.21 0.21 14.97

leukemia 0.05 0.38 0.40 0.19 0.21 0.42 2.30
prostate 0.04 0.34 0.36 0.16 0.19 0.37 93.25
colon 0.01 0.06 0.06 0.06 0.07 0.06 0.68
srbct 0.01 0.03 0.03 0.03 0.04 0.04 95.65

madelon 0.02 0.20 0.20 0.03 0.08 0.06 0.19
splice 0.00 0.01 0.02 0.00 0.01 0.01 0.03

spambase 0.01 0.08 0.08 0.01 0.13 0.06 0.57
bankrupty 0.01 0.21 0.21 0.01 0.14 0.12 0.12
dnatest 0.00 0.05 0.05 0.01 0.02 0.03 0.21
semeion 0.00 0.04 0.04 0.01 0.20 0.04 5.04

Table 9
Number of Selected Features of EAMB and Other Simultaneous MB learning Algorithms based on KNN.

Dataset GSMB IAMB Inter-IAMB Fast-IAMB LRH FBED EAMB

arcene 2.50 3.00 3.00 5.00 1.60 3.00 4.40
dexter 3.90 4.00 4.00 6.00 7.00 4.00 9.90
leuk 1.00 1.00 1.00 1.00 3.00 1.00 355.40

leukemia 2.00 2.00 2.00 4.00 3.00 2.00 6.00
prostate 1.80 2.00 2.00 4.20 1.90 2.00 7.40
colon 1.00 1.00 1.00 1.00 3.00 1.00 53.20
srbct 1.00 1.00 1.00 2.00 3.00 1.00 66.10

madelon 5.50 5.90 5.90 8.00 9.00 6.00 6.60
splice 3.00 3.00 3.00 4.00 3.00 3.00 6.00

spambase 7.90 8.00 8.00 10.00 11.00 8.00 16.20
bankrupty 5.40 9.00 9.00 11.00 11.30 9.00 9.00
dnatest 5.00 6.00 6.00 7.00 9.00 6.00 17.60
semeion 2.00 4.00 4.00 5.00 10.00 4.00 64.00
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datasets, regardless of which classifier is used, the F1 score of EAMB is significantly higher than that of its rivals. Even on
the dataset with class-imbalance (such as bankrupty), EAMB is also able to achieve the highest F1 score when using KNN,
DT and ANN classifiers.
� Running time: Table 8 reports the running time of EAMB, GSMB, IAMB, Inter-IAMB, Fast-IAMB, LRH and FBEDK. From the
results, we can see that GSMB, IAMB, Inter-IAMB, Fast-IAMB, LRH and FBEDK are significantly faster than EAMB. Although
EAMB uses the efficient simultaneous MB learning algorithm (ESMB) to identify MB of Y, Phase II of EAMB repeatedly calls
ESMB algorithm to recover the missed MB features. Bigger is the parameter k of EAMB, slower is EAMB. It is worth noting
that although the time complexity of GSMB is higher than that of Fast-IAMB, the running time of GSMB is much lower
than that of Fast-IAMB. This is because GSMB does not rank candidate features according to the dependency, which ren-
ders the forward and backward phases of GSMB to quickly converge and terminate. On the bankrupty dataset, EAMB not
only has higher accuracy than IAMB, Inter-IAMB and LRH, but also outperforms them in terms of efficiency.
� Number of Selected Features: Table 9 shows the numbers of selected features by EAMB, GSMB, IAMB, Inter-IAMB, Fast-
IAMB, LRH and FBEDK. From the results, we can see that the simultaneous MB learning algorithms selects fewer features
than EAMB since they suffer from the data efficiency problem (i.e., many key features are independent of Y conditioning
on CurMB(Y)). On the bankrupty dataset, although EAMB, IAMB, Inter-IAMB and FBED select the same number of MB fea-
tures, EAMB achieves higher accuracy, which indicates that the quality of features selected by EAMB is better than that
selected by IAMB, Inter-IAMB and FBED.

5.2.2. Comparison of EAMB with non-simultaneous MB learning methods
In this section, we compare the EAMB algorithm with the state-of-the-art non-simultaneous MB learning methods,

including MMMB, HITON-MB, PCMB, IPCMB, MBOR, STMB, BAMB and EEMB, and the results are discussed as follows.

� Classification accuracy: From Table 10 we can see that EAMB is superior to the other algorithms on most datasets using
KNN, DT and ANN classifiers. As for the arcene and splice datasets, when using KNN classifier, the classification accuracy of
EAMB is 10% to 20% or more higher than the other algorithms. Furthermore, using NB classifier, EAMB is never worse than
other algorithms except on the semeion dataset. In particular, on the arcene dataset, EAMB is more than 10% higher than
MMMB, HITON-MB, BAMB and EEMB, and more than 20% higher than PCMB, IPCMB, MBOR and STMB on classification
accuracy. On the dataset with artificial noise (such as madelon), as the quality of MB features selected by EAMB is higher
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Table 10
Classification Accuracy (in %) of EAMB and Other Non-simultaneous MB learning Algorithms.

Classifier Dataset MMMB HITON-MB PCMB IPCMB MBOR STMB BAMB EEMB EAMB

arcene 73.05 73.36 61.21 62.21 63.21 64.14 71.36 75.36 84.16
dexter 84.67 85.33 83.33 82.67 89.67 90.33 88.00 85.67 90.33
leuk - - - - - - - - 98.57

leukemia 97.50 97.50 98.75 98.75 - 98.75 95.65 97.50 100.00
prostate - - - 88.00 - 64.82 - - 96.00
colon - - - - 0.00 74.05 - - 83.33

NB srbct - - - - 0.00 - - - 100.00
madelon 59.00 58.65 56.00 57.50 59.85 59.55 60.30 60.00 61.35
splice 95.72 95.78 95.97 95.97 95.71 96.09 95.81 96.19 96.28

spambase 88.09 88.13 88.22 88.26 88.70 88.61 89.00 90.09 91.15
bankrupty 83.55 84.02 85.52 85.22 84.94 80.48 84.71 87.78 89.57
dnatest 94.35 94.52 94.52 94.35 94.77 93.51 94.27 93.76 95.02
semeion 85.50 84.81 - 76.15 85.50 84.62 84.81 84.37 78.42
arcene 72.36 69.36 55.10 54.10 56.10 70.85 68.05 70.05 82.16
dexter 85.00 85.67 83.33 80.33 86.00 81.67 85.67 85.00 86.67
leuk - - - - - - - - 98.57

leukemia 97.50 97.50 98.75 97.50 - 95.65 97.08 96.25 98.75
prostate - - - 85.00 - 66.64 - - 95.00
colon - - - - 0.00 79.05 - - 83.57

