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A Theoretical Analysis

A.1 Proof for Lemma 1

Lemma 1. If for ∀j, 0 < P (Xck
·,j = 1|ξ(Xck

·,−j)) < 1, and Xck is binary, then for ∀i, 0 <

P (([ξ(Xck
·,−j)]i,·,X

ck
i,j) = x) < 1, where ([ξ(Xck

·,−j)]i,·,X
ck
i,j) is a sample of length (p+ 1), formed

by concatenating the i-th row of the low-dimensional representation space [ξ(Xck
·,−j)]i,· with Xck

i,j .

Proof. Assume that T = Xck
·,j is the treatment feature. Since for ∀j, 0 < P (Xck

·,j = 1|ξ(Xck
·,−j)) < 1,

and Xck is binary, it also holds that for ∀j, 0 < P (Xck
·,j = 0|ξ(Xck

·,−j)) < 1. Therefore, ∃ a sample
(xa1 , x

a
2 , . . . , x

a
p) such that P ([ξ(Xck

·,−j)]i,· = (xa1 , x
a
2 , . . . , x

a
p)) > 0 holds. From

P
(
([ξ(Xck

·,−j)]i,·,X
ck
i,j) = (xa1 , x

a
2 , . . . , x

a
p, xp+1)

)
=P

(
[ξ(Xck

·,−j)]i,· = (xa1 , x
a
2 , . . . , x

a
p),X

ck
i,j = xp+1

)
=P

(
[ξ(Xck

·,−j)]i,· = (xa1 , x
a
2 , . . . , x

a
p)
)
P
(
Xck
i,j = xp+1|[ξ(Xck

·,−j)]i,· = (xa1 , x
a
2 , . . . , x

a
p)
)
,

(1)

we have:

0 < P
(
([ξ(Xck

·,−j)]i,·,X
ck
i,j) = (xa1 , x

a
2 , . . . , x

a
p, xp+1)

)
< 1 (2)
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for xp+1 = 0 or xp+1 = 0 (Xck
i,j is binary.). Let q ∈ {1, 2, . . . , p}, we have

P
(
([ξ(Xck

·,−j)]i,·,X
ck
i,j) = (xa1 , x

a
2 , . . . , x

a
p, xp+1)

)
=P

(
([ξ(Xck

·,−j)]i,−q,X
ck
i,j) = (xa1 , x

a
2 , . . . , x

a
q−1, x

a
q+1, . . . , x

a
p, xp+1), [ξ(X

ck
·,−j)]i,q = xaq

)
=P

(
([ξ(Xck

·,−j)]i,−q,X
ck
i,j) = (xa1 , x

a
2 , . . . , x

a
q−1, x

a
q+1, . . . , x

a
p, xp+1)

)
·

P
(
[ξ(Xck

·,−j)]i,q = xaq |([ξ(X
ck
·,−j)]i,−q,X

ck
i,j) = (xa1 , x

a
2 , . . . , x

a
q−1, x

a
q+1, . . . , x

a
p, xp+1)

)
,

(3)

and according to Equation (2), we can obtain

P
(
([ξ(Xck

·,−j)]i,−q,X
ck
i,j) = (xa1 , x

a
2 , . . . , x

a
q−1, x

a
q+1, . . . , x

a
p, xp+1)

)
> 0. (4)

By substituting Equations (2) and (4) into Equation (3), we have:

0 < P
(
[ξ(Xck

·,−j)]i,q = xaq |([ξ(X
ck
·,−j)]i,−q,X

ck
i,j) = (xa1 , x

a
2 , . . . , x

a
q−1, x

a
q+1, . . . , x

a
p, xp+1)

)
< 1.

(5)
Similarly, we can obtain:

0 < P
(
[ξ(Xck

·,−j)]i,q = 0|([ξ(Xck
·,−j)]i,−q,X

ck
i,j) = (xa1 , . . . , x

a
q−1, x

a
q+1, . . . , x

a
p, xp+1)

)
< 1,

0 < P

(
[ξ(Xck

·,−j)]i,q =
1

ω
|([ξ(Xck

·,−j)]i,−q,X
ck
i,j) = (xa1 , . . . , x

a
q−1, x

a
q+1, . . . , x

a
p, xp+1)

)
< 1,

0 < P

(
[ξ(Xck

·,−j)]i,q =
2

ω
|([ξ(Xck

·,−j)]i,−q,X
ck
i,j) = (xa1 , . . . , x

a
q−1, x

a
q+1, . . . , x

a
p, xp+1)

)
< 1,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 < P

(
[ξ(Xck

·,−j)]i,q = 1|([ξ(Xck
·,−j)]i,−q,X

ck
i,j) = (xa1 , . . . , x

a
q−1, x

a
q+1, . . . , x

a
p, xp+1)

)
< 1.