KNN srbct - - - - 0.00 - - - 100.00
madelon 61.80 59.15 52.55 55.75 61.20 59.05 63.40 62.30 61.15
splice 69.95 69.70 68.79 69.48 71.81 69.98 69.92 69.61 87.97

spambase 92.39 92.39 92.24 92.13 92.04 91.91 91.74 91.94 91.76
bankrupty 89.35 89.54 89.28 89.27 89.03 89.00 89.96 90.13 90.22
dnatest 87.60 87.18 88.11 87.60 83.14 82.54 89.21 89.38 89.55
semeion 89.28 90.09 - 83.17 90.59 89.21 90.21 88.58 82.62
arcene 76.36 72.36 61.21 62.21 64.21 64.34 75.27 76.36 77.16
dexter 84.00 85.00 83.67 81.67 86.67 82.67 86.67 85.33 86.67
leuk - - - - - - - - 95.89

leukemia 89.40 90.65 89.23 87.56 - 86.55 91.73 90.65 94.58
prostate - - - 89.00 - 73.64 - - 91.00
colon - - - - 0.00 70.48 - - 73.57

DT srbct - - - - 0.00 - - - 89.19
madelon 62.55 60.50 56.05 58.40 61.80 60.40 64.25 62.25 62.20
splice 92.06 91.94 92.28 91.87 92.03 91.68 92.28 92.06 93.61

spambase 91.61 91.72 91.68 91.70 91.65 91.81 91.65 91.83 91.81
bankrupty 88.74 88.70 88.66 88.63 88.33 88.46 89.06 90.09 90.51
dnatest 90.39 90.39 90.56 90.48 88.54 88.54 90.14 90.39 91.15
semeion 76.46 75.34 - 69.93 75.58 74.20 75.08 73.76 72.65
arcene 72.36 69.36 62.21 60.21 61.12 62.14 61.45 69.64 75.83
dexter 76.67 80.67 78.33 77.00 80.00 71.33 85.67 74.00 88.67
leuk - - - - - - - - 95.89

leukemia 94.82 97.50 95.42 93.39 - 95.71 91.90 98.75 98.75
prostate - - - 83.45 - 86.18 - - 93.00
colon - - - - 0.00 78.81 - - 82.38

ANN srbct - - - - 0.00 - - - 97.14
madelon 58.60 57.15 55.80 57.15 60.60 56.05 58.60 58.25 61.00
splice 84.91 79.72 77.06 84.41 81.31 81.20 84.16 80.70 86.08

spambase 92.98 92.61 92.91 92.85 92.87 92.57 89.68 90.65 92.33
bankrupty 89.89 89.25 89.38 89.57 89.85 89.89 89.61 89.75 89.89
dnatest 92.75 92.67 92.33 92.67 88.77 90.81 92.58 91.91 92.58
semeion 81.05 82.04 - 75.33 81.37 81.61 84.44 82.37 76.01
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than that selected by its rivals, EAMB achieves higher classification accuracy using both NB and ANN classifiers. Although
non-simultaneous MB learning algorithms alleviate the data inefficiency problem, more CI tests are performed, which
greatly reduces the quality of CI tests when the size of data samples is finite. Thus, on real-world datasets, the perfor-
mance of non-simultaneous MB learning algorithms are still not satisfactory. In addition, when the MB of class variable
Y is larger, the time and space cost of non-simultaneous MB learning methods will increase significantly, which renders
MMMB, HITON-MB, PCMB, IPCMB, MBOR, STMB, BAMB and EEMB unsuccessfully to generate any output with some data-
sets (such as leuk, leukemia, prostate, colon, srbct and semeion).
� Precision, Recall and F1 metrics: From Table 11–13 we can observe that regardless of which classifier is used, EAMB
achieves higher precision and higher recall on most datasets, especially with high dimensionality and small size samples
(such as arcene, leuk, leukemia, colon, srbct and prostate). Thus, on most datasets, EAMB also get higher F1 score than its
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Table 11
Precision Metric (in %) of EAMB and Other Non-simultaneous MB learning Algorithms.

Classifier Dataset MMMB HITON-MB PCMB IPCMB MBOR STMB BAMB EEMB EAMB

arcene 71.00 72.67 45.43 51.14 52.81 55.95 70.67 76.50 80.67
dexter 93.43 93.97 91.10 92.07 91.27 89.52 92.95 92.49 95.30
leuk - - - - - - - - 100.00

leukemia 100.00 100.00 100.00 100.00 - 100.00 94.17 100.00 100.00
prostate - - - 90.50 - 61.76 - - 98.33
colon - - - - 0.00 83.00 - - 89.00

NB srbct - - - - 0.00 - - - 100.00
madelon 59.31 59.37 75.96 68.78 59.09 58.83 60.63 60.12 61.69
splice 95.10 95.17 95.34 95.37 95.15 95.56 95.15 95.60 95.59

spambase 87.92 87.98 88.36 88.43 88.95 88.67 89.45 90.37 91.92
bankrupty 38.37 39.26 41.33 41.12 41.20 34.01 40.77 47.11 77.40
dnatest 93.57 93.71 93.74 93.54 94.18 92.94 93.44 92.84 94.36
semeion 86.53 86.19 - 77.37 86.55 85.63 85.91 85.41 79.30
arcene 67.71 65.33 15.00 14.29 21.67 67.64 60.33 63.98 80.50
dexter 92.72 93.39 90.62 82.88 93.12 78.62 93.96 91.87 95.90
leuk - - - - - - - - 100.00

leukemia 100.00 100.00 100.00 100.00 - 100.00 96.67 100.00 100.00
prostate - - - 88.67 - 62.49 - - 98.00
colon - - - - 0.00 85.50 - - 87.33

KNN srbct - - - - 0.00 - - - 100.00
madelon 72.56 72.93 44.63 52.09 66.92 62.30 71.68 73.01 72.60
splice 75.17 74.98 74.80 74.95 75.60 75.48 74.97 75.20 86.12

spambase 92.57 92.62 92.86 92.65 92.11 92.10 91.57 92.21 92.28
bankrupty 60.42 63.92 60.27 61.50 59.33 58.57 62.85 65.33 67.79
dnatest 86.10 85.74 86.70 86.22 83.00 82.54 87.69 87.94 87.90
semeion 90.85 91.52 - 85.33 91.88 90.46 91.48 89.99 84.98
arcene 77.50 77.17 45.43 51.38 53.76 60.33 77.17 81.33 74.83
dexter 92.12 91.50 92.60 90.63 89.31 83.93 90.34 90.49 93.75
leuk - - - - - - - - 100.00

leukemia 87.50 90.00 89.17 85.83 - 82.83 95.00 90.00 100.00
prostate - - - 89.67 - 70.32 - - 90.64
colon - - - - 0.00 75.83 - - 78.00