(6)
Thus, for ∀xq, xp+1, we can obtain:

0 < P
(
([ξ(Xck

·,−j)]i,·,X
ck
i,j) = (xa1 , x

a
2 , . . . , x

a
q−1, xq, x

a
q+1, x

a
p, xp+1)

)
< 1. (7)

Then, we repeat the above for all other low-dimensional representation features one by one, and have:

0 < P
(
([ξ(Xck

·,−j)]i,·,X
ck
i,j) = (x1, x2, . . . , xq−1, xq, xq+1, xp, xp+1)

)
< 1. (8)

Or equivalently,
0 < P (([ξ(Xck

·,−j)]i,·,X
ck
i,j) = x) < 1 (9)

for ∀x. In conclusion, Lemma 1 is proved.

A.2 Proof for Theorem 1

Theorem 1. Under Lemma 1, if the dimension p of the low-dimensional representation space
ξ(Xck

·,−j) is finite, then ∃ a W ck such that

P

 lim
nk→∞

d∑
j=1

∥∥∥∥∥ξ(X
ck
·,−j)

T · (W ck ⊙Xck
·,j)

(W ck)T ·Xck
·,j

−
ξ(Xck

·,−j)
T · (W ck ⊙ (1−Xck

·,j))

(W ck)T · (1−Xck
·,j)

∥∥∥∥∥
2

2

= 0

 = 1.

(10)
In particular, a W ck solution that satisfies Equation (10) is Ŵ ck

i = 1
P (([ξ(X

ck
·,−j)]i,·,X

ck
i,j)=x)

.

Proof. For ∀j, we have∥∥∥∥∥ξ(X
ck
·,−j)

T · (W ck ⊙Xck
·,j)

(W ck)T ·Xck
·,j

−
ξ(Xck

·,−j)
T · (W ck ⊙ (1−Xck

·,j))

(W ck)T · (1−Xck
·,j)

∥∥∥∥∥
2

2

≥ 0. (11)

Let q ∈ {1, 2, . . . , p} and p = |ξ(Xck
·,−j)|. So, Equation (10) can be simplified to

P

(
lim

nk→∞

(∑
i:[ξ(X

ck
·,−j)]i,q ̸=0,X

ck
i,j=1W

ck
i∑

i:X
ck
i,j=1W

ck
i

−

∑
i:[ξ(X

ck
·,−j)]i,q ̸=0,X

ck
i,j=0W

ck
i∑

i:X
ck
i,j=0W

ck
i

)
= 0

)
= 1. (12)
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Based on Lemma 1, we have 0 < P (([ξ(Xck
·,−j)]i,·,X

ck
i,j) = x) < 1 for ∀i, x. Thus, for Ŵ ck

i =
1

P (([ξ(X
ck
·,−j)]i,·,X

ck
i,j)=x)

and g=0 or 1,

lim
nk→∞

1

nk

∑
i:X

ck
i,j=g

Ŵ ck
i

= lim
nk→∞

1

nk

∑
x:xp+1=g

∑
i:([ξ(X

ck
·,−j)]i,·,X

ck
i,j)=x

Ŵ ck
i

= lim
nk→∞

∑
x:xp+1=g

1

nk

∑
i:([ξ(X

ck
·,−j)]i,·,X

ck
i,j)=x

Ŵ ck
i

= lim
nk→∞

∑
x:xp+1=g

1

nk

∑
i:([ξ(X

ck
·,−j)]i,·,X

ck
i,j)=x

1

P (([ξ(Xck
·,−j)]i,·,X

ck
i,j) = x)

.

(13)

According to the law of large numbers, we have

lim
nk→∞

1

nk

∑
i:([ξ(X

ck
·,−j)]i,·,X

ck
i,j)=x

= P (([ξ(Xck
·,−j)]i,·,X

ck
i,j) = x). (14)

By substituting Equation (14) into Equation (13), we can obtain

lim
nk→∞

1

nk

∑
i:X

ck
i,j=g

Ŵ ck
i

= lim
nk→∞

∑
x:xp+1=g

P (([ξ(Xck
·,−j)]i,·,X

ck
i,j) = x)

1

P (([ξ(Xck
·,−j)]i,·,X

ck
i,j) = x)

=(ω + 1)p

(15)

due to [ξ(Xck
·,−j)]i,q ∈ {0, 1

ω ,
2
ω , . . . , 1}. Thus, we have

lim
nk→∞

1

nk

∑
i:X

ck
i,j=0

Ŵ ck
i = (ω + 1)p (16)

and

lim
nk→∞

1

nk

∑
i:X

ck
i,j=1

Ŵ ck
i = (ω + 1)p. (17)

Further, we can obtain

lim
nk→∞

1

nk

∑
i:[ξ(X

ck
·,−j)]i,q ̸=0,X

ck
i,j=1

Ŵ ck
i

= lim
nk→∞

1

nk

∑
x:xq ̸=0

∑
x:xp+1=1

∑
i:([ξ(X

ck
·,−j)]i,·,X

ck
i,j)=x

Ŵ ck
i

= lim
nk→∞

∑
x:xq ̸=0

∑
x:xp+1=1

1

nk

∑
i:([ξ(X

ck
·,−j)]i,·,X

ck
i,j)=x

Ŵ ck
i

= lim
nk→∞

∑
x:xq ̸=0

∑
x:xp+1=1

P (([ξ(Xck
·,−j)]i,·,X

ck
i,j) = x)

1

P (([ξ(Xck
·,−j)]i,·,X

ck
i,j) = x)

=(ω + 1)p−1 ω

ω + 1

=ω(ω + 1)p−2.