DT srbct - - - - 0.00 - - - 82.50
madelon 62.67 62.28 75.10 66.75 64.22 60.57 65.80 64.28 64.26
splice 90.99 90.85 91.21 90.76 90.97 90.57 91.24 90.99 92.47

spambase 89.49 89.82 89.93 90.23 89.68 89.62 90.28 90.55 91.42
bankrupty 50.93 50.65 50.59 50.54 49.10 49.38 52.77 59.43 71.58
dnatest 89.46 89.46 89.70 89.72 87.79 87.53 89.28 89.45 89.81
semeion 77.69 76.11 - 71.29 76.51 74.97 76.09 74.25 73.15
arcene 69.33 65.62 36.96 39.71 51.81 53.81 58.56 68.93 70.98
dexter 76.58 88.06 87.65 81.68 80.83 69.34 90.30 80.17 90.98
leuk - - - - - - - - 100.00

leukemia 100.00 100.00 93.33 91.67 - 94.17 94.17 97.50 100.00
prostate - - - 85.79 - 85.05 - - 94.33
colon - - - - 0.00 85.67 - - 89.00

ANN srbct - - - - 0.00 - - - 98.33
madelon 59.43 58.90 75.27 68.03 62.89 56.35 63.70 58.87 64.48
splice 82.51 76.10 71.58 82.09 77.93 78.26 81.74 77.48 83.62

spambase 92.54 91.84 92.19 92.12 91.63 91.26 87.84 91.40 91.92
bankrupty 56.91 50.03 67.58 56.68 69.95 48.89 53.71 74.55 75.58
dnatest 91.48 91.64 91.15 91.62 86.93 89.54 91.45 90.58 91.54
semeion 81.51 82.57 - 76.63 81.33 82.15 85.36 83.35 78.21

X. Guo, K. Yu, F. Cao et al. Information Sciences 589 (2022) 849–877
rivals. Specifically, on the arcene dataset, the F1 score of EAMB is 10% or more higher than its rivals using both NB and
KNN classifiers; on the prostate dataset, EAMB is more than 24% higher than STMB using NB classifier, and more than
9% higher than IPCMB on F1 score.
� Running time: Since non-simultaneous MB learning methods need to learn the PC of the features within PC(Y) for finding
SP(Y), their computational time will significantly increase when the size of MB(Y) becomes large. In Table 14 we see that
EAMB is much faster than MMMB, HITON-MB, PCMB, IPCMB, MBOR, STMB, BAMB and EEMB on the leuk, leukemia, colon,
srbct, splice, spambase, bankrupty, dnatest and semeion datasets. In particular, on colon dateset, EAMB only runs for 0.68 s
while MMMB, HITON-MB, PCMB, IPCMB, BAMB and EEMB run for more than one day. For the splice dataset, EAMB is more
than 244 times faster than other algorithms. On the spambase, bankrupty and semeion datasets, EAMB is also significantly
faster than its rivals. Since PCMB uses symmetry checking (i.e., it needs to discover the PC of PC of Y) for removing false
positives, its time efficiency is low.
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Table 12
Recall Metric (in %) of EAMB and Other Non-simultaneous MB learning Algorithms.

Classifier Dataset MMMB HITON-MB PCMB IPCMB MBOR STMB BAMB EEMB EAMB

arcene 68.50 66.50 67.50 75.50 70.50 75.00 62.50 64.00 84.50
dexter 75.33 76.00 76.00 72.67 88.00 92.00 82.67 78.00 86.67
leuk - - - - - - - - 100.00

leukemia 93.33 93.33 96.67 96.67 - 96.67 96.67 93.33 100.00
prostate - - - 86.00 - 84.33 - - 94.00
colon - - - - 0.00 75.00 - - 90.00

NB srbct - - - - 0.00 - - - 100.00
madelon 59.40 57.10 21.20 31.90 65.30 63.70 60.80 60.00 61.30
splice 95.44 95.53 95.75 95.70 95.35 95.85 95.50 95.94 96.23

spambase 80.97 81.02 80.80 80.85 81.52 81.63 81.80 83.84 85.66
bankrupty 70.79 70.54 62.12 64.84 62.77 73.88 70.67 47.52 31.30
dnatest 93.86 94.03 94.06 93.77 94.47 93.15 93.74 93.32 94.55
semeion 85.54 84.84 - 76.14 85.53 84.64 84.85 84.40 78.42
arcene 70.50 56.50 23.50 21.00 28.50 62.50 61.00 62.50 87.00
dexter 76.67 77.33 77.33 82.67 78.00 90.67 76.67 77.33 80.00
leuk - - - - - - - - 100.00

leukemia 93.33 93.33 96.67 93.33 - 86.67 96.67 90.00 96.67
prostate - - - 82.00 - 88.00 - - 94.00
colon - - - - 0.00 82.50 - - 90.00

KNN srbct - - - - 0.00 - - - 100.00
madelon 40.80 33.30 10.10 24.20 45.40 45.60 45.40 41.00 42.00
splice 72.86 72.60 71.97 72.41 74.23 72.24 72.97 72.33 89.81

spambase 87.70 87.64 86.98 86.93 87.26 86.93 87.04 86.87 87.42
bankrupty 20.05 21.03 21.28 18.21 14.37 13.25 30.44 29.34 32.57
dnatest 89.71 89.27 90.18 89.49 86.19 85.22 90.52 90.70 90.91
semeion 89.20 90.01 - 83.08 90.52 89.13 90.14 88.49 82.50
arcene 64.50 56.50 67.50 73.00 70.50 67.00 64.50 68.50 77.00
dexter 75.33 78.00 74.00 72.00 80.67 82.67 82.67 79.33 84.67
leuk - - - - - - - - 97.50

leukemia 85.00 85.00 81.67 81.67 - 88.33 83.33 85.00 85.00
prostate - - - 88.00 - 85.00 - - 94.00
colon - - - - 0.00 85.00 - - 90.00

DT srbct - - - - 0.00 - - - 85.42
madelon 62.90 58.00 23.30 40.10 53.50 59.30 60.30 56.00 57.70
splice 91.20 91.10 91.37 90.89 91.23 90.75 91.41 91.11 93.22

spambase 89.30 89.19 88.91 88.64 89.19 89.68 88.42 88.58 88.19
bankrupty 48.77 46.29 45.19 44.69 44.31 45.67 46.77 45.43 41.08
dnatest 89.21 89.21 89.38 89.20 87.09 87.57 89.06 89.37 90.44
semeion 76.32 75.23 - 69.85 75.45 74.08 74.97 73.67 72.54
arcene 69.50 67.00 56.00 55.00 72.50 67.00 66.50 67.00 77.50
dexter 82.67 75.33 70.67 76.00 74.67 58.67 81.33 67.33 88.67
leuk - - - - - - - - 97.50

leukemia 86.67 93.33 96.67 93.33 - 95.00 86.67 100.00 100.00
prostate - - - 86.00 - 90.67 - - 92.00
colon - - - - 0.00 82.50 - - 90.00