(18)
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Similarly, since Xck
i,j is binary, we have

lim
nk→∞

1

nk

∑
i:[ξ(X

ck
·,−j)]i,q ̸=0,X

ck
i,j=0

Ŵ ck
i

= lim
nk→∞

1

nk

∑
x:xq ̸=0

∑
x:xp+1=0

∑
i:([ξ(X

ck
·,−j)]i,·,X

ck
i,j)=x

Ŵ ck
i

= lim
nk→∞

∑
x:xq ̸=0

∑
x:xp+1=0

1

nk

∑
i:([ξ(X

ck
·,−j)]i,·,X

ck
i,j)=x

Ŵ ck
i

= lim
nk→∞

∑
x:xq ̸=0

∑
x:xp+1=0

P (([ξ(Xck
·,−j)]i,·,X

ck
i,j) = x)

1

P (([ξ(Xck
·,−j)]i,·,X

ck
i,j) = x)

=(ω + 1)p−1 ω

ω + 1

=ω(ω + 1)p−2.

(19)

Substituting Equations (16), (17), (18) and (19) into Equation (12), we obtain:

lim
nk→∞

∑i:[ξ(X
ck
·,−j)]i,q ̸=0,X

ck
i,j=1 Ŵ

ck
i∑

i:X
ck
i,j=1 Ŵ

ck
i

−

∑
i:[ξ(X

ck
·,−j)]i,q ̸=0,X

ck
i,j=0 Ŵ

ck
i∑

i:X
ck
i,j=0 Ŵ

ck
i


=
ω(ω + 1)p−2

(ω + 1)p
− ω(ω + 1)p−2

(ω + 1)p

=0.

(20)

Or equivalently,

P

 lim
nk→∞

∑i:[ξ(X
ck
·,−j)]i,q ̸=0,X

ck
i,j=1 Ŵ

ck
i∑

i:X
ck
i,j=1 Ŵ

ck
i

−

∑
i:[ξ(X

ck
·,−j)]i,q ̸=0,X

ck
i,j=0 Ŵ

ck
i∑

i:X
ck
i,j=0 Ŵ

ck
i

 = 0

 = 1. (21)

In conclusion, Theorem 1 is proved.

B Related Work

B.1 Federated Feature Selection

With the advent of big data and federated learning (FL) era [1], traditional feature selection methods
have shown unacceptable performance in handling data heterogeneity in federated environments.
Federated Feature Selection (FFS) has emerged to address this issue. The importance of this research
direction is mainly reflected in two aspects: first, it enables multiple participants to collaboratively
select high-quality feature subsets without sharing raw data; second, it improves the effect of feature
selection while protecting the data privacy of each participant through the FL framework. Our work
focuses specifically on horizontal federated feature selection scenarios, where participants share the
same feature space but have different sample sets. This section will introduce several representative
works in this field.

The pioneering work in this area is Fed-FiS [2], which the authors claim to be the first feature
selection algorithm in an FL system. Fed-FiS utilizes information-theoretic measures to estimate
feature-feature mutual information and feature-label mutual information, generating local feature
subsets on each user device. The central server ranks each feature based on the federated values
across features and labels obtained from each device, generating a global dominant feature subset.

Building upon Fed-FiS, a recent work called Fed-MOFS [3] was proposed as an extension and
improvement. Fed-MOFS introduces a multi-objective optimization approach to rank features based
on their relevance and redundancy. While Fed-FiS uses a scoring function for global feature ranking,
Fed-MOFS employs multi-objective optimization to prioritize features with higher relevance and
lower redundancy. Another recent contribution to horizontal federated feature selection is the Fed-
mRMR algorithm [4]. This method adapts the classic minimum redundancy maximum relevance
(mRMR) algorithm to federated learning settings. Fed-mRMR achieves lossless federated feature
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selection by extracting certain statistics from the dataset and applying the mRMR algorithm to rank
and select relevant features while preserving privacy.

To further enhance the performance of FFS in the Internet of Things scenarios, an unsupervised
FFS method named FSHFL [5] was introduced. FSHFL applies a feature relevance outlier detection
method combined with an improved one-class support vector machine to remove useless features.
Additionally, it proposes a feature relevance hierarchical clustering algorithm FRHC [5] for federated
overlapping feature selection.