ANN srbct - - - - 0.00 - - - 97.92
madelon 56.60 56.20 22.10 31.80 52.90 56.10 53.80 56.60 57.60
splice 84.29 78.19 74.15 83.92 79.59 79.80 83.35 79.11 85.70

spambase 89.41 89.19 89.63 89.52 90.29 89.85 82.10 83.55 89.02
bankrupty 28.06 29.73 18.57 23.48 26.39 29.06 23.68 19.15 20.93
dnatest 93.05 92.91 92.63 92.59 87.85 90.86 92.64 91.89 92.86
semeion 81.01 82.02 - 75.26 81.27 81.49 84.41 82.27 75.97
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� Number of Selected Features: Table 15 reports the numbers of selected features of EAMB, MMMB, HITON-MB, PCMB,
IPCMB, MBOR, STMB, BAMB and EEMB. From the result, EAMB is very competitive with other non-simultaneous MB learn-
ing algorithms. On the leukemia and prostate datasets, EAMB selects fewer features and achieves higher accuracy than its
rivals. In contrast, STMB selects more features on all datasets and achieves lower accuracy than the other methods. Par-
ticularly, on the colon and srbct datasets, MBOR does not produce any features.

5.2.3. Comparison of EAMB with non-causal feature selection methods
In this section, we report and discuss the experimental results of the EAMB algorithm agaist four well-established feature

selection methods, LASSO, FCBF, QPFS and FSAE.
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Table 13
F1 Metric (in %) of EAMB and Other Non-simultaneous MB learning Algorithms.

Classifier Dataset MMMB HITON-MB PCMB IPCMB MBOR STMB BAMB EEMB EAMB

arcene 67.97 67.57 53.48 60.15 59.20 62.57 64.39 67.19 81.64
dexter 82.78 83.50 81.45 80.11 89.31 90.49 86.96 84.15 89.78
leuk - - - - - - - - 98.89

leukemia 95.00 95.00 98.00 98.00 - 98.00 94.57 96.00 100.00
prostate - - - 87.42 - 70.93 - - 95.48
colon - - - - 0.00 77.70 - - 87.06

NB srbct - - - - 0.00 - - - 100.00
madelon 59.09 57.87 29.09 40.06 61.77 61.05 60.35 59.77 61.14
splice 95.27 95.35 95.54 95.53 95.25 95.70 95.33 95.77 95.91

spambase 84.24 84.30 84.36 84.40 85.02 84.94 85.40 86.93 88.28
bankrupty 49.70 50.39 49.57 50.21 48.66 46.53 51.60 47.10 39.84
dnatest 93.71 93.87 93.89 93.65 94.32 93.04 93.58 93.07 94.41
semeion 86.03 85.51 - 76.75 86.04 85.13 85.38 84.90 78.85
arcene 68.35 57.08 18.27 17.00 23.99 62.44 57.13 58.63 80.87
dexter 83.16 83.80 81.75 80.99 84.74 83.53 83.57 83.22 85.25
leuk - - - - - - - - 98.89

leukemia 95.00 95.00 98.00 95.00 - 91.33 96.00 93.00 98.00
prostate - - - 84.55 - 72.89 - - 94.39
colon - - - - 0.00 82.96 - - 86.90

KNN srbct - - - - 0.00 - - - 100.00
madelon 51.32 43.95 14.27 31.14 53.44 52.55 54.94 51.09 51.25
splice 73.99 73.77 73.35 73.66 74.91 73.81 73.95 73.73 87.92

spambase 90.03 90.03 89.78 89.64 89.58 89.40 89.21 89.41 89.28
bankrupty 30.02 31.29 31.21 27.66 22.86 21.41 40.82 40.36 42.48
dnatest 87.87 87.47 88.41 87.82 84.56 83.85 89.30 89.30 89.26
semeion 90.02 90.76 - 84.19 91.19 89.79 90.81 89.23 83.70
arcene 68.71 61.61 53.48 59.48 59.81 62.23 68.51 69.89 73.66
dexter 82.21 83.54 81.33 79.09 85.62 82.75 85.98 84.04 86.10
leuk - - - - - - - - 96.75

leukemia 84.38 85.81 83.90 81.90 - 82.90 86.48 85.81 90.67
prostate - - - 88.61 - 76.26 - - 91.00
colon - - - - 0.00 78.50 - - 80.96

DT srbct - - - - 0.00 - - - 83.78
madelon 62.62 58.88 30.39 45.13 58.12 59.86 62.64 59.53 60.24
splice 91.09 90.97 91.29 90.82 91.10 90.66 91.32 91.05 92.76

spambase 89.31 89.42 89.34 89.34 89.37 89.58 89.27 89.49 89.38
bankrupty 49.73 48.21 47.68 47.36 46.43 47.37 49.36 51.37 47.67
dnatest 89.33 89.33 89.54 89.45 87.44 87.54 89.16 89.41 90.12
semeion 76.99 75.67 - 70.56 75.97 74.53 75.52 73.96 72.84
arcene 65.16 64.94 43.90 45.55 58.79 57.88 59.16 64.95 66.30
dexter 78.20 79.68 76.96 77.00 76.72 59.62 84.91 70.73 88.51
leuk - - - - - - - - 96.67

leukemia 91.00 95.00 94.00 91.33 - 93.24 87.57 98.57 98.00
prostate - - - 84.54 - 87.03 - - 92.67
colon - - - - 0.00 82.62 - - 86.27

ANN srbct - - - - 0.00 - - - 98.12
madelon 57.30 56.03 29.38 39.84 56.59 56.11 57.86 58.19 58.90
splice 83.39 77.13 72.81 82.99 78.75 79.02 82.54 78.28 84.64

spambase 90.89 90.45 90.86 90.76 90.87 90.47 83.88 86.41 90.05
bankrupty 35.07 36.21 27.07 31.98 34.78 35.07 31.12 28.51 30.87
dnatest 92.25 92.27 91.88 92.10 87.38 90.19 92.04 91.23 92.06
semeion 81.25 82.28 - 75.94 81.24 81.80 84.88 82.80 77.06

X. Guo, K. Yu, F. Cao et al. Information Sciences 589 (2022) 849–877
� Classification accuracy: In Table 16 no matter which classifier is used, EAMB is much more accurate than the other four
algorithms on most of datasets. Specifically, regardless of which classifier is used, EAMB is never worse than LASSO in
classification accuracy on each dataset. And on the datasets with a large number of features and a small number of sam-
ples: such as leuk, leukemia, arcene, prostate and dexter, the advantage of EAMB in classification accuracy is more obvious.
� Precision, Recall and F1 metrics: Tables 17–19 show that no matter which classifier is used, our method achieves the
highest values of precision, recall and F1 on most datasets. Specifically, on the leukemia dataset, the F1 score of EAMB
is more than 28% higher than that of QPFS using NB classifier; on the srbct dataset, the F1 score of EAMB is more than
32% higher than that of LASSO using ANN classifier; on the arcene dataset, the F1 score of EAMB is more than 11% higher
than that of FCBF using DT classifier. On the bankrupty dataset with class-imbalance, EAMB is significantly superior to
FCBF and FSAE.
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Table 14
Running Time (in Seconds) of EAMB and Other Non-simultaneous MB learning Algorithms based on KNN.