Building upon the concept of FFS, a multi-participant federated evolutionary feature selection
algorithm [6] was proposed to address the situation where some participants have imbalanced data
or even miss some classes. This algorithm introduces a trusted third party and adopts a multi-level
joint sample-filling strategy to fill imbalanced or empty classes on each participant. It then realizes
federated evolutionary feature selection by periodically sharing the optimal feature subsets obtained
by participants based on particle swarm optimization. The application of FFS has also been explored
in autonomous driving scenarios [7]. In this work, an FFS algorithm was proposed in which vehicles
collaborate to filter out less relevant attributes without exchanging raw data. The algorithm consists
of two components: a mutual-information-based feature selection algorithm run by vehicles and a
novel aggregation function based on Bayes’ theorem executed at the edge.

Recently, a comprehensive FFS framework was proposed [8], which introduces a trusted third party
to process and integrate optimal feature subsets from multiple participants. Under this framework,
a federated evolutionary feature selection algorithm based on particle swarm optimization was
developed to effectively solve feature selection problems with multiple participants under privacy
protection. Two new operators satisfying the requirement of privacy protection were designed: the
feature assembling strategy with multi-participant cooperation and the swarm initialization strategy
guided by the assembling solution, to improve the performance of the algorithm.

B.2 Causal Feature Selection

In recent years, causal feature selection has garnered significant attention. Unlike traditional feature
selection methods, causal feature selection aims to discover causal relationships between features and
the target variable, i.e., primarily identify causal features by discovering the Markov Blanket (MB) of
the target variable, thereby improving the interpretability and robustness of models [9]. In theory, the
MB of the label variable is the optimal solution to the feature selection problem [10]. Causal feature
selection can be applied not only to static environments but also to dynamic environments, such as
time series data.

Existing causal feature selection algorithms can be categorized into two main classes: simultaneous
MB learning and non-simultaneous MB learning. Simultaneous MB learning algorithms employ
a forward-backward strategy to greedily search for parents and children (PC) and spouses (SP)
simultaneously without distinguishing the PC of the target variable from its SP. Representative
algorithms include IAMB [11], and its variants such as LRH [12], FBEDK[13], and EAMB[14].
These algorithms are time-efficient but require an exponential number of samples, leading to errors in
conditional independence tests when samples are insufficient.

To alleviate the data inefficiency problem, non-simultaneous MB learning methods have been pro-
posed, adopting a divide-and-conquer strategy to learn PC and SP separately. Representative algo-
rithms include MMMB [15], HITON-MB [10], CCMB [16], DCMB [17], and CFS-MI [18]. These
algorithms further improve the accuracy of MB discovery by considering true positive features dis-
carded during the MB search process. Recently, CVS [19], a novel causal feature selection algorithm,
has been introduced to address the problem of stable prediction across unknown test data. It utilizes
conditional independence tests to screen out non-causal features and reduce spurious correlations by
leveraging a seed variable, increasing the stability of prediction across unknown test data.

While causal feature selection has made significant strides, the majority of current algorithms fail
to address the issue of sample selection bias, which can introduce spurious correlations between
features and the target variable. As a solution to this problem, PCFS [20] has been developed to
estimate sample weights and mitigate the impact of spurious correlations. Furthermore, causal feature
selection has been applied to address the out-of-distribution (OOD) generalization problem. Recently,
Wang et al. proposed the CIFD framework that combines causal structure learning and causal effect
estimation to select a high-quality causal variable set and achieve better OOD generalization [21]. It
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Figure 1: An overview of the proposed FedCIFL method.

is worth noting that PCFS and CIFD differ from previous causal feature selection methods in that
they learn invariant causal feature subsets with stronger generalization ability by calculating causal
effect values.

Despite the significant progress made by existing causal feature selection algorithms in single-source
data scenarios, most of them have not considered the federated setting where data is distributed
across multiple data holders. In fact, due to the constraints of data privacy and ownership, causal
feature selection in FL scenarios remains an open and largely unexplored problem. Therefore, there
is an urgent need to design novel federated causal feature selection methods that can fully utilize the
decentralized data while protecting the privacy of each participating party, which is precisely the
research motivation behind this paper.

C Detailed Pseudo-code for FedCIFL

The pseudo-code of the FedCIFL algorithm is detailed in Algorithm 1, and FedCIFL comprises the
following four iterative steps:

• Step 1: Sample Weight Learning and Causal Effect Estimation (Lines 3-7).

• Step 2: Transmission of Potentially Irrelevant Features and Causal Effects (Lines 9-16).

• Step 3: Optimization of the Irrelevant Feature Set (Lines 18-20).

• Step 4: Latest Confounder Transmission and Local Data Updates (Lines 22-27).

Lcksae =
1

nk

∥∥∥Xck − X̂ck
∥∥∥2
2
+ λ1

l∑
t=1

2∑
a=1

(∥∥∥U(t)
a

∥∥∥2
2
+
∥∥∥b(t)

a

∥∥∥2
2

)
+ λ2ℓ(f(ξ(X

ck)),Yck). (22)
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Algorithm 1 Federated Causally Invariant Feature Learning (FedCIFL)
Require: {(Xck ,Yck)}mk=1: m private labeled datasets held by m clients; δ: threshold.
Ensure: Sci: the causally invariant feature subset.