Dataset MMMB HITON-MB PCMB IPCMB MBOR STMB BAMB EEMB EAMB

arcene 5.93 1.91 14.03 9.94 2.04 4.78 1.67 1.79 27.64
dexter 40.30 4.56 190.99 40.66 288.28 13.68 10.21 6.56 17.24
leuk - - - - - - - - 14.97

leukemia 5.29 2.76 28.01 19.41 - 8.50 635.84 2.81 2.30
prostate - - - 24.88 - 8.10 - - 93.25
colon - - - - 2856.23 976.04 - - 0.68
srbct - - - - 127.22 - - - 95.65

madelon 0.21 0.15 0.47 0.27 0.80 0.14 0.54 0.22 0.19
splice 9.22 8.66 357.17 7.32 9.70 34.12 86.22 40.85 0.03

spambase 54.96 34.06 1199.69 107.32 124.34 72.88 67.92 30.70 0.57
bankrupty 48.31 40.41 613.16 71.70 1136.54 89.63 135.82 52.99 0.12
dnatest 1.52 1.51 31.23 1.79 319.25 15.36 3.63 3.08 0.21
semeion 5202.98 5142.13 - 2707.91 1299.27 2447.44 21177.23 14457.03 5.04

Table 15
Number of Selected Features of EAMB and Other Non-simultaneous MB learning Algorithms based on KNN.

Dataset MMMB HITON-MB PCMB IPCMB MBOR STMB BAMB EEMB EAMB

arcene 4.70 4.00 1.60 1.80 1.70 643.50 4.90 4.70 4.40
dexter 10.00 10.10 7.40 6.80 30.90 257.10 13.40 9.60 9.90
leuk - - - - - - - - 355.40

leukemia 31.60 34.00 16.40 21.10 - 141.70 21.00 8.80 6.00
prostate - - - 25.20 - 478.80 - - 7.40
colon - - - - 0.00 149.90 - - 53.20
srbct - - - - 0.00 - - - 66.10

madelon 5.90 5.00 1.50 2.80 7.20 24.30 7.30 6.80 6.60
splice 50.40 50.90 46.10 47.10 51.50 49.20 47.80 43.30 6.00

spambase 43.60 43.50 41.30 41.40 48.20 54.10 34.90 30.00 16.20
bankrupty 60.70 57.90 42.40 45.00 46.50 89.70 44.80 20.40 9.00
dnatest 24.60 24.70 23.30 23.30 48.60 114.90 23.70 18.90 17.60
semeion 219.00 220.20 - 84.90 255.10 187.40 237.80 155.10 64.00
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� Running time: From Table 20 we can see that EAMB is much faster than QPFS on most datasets. Specially, EAMB is 46.5
times faster than QPFS on leukemia, and 35.0 times faster than QPFS on colon. Since FCBF adopts pairwise mutual infor-
mation test with lower time complexity to calculate relevancy between features and the class variable, the efficiency of
EAMB is significantly slower than FCBF.
� Number of Selected Features: As shown in Table 21 we can see that compared with the other four algorithms, EAMB
chooses fewer features but achieves higher classification accuracy on most of datasets. EAMB is also very competitive
with FCBF, especially on the datasets with a large number of features: arcene, dexter, leukemia, prostate and srbct.

To further compare the performance (for classification accuracy) of EAMB with that of its rivals, the Friedman test and
Nemenyi test [39] are employed. We first perform the Friedman test at the 0.05 significance level under the null-
hypothesis, which states that all algorithms are performing equivalently (i.e., the average ranks of all algorithms are equiv-
alent). The average ranks of EAMB and its rivals are summarized in Table 22. Since the MMMB, HITON-MB, PCMB, IPCMB,
MBOR, STMB, BAMB and EEMB algorithms can not produce any output on some datasets, we does not record their average
ranks in this table. From Table 22, we can see that the null hypothesis is rejected on each classifier. We also note that EAMB
performs better than its rivals (the lower rank value is better).

To further analyze the significant difference between EAMB and its rivals, we perform the Nemenyi test, which states that
the performance of two algorithm is significantly different if the corresponding average ranks differ by at least one critical
difference (CD). The CD for the Nemenyi test is calculated as follows (i.e., Eq. (2)).
CD ¼ qa;m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðmþ 1Þ

6jDj

s
ð2Þ
where a is the significance level and jmj is the number of comparison algorithms, and jDj denotes the number of real-world
datasets. In our experiments, m ¼ 11; qa¼0:05;m¼11 ¼ 3:219 at significance level a ¼ 0:05. Whether using NB or KNN classifiers,
jDj ¼ 13, and thus CD = 4.19.

Figs. 4(a), Figs. 4(b), Figs. 4(c) and Figs. 4(d) provide the CD diagrams, where the average rank of each algorithm is marked
along the axis (lower ranks to the right). Using NB classifier, we observe that EAMB achieves a comparable performance
against FCBF, QPFS and FSAE, and EAMB significantly performs better than the other algorithms. Using KNN classifier, we
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Table 16
Classification Accuracy (in %) of the Well-established Feature Selection Methods and EAMB.

Classifier Dataset LASSO FCBF QPFS FSAE EAMB

arcene 72.07 71.43 63.23 56.01 84.16
dexter 85.67 89.33 90.33 50.00 90.33
leuk 93.04 97.14 94.46 87.68 98.57

leukemia 98.75 97.08 83.33 91.37 100.00
prostate 92.00 95.00 63.64 94.00 96.00
colon 68.81 85.24 85.24 78.81 83.33

NB srbct 85.05 98.33 100.00 89.19 100.00
madelon 61.15 57.00 61.20 62.20 61.35
splice 90.49 95.37 96.28 95.46 96.28

spambase 88.07 90.04 91.37 91.65 91.15
bankrupty 88.55 0.00 88.67 88.59 89.57
dnatest 77.66 89.97 94.43 94.52 95.02
semeion 74.65 80.29 80.91 69.75 78.42
arcene 69.05 68.34 71.12 56.01 82.16
dexter 78.00 82.33 86.00 50.00 86.67
leuk 90.36 95.71 95.71 95.71 98.57

leukemia 98.75 97.08 74.35 98.75 98.75
prostate 91.09 95.00 76.36 95.00 95.00
colon 70.48 84.05 86.90 80.24 83.57