1: repeat
2: {Step 1: Learning Sample Weights and Estimating Causal Effects}
3: for k = 1 to m do
4: Learn the low-dimensional representation ξ(Xck) and record Lcksae based on Equation (22)
5: Optimize the sample weight set W ck = [W ck

1 ,W ck
2 , . . . ,W ck

nk
]T based on Equation (23)

6: Estimate the causal effect vector βck = [βck1 , β
ck
2 , . . . , β

ck
d ] based on Equation (24)

7: end for
8: {Step 2: Sending Potential Irrelevant Features and Causal Effects}
9: for k = 1 to m do

10: Sckirr = ∅
11: for j = 1 to d do
12: if |βckj | < δ then
13: Sckirr = Sckirr ∪ {Xj}
14: end if
15: end for
16: end for
17: {Step 3: Determining the Optimal Irrelevant Feature Set}
18: ∆ = ˚Rank([Lc1sae,Lc2sae, . . . ,Lcmsae]), see Equation (25)
19: |S∗

irr| = argminMh∈{M1,M2,... } (
∑m
k=1 ∆(k) subject to |Sckirr| =Mh), see Equation (26)

20: S∗
irr =

˚Bottom|S∗
irr|(β

c1 ⊕ βc2 ⊕ · · · ⊕ βcm), see Equation (27)
21: {Step 4: Sending the Latest Confounders and Updating Local Data}
22: for j = 1 to d do
23: X \ {Xj} −→ X \ {S∗

irr ∪Xj} // Removing irrelevant features from the confounder set
24: end for
25: for k = 1 to m do
26: Xck = Xck \Xck

·,S∗
irr

// Updating each client’s local data
27: end for
28: until |S∗

irr| = 0
29: Let L be the number of iterations, and S∗

irr(ψ) be the irrelevant feature set of the ψ-th iteration
30: Sci = X \ {S∗

irr(1) ∪ S∗
irr(2) ∪ · · · ∪ S∗

irr(L)}
31: return Sci

Lcksw2 =

d∑
j=1

∥∥∥∥∥ξ(X
ck
·,−j)

T · (W ck ⊙Xck
·,j)

(W ck)T ·Xck
·,j

−
ξ(Xck

·,−j)
T · (W ck ⊙ (1−Xck

·,j))

(W ck)T · (1−Xck
·,j)

∥∥∥∥∥
2

2

+ λ3

(
nk∑
i=1

W ck
i − nk

)2

+ λ4

nk∑
i=1

(W ck
i − 1)

2
.

(23)

Lckwce = −
nk∑
i=1

W ck
i · (ycki · log 1

1 + exp(−xcki · βck)
+

(1− ycki ) · log(1− 1

1 + exp(−xcki · βck)
)) + λ5∥βck∥1,

(24)

∆ = ˚Rank ([Lc1sae,Lc2sae, . . . ,Lcmsae]) . (25)

|S∗
irr| = argminMh∈{M1,M2,... }

(
m∑
k=1

∆(k) subject to |Sckirr| =Mh

)
. (26)

S∗
irr = ˚Bottom|S∗

irr| (β
c1 ⊕ βc2 ⊕ · · · ⊕ βcm) . (27)
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D Privacy and Cost Analysis

D.1 Privacy Preservation Capability of FedCIFL

As illustrated in Figure 1, in Step 1 of FedCIFL, each client independently trains a low-dimensional
representation ξ(Xck) using a supervised autoencoder, learns sample weights W ck , and evaluates the
causal effect of each feature on the label using their local data. No raw data, whether feature data
Xck or label data Yck , needs to be transmitted from the clients. In Step 2, the FL clients only send
the minimum loss function values [Lc1sae,Lc2sae, . . . ,Lcmsae] obtained during the supervised autoencoder
training and the causal effect vector [βc1 , βc2 , . . . , βcm ] of each feature on the label to the server for
aggregation. This process ensures that the server does not have access to any raw data, preserving the
privacy of the client’s sensitive information.

Steps 3 and 4 of FedCIFL also do not involve the exchange of any raw data between the clients and
the server. In Step 3, the server determines the optimal irrelevant feature set based on the aggregated
information received from the clients, without requiring access to the original data. Step 4 involves
the server sending the latest confounder set to the clients and the clients updating their local data
accordingly, without exposing any raw data to the server. Moreover, FedCIFL does not require the
server to have knowledge of the sample size of each client, further enhancing privacy preservation.
The weighted voting strategy employed in Step 3 allows the server to determine the optimal irrelevant
feature set without needing to know the specific sample sizes of individual clients, reducing the risk
of inferring sensitive information about the clients’ data. By carefully controlling the information
exchanged between the clients and the server and avoiding the transmission of raw data, FedCIFL
provides a robust privacy-preserving solution for federated feature selection tasks.