KNN srbct 77.10 95.71 100.00 98.57 100.00
madelon 57.35 51.25 60.50 57.50 61.15
splice 81.13 78.40 87.37 87.37 87.97

spambase 90.91 90.50 92.13 92.20 91.76
bankrupty 88.62 0.00 88.46 88.56 90.22
dnatest 61.80 88.54 88.97 87.52 89.55
semeion 82.49 81.49 81.92 72.14 82.62
arcene 69.14 69.36 69.03 56.01 77.16
dexter 82.00 80.33 88.33 50.00 86.67
leuk 90.36 95.89 94.46 95.89 95.89

leukemia 94.40 93.15 77.08 93.15 94.58
prostate 88.18 88.09 69.73 94.00 91.00
colon 67.38 78.57 74.05 74.05 73.57

DT srbct 71.05 84.10 83.57 89.19 89.19
madelon 59.80 57.10 60.15 59.25 62.20
splice 86.55 92.88 93.32 92.60 93.61

spambase 90.48 91.05 92.17 92.13 91.81
bankrupty 88.83 0.00 88.70 88.56 90.51
dnatest 70.91 87.95 91.99 92.50 91.15
semeion 68.55 74.69 73.63 68.30 72.65
arcene 72.16 65.25 66.87 56.01 75.83
dexter 70.00 79.67 88.00 50.00 88.67
leuk 90.36 90.18 93.04 73.93 95.89

leukemia 98.75 96.90 82.80 98.33 98.75
prostate 93.00 94.00 67.64 92.18 93.00
colon 72.62 77.14 82.14 76.19 82.38

ANN srbct 65.43 84.00 97.14 97.14 97.14
madelon 60.05 57.10 60.50 59.85 61.00
splice 72.00 85.29 85.83 85.29 86.08

spambase 91.39 91.37 93.00 92.72 92.33
bankrupty 88.69 0.00 88.86 88.56 89.89
dnatest 72.85 88.45 91.99 92.58 92.58
semeion 73.96 72.20 74.51 65.05 76.01
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note that EAMB significantly outperforms GSMB, IAMB, Inter-IAMB, Fast-IAMB, LRH and FBEDK, and EAMB achieves a com-
parable performance against the other algorithms. Using DT classifier, we see that EAMB significantly outperforms GSMB and
Fast-IAMB, and EAMB achieves a comparable performance against the other algorithms. Figs. 4(d) show that EAMB achieves
a comparable performance against FCBF, QPFS, LASSO and FSAE, and EAMB significantly performs better than the other algo-
rithms when using ANN classifier. No matter which classifier is used, EAMB is the only algorithm that achieves the lowest
rank value (the lower rank value is better).
5.3. Parameter sensitivity analysis

In this section, based on KNN classifier and the metric of classification accuracy, we will study the influence of the param-
eter on the proposed methods. Figs. 5(b), 5(c) and 5(d) show the variation curve of classification accuracy of LASSO, QPFS and
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Table 17
Precision Metric (in %) of the Well-established Feature Selection Methods and EAMB.

Classifier Dataset LASSO FCBF QPFS FSAE EAMB

arcene 72.33 66.00 55.01 0.00 80.67
dexter 93.68 90.93 88.39 0.00 95.30
leuk 98.00 97.50 95.50 89.33 100.00

leukemia 100.00 96.67 74.17 90.00 100.00
prostate 96.67 98.00 61.13 96.33 98.33
colon 81.33 93.50 92.67 86.00 89.00

NB srbct 87.08 99.17 100.00 89.68 100.00
madelon 61.68 57.03 64.76 72.06 61.69
splice 89.66 94.48 95.58 94.98 95.59

spambase 87.03 88.30 91.08 90.82 91.92
bankrupty 50.00 0.00 57.06 36.16 77.40
dnatest 76.53 88.02 93.52 93.77 94.36
semeion 75.56 81.51 81.49 69.83 79.30
arcene 78.67 62.33 72.50 0.00 80.50
dexter 94.89 89.71 94.60 50.00 95.90
leuk 98.00 97.50 95.83 100.00 100.00

leukemia 100.00 96.67 45.00 100.00 100.00
prostate 100.00 98.33 72.64 98.00 98.00
colon 75.50 92.17 91.00 84.00 87.33

KNN srbct 70.39 97.92 100.00 99.17 100.00
madelon 68.44 69.49 66.58 67.54 72.60
splice 79.29 79.58 85.24 85.24 86.12

spambase 92.52 90.00 92.93 92.67 92.28
bankrupty 51.97 0.00 49.97 1.19 67.79
dnatest 60.28 86.53 87.22 85.97 87.90
semeion 84.22 82.93 83.79 74.01 84.98
arcene 64.67 69.67 72.00 0.00 74.83
dexter 93.68 83.76 92.11 0.00 93.75
leuk 91.67 96.67 98.33 96.67 100.00

leukemia 95.00 97.50 75.00 95.00 100.00
prostate 91.81 86.74 70.98 96.33 90.64
colon 74.33 87.33 82.67 77.50 78.00

DT srbct 71.25 78.33 75.42 80.79 82.50
madelon 60.07 57.10 67.43 75.74 64.26
splice 85.19 91.86 91.51 91.64 92.47

spambase 90.10 89.92 91.42 91.40 91.42
bankrupty 52.07 0.00 57.06 26.86 71.58
dnatest 69.47 86.19 91.33 91.46 89.81
semeion 69.20 75.34 74.48 69.11 73.15
arcene 70.17 57.33 59.45 8.55 70.98
dexter 80.34 85.11 90.98 40.00 90.98
leuk 96.67 97.50 97.14 74.29 100.00

leukemia 97.50 96.67 83.33 100.00 100.00
prostate 96.67 98.33 71.75 94.90 94.33
colon 77.88 84.83 89.00 87.00 89.00

ANN srbct 66.18 83.75 96.04 98.33 98.33
madelon 59.69 57.10 65.21 71.83 64.48
splice 69.13 83.09 82.77 83.00 83.62

spambase 90.81 89.67 92.16 92.23 91.92
bankrupty 32.65 0.00 47.67 10.00 75.58
dnatest 71.71 86.57 91.27 91.53 91.54
semeion 74.65 73.86 74.47 65.04 78.21
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FSAE by varying the parameter f (i.e. the number of selected features), respectively. The impact of k on the classification
accuracy of EAMB is shown in Fig. 5(a).

In Figs. 5(b), 5(c) and 5(d), we note that there is no obvious rule for classification accuracy and the number of selected
features. For selecting different number of features, the classification accuracy fluctuates greatly. But, in Fig. 5(a), we observe
that when 0.05 6 k 6 0:25, EAMB achieves the highest classification accuracy on all datasets except srbct and semeion data-
sets. For the srbct dataset, more classes and fewer instances render Eq. (1) of Section 4.2 difficult to hold, which makes ESMB
unable to fully identify the MB of dense features (the size of the MB of such feature is large). Nevertheless, on the srbct data-
set, most of the MB features of class variable are the dense features, i.e., SRMB cannot immediately recover the missed MB
features through R-AND rule. Thus, when k = 0.7, classification accuracy of EAMB achieves the highest.