To further mitigate the risk of inferring sensitive information about the client’s local data during
the federated learning process, FedCIFL can be combined with the following two techniques: (1)
Additive homomorphic encryption (Paillier’s scheme [22]) can be applied in the aggregation process
of Equation (26) and Equation (27) to prevent leakage of sensitive information. By encrypting
the individual values before aggregation, the server can perform the necessary computations on the
encrypted data without gaining access to the actual values. This ensures that the server cannot infer any
information about the client’s local data, even if it has access to the aggregated results. (2) To prevent
the leakage of semantic information about each feature during communication between FL clients
and the server, we incorporate a feature masking strategy inspired by [23] into FedCIFL. Instead of
directly sending feature names or semantic information, each client assigns unique identifiers to the
features based on a predefined ordering scheme. The server instructs the clients to sort the features
alphabetically and assign identifiers (e.g., “1", “2", “3", etc.) accordingly. In the case of ties, the
clients consider the subsequent letters until a unique ordering is achieved. The clients then send only
these assigned identifiers to the server for aggregation, effectively masking the semantic information
of the original features.

D.2 Communication Cost of FedCIFL

Communication efficiency is a crucial consideration in FL as it can significantly impact the perfor-
mance and practicality of FL systems. FedCIFL addresses this challenge by introducing a relatively
low communication overhead compared to other FL methods. As shown in Figure 1, only Steps 2
and 4 of FedCIFL require communication with the server. For Step 2, each client only needs to send
a one-dimensional vector βck = [βck1 , β

ck
2 , . . . , β

ck
d ] of length d to the server. In Step 4, the server

only needs to send an irrelevant feature set S∗
irr with a maximum size of d to each client. Therefore,

each iteration incurs a communication cost of O(dm+ dm).

Let L be the number of iterations in FedCIFL, and S∗
irr(ψ) be the irrelevant feature set generated

in Step 4 of the ψ-th iteration. Since
∑L
ψ=1 |S∗

irr(ψ)| < d always holds, Step 2 generates a total
communication cost of O(mdL) over L iterations, while Step 4 incurs a total communication cost of
O(m ∗ (|S∗

irr(1)|+ |S∗
irr(2)|+ · · ·+ |S∗

irr(L)|))=O(m ∗
∑L
ψ=1 |S∗

irr(ψ)|)=O(md). Consequently,
the overall communication cost of FedCIFL across L iterations is O(mdL+md).

Compared to other FL methods that require the exchange of high-dimensional model parameters
or gradients in each iteration, FedCIFL significantly reduces the communication overhead. By only
transmitting the causal effect vector βck and the irrelevant feature set S∗

irr, FedCIFL minimizes
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the amount of data that needs to be communicated between the clients and the server. This makes
FedCIFL particularly suitable for scenarios where communication bandwidth is limited or expensive.

It is also worth noting that the communication cost of FedCIFL is independent of the number of
samples on each client. This is because the clients and the server only exchange the causal effect
vector βck and the irrelevant feature set S∗

irr, whose dimensions are determined by the number of
features rather than the sample size. This property makes FedCIFL scalable to scenarios where each
client holds a large number of samples.

E Implementation Details

All experiments were conducted on a computer equipped with an Intel Core i9-10900 3.70-GHz CPU,
NVIDIA GeForce RTX 3060 GPU, and 64 GB memory. For all datasets, the values of λ1, λ2, λ3, λ4,
λ5, and ω are set to 0.0001, 10, 0.0001, 0.001, 0.01, and 6, respectively. The value of δ is set to 0.01
for the synthetic dataset and 0.001 for the Amazon Review dataset. The number of stacked layers
is consistently set to 2 across all datasets. The significance level for conditional independence tests
performed in EAMB-V3, EAMB-V5, CVS-V3, and CVS-V5 is set to 0.01.

EAMB-V3, EAMB-V5, CVS-V3, and CVS-V5 are implemented in MATLAB for selecting causal
features, while PCFS-V3, PCFS-V5, Fed-FiS, FPSO-FS, and our FedCIFL are implemented in
PYTHON. It is worth noting that for a fair evaluation of the selected features across all algorithms, we
consistently train logistic regression (LR) and multilayer perceptron (MLP) classifiers in a federated
setting using PYTHON code.

F Experimental Results Using a Logistic Regression (LR) Classifier

F.1 Experimental Results Using a LR Classifier on Synthetic Data

Based on the experimental results presented in Figure 2 and Figure 3, which depict the performance
of various methods using the logistic regression (LR) classifier on synthetic datasets, we can make
the following observations:

• In Figure 2, which represents the scenario where data is IID across clients but OOD for
the test set, FedCIFL consistently achieves the best performance in terms of accuracy
and F1 score across different numbers of clients and dataset dimensions (d = 40 and
d = 60). Moreover, FedCIFL exhibits a stable performance as the number of clients
increases, indicating its robustness to varying client numbers. In terms of RMSE, FedCIFL
is among the top-performing methods, with its performance being comparable to or slightly
better than the best-performing baselines.

• Existing federated feature selection methods, such as Fed-FiS and FPSO-FS, show subopti-
mal performance and higher fluctuations in the IID+OOD scenario. This can be attributed to
their focus on capturing correlations between features and labels, which may not be sufficient
to handle the distribution shift between the training and test sets. On the other hand, the
causal feature selection methods (EAMB-V3, EAMB-V5, CVS-V3, CVS-V5, PCFS-V3,
and PCFS-V5) demonstrate better performance than Fed-FiS and FPSO-FS, highlighting the
importance of capturing causal relationships. However, their performance is still inferior to
FedCIFL, possibly due to the lack of effective federated aggregation strategies, which may
lead to the loss of some causally invariant features or the inclusion of irrelevant features.

• Moving on to Figure 3, which represents the more challenging Non-IID+OOD scenario,
FedCIFL continues to outperform all baselines across different numbers of clients and
dataset dimensions. The performance gap between FedCIFL and the baselines is more
pronounced in this scenario compared to the IID+OOD setting. This observation suggests
that FedCIFL’s ability to capture causally invariant features is particularly beneficial in the
presence of both data heterogeneity across clients and distribution shift between the training
and test sets.

• The existing federated feature selection methods (Fed-FiS and FPSO-FS) and causal feature
selection methods (EAMB-V3, EAMB-V5, CVS-V3, CVS-V5, PCFS-V3, and PCFS-V5)
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exhibit larger performance fluctuations and a wider gap compared to FedCIFL in the Non-
IID+OOD scenario. This further highlights the limitations of these methods in handling the
combined challenges of data heterogeneity and distribution shift.

• It is worth noting that the performance of all other algorithms generally decreases to varying
degrees as the number of clients increases. This is because, in our experimental design, the
total number of samples remains fixed. As the number of clients increases, the sample size
allocated to each client decreases, leading to more severe sample selection bias and less
reliable results from statistical tests. However, FedCIFL consistently maintains its superiority
and exhibits a more stable performance across different client numbers, demonstrating its
robustness and effectiveness in learning causally invariant features.

In summary, the experimental results using the LR classifier on synthetic datasets demonstrate
the superiority of FedCIFL in both IID+OOD and Non-IID+OOD scenarios. FedCIFL’s ability
to capture causally invariant features enables it to achieve better performance and exhibit greater
stability compared to existing federated feature selection methods and causal feature selection
methods, particularly in the presence of data heterogeneity and distribution shift.

F.2 Experimental Results Using a LR Classifier on Real-World Data

The experimental results on the real-world Amazon Review dataset using the logistic regression (LR)
classifier, as presented in Table 1, provide further insights into the performance of FedCIFL and the
baselines in learning causally invariant features for cross-domain generalization.

Across all four cross-domain tasks (DEK→B, BEK→D, BDK→E, and BDE→K), FedCIFL consis-
tently achieves the highest accuracy metric, outperforming all other methods. This demonstrates the
effectiveness of FedCIFL in capturing the underlying causal relationships between features and labels,
which enables it to generalize well to different target domains. The superior performance of FedCIFL
can be attributed to its sample reweighting strategy and iterative refinement of the confounder set,
which help mitigate the impact of data heterogeneity and distribution shift.
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Figure 2: Experimental results on synthetic datasets where data is IID across clients but OOD for the
test set. A total of 6,000 samples are unevenly distributed among {3, 5, 8, 12, 20} clients. The figure
shows the performance of all methods in three metrics (Accuracy, RMSE, and F1 score from left to
right) under two different dataset dimensions, d = {40, 60}, from top to bottom.
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Figure 3: Experimental results on synthetic datasets where data is Non-IID across clients and OOD
for the test set. A total of 6,000 samples are unevenly distributed among {3, 5, 8, 12, 20} clients. The
figure shows the performance of all methods in three metrics (Accuracy, RMSE, and F1 score from
left to right) under two different dataset dimensions, d = {40, 60}, from top to bottom.

In terms of RMSE metric, FedCIFL exhibits the lowest values on most cross-domain tasks, indicating
its ability to make more accurate predictions compared to the baselines. The lower RMSE values of
FedCIFL suggest that it is better able to capture the true causal relationships between features and
labels, leading to more precise predictions in the target domains.

The performance of EAMB-V3 is generally better than that of the federated feature selection methods
(i.e., Fed-FiS and FPSO-FS). This highlights the importance of considering causal relationships in
feature selection, especially in the presence of domain shift. However, the EAMB-V3 method still
lags behind FedCIFL, possibly due to their lack of effective federated aggregation strategies and the
inability to fully mitigate the impact of data heterogeneity and distribution shift.