Based on the analysis of k of EAMB above, we can draw the following two conclusions.
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Table 18
Recall Metric (in %) of the Well-established Feature Selection Methods and EAMB.

Classifier Dataset LASSO FCBF QPFS FSAE EAMB

arcene 65.50 70.50 77.50 0.00 84.50
dexter 78.00 88.00 96.67 0.00 86.67
leuk 92.00 97.50 97.50 95.50 100.00

leukemia 96.67 96.67 75.00 76.67 100.00
prostate 90.00 92.00 80.33 92.00 94.00
colon 72.50 85.00 87.50 85.00 90.00

NB srbct 88.33 98.75 100.00 90.00 100.00
madelon 65.00 72.00 65.70 64.10 61.30
splice 90.19 95.22 96.17 95.07 96.23

spambase 82.79 86.21 85.49 94.54 85.66
bankrupty 60.77 0.00 73.02 60.58 31.30
dnatest 76.25 89.64 94.35 94.32 94.55
semeion 74.64 80.26 80.91 69.71 78.42
arcene 36.50 70.50 66.50 0.00 87.00
dexter 64.67 74.67 94.00 100.00 80.00
leuk 90.00 95.50 97.50 95.00 100.00

leukemia 96.67 96.67 30.00 100.00 96.67
prostate 92.00 92.00 86.00 92.00 94.00
colon 87.50 85.00 90.00 95.00 90.00

KNN srbct 74.58 96.67 100.00 98.75 100.00
madelon 55.90 17.80 44.00 39.40 42.00
splice 83.10 81.59 88.62 88.62 89.81

spambase 83.95 85.44 87.42 87.20 87.42
bankrupty 23.39 0.00 66.19 8.77 32.57
dnatest 63.35 88.20 90.87 89.12 90.91
semeion 82.37 81.35 81.81 72.04 82.50
arcene 59.50 61.50 71.00 0.00 77.00
dexter 78.00 79.33 92.00 0.00 84.67
leuk 96.00 97.50 95.50 97.50 97.50

leukemia 91.67 85.00 68.33 88.33 85.00
prostate 88.33 90.00 76.67 92.00 94.00
colon 80.00 82.50 87.50 85.00 90.00

DT srbct 72.92 81.25 79.17 85.42 85.42
madelon 58.90 72.00 57.70 57.50 57.70
splice 85.79 91.86 92.67 91.79 93.22

spambase 86.76 87.09 89.57 96.41 88.19
bankrupty 33.66 0.00 40.46 2.35 41.08
dnatest 69.01 86.49 91.28 91.99 90.44
semeion 68.43 74.63 73.55 68.19 72.54
arcene 70.50 64.00 57.00 20.00 77.50
dexter 70.00 77.33 94.67 80.00 88.67
leuk 92.00 87.00 95.50 93.00 97.50

leukemia 100.00 96.67 71.67 100.00 100.00
prostate 92.00 90.00 79.00 90.33 92.00
colon 82.50 80.00 87.50 90.00 90.00

ANN srbct 65.83 82.92 96.25 97.50 97.92
madelon 62.50 72.00 61.00 57.30 57.60
splice 69.87 84.95 85.66 84.76 85.70

spambase 86.98 88.36 90.02 89.46 89.02
bankrupty 5.57 0.00 9.76 0.62 20.93
dnatest 71.75 87.65 92.21 91.86 92.86
semeion 73.88 72.13 74.46 64.93 75.97
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1. When k = 0.05, EAMB achieves the approximate optimal classification accuracy on the most of datasets. For datasets with
smaller samples and a larger number of classes, k can be increased appropriately (the upper limit is generally 0.25).

2. On the dataset with many dense features (such as srbct and semeion), when k takes a larger value (such as 0.7), EAMB can
approximate the highest classification accuracy.
5.4. Rationale of the selective strategy of SRMB

In this section, we use the experimental results on benchmark and real-world datasets to demonstrate the rationality of
selective strategy of SRMB.
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Table 19
F1 Metric (in %) of the Well-established Feature Selection Methods and EAMB.

Classifier Dataset LASSO FCBF QPFS FSAE EAMB

arcene 65.39 67.59 62.93 0.00 81.64
dexter 84.15 89.14 89.78 0.00 89.78
leuk 94.67 97.50 95.68 91.43 98.89

leukemia 98.00 96.00 71.95 81.33 100.00
prostate 90.81 94.39 69.25 93.48 95.48
colon 74.25 86.42 86.30 81.63 87.06

NB srbct 87.65 98.95 100.00 89.60 100.00
madelon 61.62 59.49 62.48 61.85 61.14
splice 89.92 94.85 95.86 95.02 95.91

spambase 84.51 87.16 88.61 89.37 88.28
bankrupty 46.33 0.00 50.68 31.88 39.84
dnatest 76.38 88.82 93.93 94.04 94.41
semeion 75.10 80.88 81.20 69.77 78.85
arcene 45.63 65.55 64.06 0.00 80.87
dexter 73.89 80.66 85.25 66.67 85.25
leuk 92.37 96.39 96.59 95.56 98.89

leukemia 98.00 96.00 34.67 98.00 98.00
prostate 89.88 93.69 78.17 94.39 94.39
colon 79.56 86.77 89.92 85.24 86.90

KNN srbct 72.21 97.24 100.00 98.95 100.00
madelon 54.50 25.37 51.85 48.02 51.25
splice 81.15 80.57 86.90 86.90 87.92

spambase 87.88 87.62 89.62 89.78 89.28
bankrupty 31.34 0.00 48.58 2.10 42.48
dnatest 61.76 87.35 88.53 87.52 89.26
semeion 83.28 82.13 82.78 73.01 83.70
arcene 60.52 61.75 65.32 0.00 73.66
dexter 81.03 80.36 88.13 0.00 86.10
leuk 93.43 96.75 95.66 96.75 96.75

leukemia 90.67 89.24 65.71 89.81 90.67
prostate 87.47 88.08 70.85 88.08 91.00
colon 75.56 80.96 79.65 79.51 80.96

DT srbct 71.80 79.43 77.09 88.63 83.78
madelon 58.87 59.54 57.46 56.28 60.24
splice 85.49 91.86 92.56 91.67 92.76

spambase 87.69 88.40 89.80 89.86 89.38
bankrupty 38.34 0.00 43.94 4.11 47.67
dnatest 69.23 86.33 91.27 91.72 90.12
semeion 68.81 74.99 74.01 68.65 72.84
arcene 64.51 57.88 52.55 11.96 66.30
dexter 69.61 79.19 88.10 53.33 88.51
leuk 91.99 91.35 94.73 81.66 96.67

leukemia 98.57 96.00 73.67 98.00 98.00
prostate 91.67 92.58 70.45 91.82 92.67
colon 78.80 81.63 83.85 82.89 86.27

ANN srbct 65.54 83.11 96.13 97.91 98.12
madelon 60.95 59.54 61.09 58.22 58.90
splice 69.50 84.01 83.70 83.87 84.64

spambase 88.83 88.94 90.99 90.61 90.05
bankrupty 9.00 0.00 15.19 1.09 30.87
dnatest 71.70 87.10 91.64 91.17 92.06
semeion 74.26 72.97 74.44 64.95 77.06
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5.4.1. Rationale on benchmark dataset
As shown in Fig. 6, using ESMB algorithm, we conducted experiments on the well-known benchmark Alarm BN with 37

variables. Since the MB of each variable can be read off from the benchmark BN, we generated 500 samples from the BN and
select 17 dense variables (denoted as ordinate) in this BN for showing the rationale of the selective strategy of SRMB.

For a CI test of Fi and Y conditioning on S, the corresponding p-value pFi
is smaller, the relevancy between Fi and Y is

higher. If and only if pFi
> a (a is the significance level of the statistical test), we accept the null hypothesis ‘‘Hi : Fi �YjS ”.

In Fig. 6, assuming V1 is the class variable, we use hollow circle to record pVi
(Vi 2 all variables except MB(V1)), that is,

pVi
> a. Among them, the red hollow circle denotes the missed true MB variables of a class variable. We can see that the

p-values of missed true MB variables are closer to a than the p-value of other variables. And the red hollow circles farther
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Table 20
Running Time (in Seconds) of the Well-established Feature Selection Methods and EAMB.

Dataset LASSO FCBF QPFS FSAE EAMB

arcene 1.37 0.26 53.55 1.31 27.64
dexter 4.06 0.35 347.34 3.37 17.24
leuk 0.85 0.25 76.87 0.81 14.97

leukemia 0.78 0.30 106.91 0.83 2.30
prostate 0.90 0.23 112.69 0.74 93.25
colon 0.27 0.04 23.77 0.22 0.68
srbct 0.27 0.19 37.94 0.52 95.65

madelon 2.08 0.03 2.56 0.31 0.19
splice 0.26 0.03 0.06 0.08 0.03

spambase 0.53 0.04 0.07 0.07 0.57
bankrupty 2.54 0.02 0.13 0.21 0.12
dnatest 0.34 0.01 0.10 0.10 0.21
semeion 1.57 0.08 0.19 0.51 5.04

Table 21
Number of Selected Features of the Well-established Feature Selection Methods and EAMB.

Dataset LASSO FCBF QPFS FSAE EAMB

arcene 35.00 33.50 35.00 5.00 4.40
dexter 15.00 41.30 50.00 5.00 9.90
leuk 40.00 52.30 5.00 45.00 355.40

leukemia 5.00 51.10 50.00 15.00 6.00
prostate 20.00 41.90 50.00 35.00 7.40
colon 45.00 7.40 35.00 35.00 53.20
srbct 50.00 96.80 25.00 20.00 66.10

madelon 10.00 2.00 15.00 20.00 6.60
splice 5.00 19.70 10.00 5.00 6.00

spambase 50.00 10.60 30.00 45.00 16.20
bankrupty 35.00 0.00 45.00 5.00 9.00
dnatest 10.00 8.10 15.00 15.00 17.60
semeion 50.00 25.60 50.00 50.00 64.00

Table 22
The average ranks of EAMB and its rivals using NB, KNN, DT and ANN classifiers.

Algorithm GSMB IAMB Inter-IAMB Fast-IAMB LRH FBED LASSO FCBF QPFS FSAE EAMB

NB 10.15 6.50 6.50 7.50 6.85 6.73 6.19 4.42 4.31 5.15 1.69
KNN 10.27 6.85 6.85 7.31 6.12 6.96 5.54 5.12 3.92 5.23 1.85
DT 10.50 6.00 6.00 7.08 6.04 6.19 6.69 5.04 4.77 4.96 2.73

Avg rank ANN 10.69 6.31 6.27 7.31 7.46 6.27 5.58 5.23 3.62 5.5 1.77
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from a are generally the SP of a class variable, that is because the relevancy between the class variable and its SP is less than
that between the class variable and PC.

5.4.2. Rationale on real-world dataset
In this section, we further validate the rationale of the selective strategy of SRMB by observing what effects the parameter

k has on the number of selected features of EAMB. As shown in Fig. 7, we note that the number of selected features increases
significantly when k 6 0:3 on most datasets, and then tends to be stable. In particular, since leuk and colon are high-
dimensional small samples and noisy datasets, a large number of true positives are wrongly discarded. Thus, the numbers
of selected features have a linear relationship with k. On srbct dataset, when k P 0:6, the number of selected features starts
to increase significantly, which has been explained in Section 5.3.

The above results indicate that false negatives with greater relevance to Y are more likely to be recalled (see Lines 1–2 of
Algotithm 3). Combined with the analysis in Section 5.4.1 we further confirm that the selective strategy of SRMB is
reasonable.
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Fig. 4. Crucial difference diagram of the Nemenyi test on 13 real-world datasets. (Since MMMB, HITON-MB, PCMB, IPCMB, MBOR, STMB, BAMB and EEMB
fail to generate any output on some datasets, their results are not shown in the crucial difference diagram.).

Fig. 5. Comparison of parameter sensitivity of EAMB, LASSO, QPFS and FSAE on 13 real-world datasets..
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Fig. 6. An example of p-value distribution when conducting experiments on the benchmark BN dataset.

Fig. 7. Number of selected features of EAMB by varying the values of k (k 2 ½0:1�). (For the convenience of observation, the number of features selected by an
algorithm on some datasets are compressed in proportion.).
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6. Conclusion

This paper focuses on the problem that existing causal feature selection algorithms encounter CI test errors, which seri-
ously degrades the performance of those existing methods. To address this problem, we present an Error-Aware Markov
Blanket learning algorithm, EAMB, which contains two novel subroutines: the Efficiently Simultaneous MB (ESMB) and
Selectively Recover MB (SRMB) algorithms. ESMB is used to speed up the computational efficiency of EAMB while reducing
unreliable CI tests as many as possible, and SRMB utilizes a selective strategy to tackle the unreliable CI test problem caused
by the low data efficiency. Finally, EAMB is extensively evaluated and compared with the state-of-the-art causal feature
selection algorithms and well-established traditional feature selection methods on real-world datasets. And the results val-
idate the effectiveness and superiority of EAMB in terms of feature selection. Furthermore, we verify the rationality of the
selection strategy of SRMB through conducting experiments on benchmark and real-world datasets. In future, we will extend
EAMB for learning the local or global causal structures, and selecting causal features from multiple datasets with different
distributions [40].
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