It is worth noting that the performance of all methods varies across different cross-domain tasks,
indicating the varying levels of difficulty in adapting to different target domains. For example, the
BDE→K task appears to be relatively easier, with most methods achieving higher accuracy and F1
scores compared to other tasks. On the other hand, the DEK→B task seems to be more challenging,

Table 1: Accuracy (%), RMSE, and F1 score (%) of the 4 cross-domain tasks on the Amazon Review
dataset based on the logistic regression (LR) classifier.

Metrics Tasks EAMB-V3 EAMB-V5 CVS-V3 CVS-V5 PCFS-V3 PCFS-V5 Fed-FiS FPSO-FS FedCIFL (Ours)

Accuracy (↑)

DEK→B 71.80±1.10 67.40±1.97 66.20±1.61 62.60±2.00 69.10±2.85 65.50±1.94 73.80±2.47 71.55±1.84 74.85±1.22
BEK→D 76.14±0.66 69.97±1.48 70.83±1.90 61.10±1.04 71.68±1.09 66.62±1.52 75.94±2.02 78.50±1.55 81.10±3.01
BDK→E 80.70±2.71 72.48±1.98 77.09±1.84 58.80±2.51 74.54±3.71 68.42±2.78 79.75±2.05 78.55±2.64 83.21±2.80
BDE→K 80.85±1.57 72.38±2.03 79.00±1.84 59.90±1.87 78.05±2.18 68.37±1.99 81.25±2.95 83.01±2.72 84.11±1.78

RMSE (↓)

DEK→B 0.427±0.00 0.458±0.01 0.466±0.01 0.482±0.00 0.446±0.02 0.462±0.01 0.436±0.01 0.454±0.01 0.435±0.01
BEK→D 0.405±0.00 0.442±0.01 0.443±0.01 0.485±0.01 0.435±0.01 0.461±0.01 0.419±0.02 0.391±0.01 0.377±0.02
BDK→E 0.369±0.02 0.425±0.01 0.393±0.02 0.489±0.00 0.417±0.02 0.457±0.01 0.374±0.01 0.379±0.02 0.347±0.02
BDE→K 0.365±0.01 0.426±0.00 0.382±0.01 0.476±0.00 0.389±0.01 0.453±0.01 0.362±0.03 0.349±0.02 0.335±0.01

F1 (↑)

DEK→B 73.39±1.22 69.49±1.24 64.67±1.50 56.86±3.27 69.52±2.75 61.63±2.84 70.96±2.79 68.12±2.76 72.00±2.15
BEK→D 75.95±0.54 70.19±1.25 69.74±2.78 53.85±3.27 69.98±1.04 64.17±1.96 76.85±1.94 78.61±1.59 81.05±2.81
BDK→E 80.74±2.90 73.30±2.46 76.49±1.95 48.85±3.45 73.63±4.26 64.60±3.68 78.42±2.44 78.08±2.80 82.56±3.05
BDE→K 81.57±1.68 73.74±1.92 80.44±1.21 62.07±1.82 78.47±1.64 67.58±1.55 80.50±3.44 83.62±2.26 84.71±1.50

11



with lower overall performance across all methods. Despite these variations, FedCIFL consistently
maintains its superiority, demonstrating its robustness and adaptability to different domain adaptation
scenarios.

In summary, the experimental results on the Amazon Review dataset using the LR classifier provide
further evidence of the superiority of FedCIFL in learning causally invariant features for improved
cross-domain generalization. FedCIFL’s ability to effectively capture causal relationships and
mitigate the impact of data heterogeneity and distribution shift enables it to outperform state-of-the-
art baselines on most cross-domain tasks. The results also highlight the importance of considering
causal relationships in the FFS problem and the challenges associated with adapting to different target
domains in real-world applications.

F.3 Experimental Results Using a LR Classifier for Ablation Study

Based on the ablation study results presented in Figure 4, which depicts the performance of FedCIFL
and its three variant algorithms using the logistic regression (LR) classifier, we can make the following
observations:

• Across different numbers of clients and data dimensions (d = 40 and d = 60), FedCIFL
consistently outperforms the three variant algorithms (“FedCIFL w/o iter", “FedCIFL w/o
SAE", and “FedCIFL w/o weighting") in terms of accuracy and F1 score. This finding
reinforces the effectiveness and necessity of each key module in our proposed FedCIFL
method for the FFS task, even when using a simpler classifier like LR.

• The performance gap between FedCIFL and “FedCIFL w/o iter" highlights the importance
of iteratively refining the confounder set. By optimizing the confounder set through mul-
tiple iterations, FedCIFL can better identify true confounders and mitigate the impact of
limited local data on the accuracy of federated causal effect estimation, leading to improved
performance.

• FedCIFL’s superiority over “FedCIFL w/o SAE" demonstrates the benefit of employing
a supervised autoencoder to learn a low-dimensional representation space. By capturing
nonlinear relationships among features and enhancing the robustness of the learned sam-
ple weights, the supervised autoencoder contributes to FedCIFL’s better performance in
balancing the sample distribution between the treatment and control groups.
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Figure 4: Results of ablation experiments using a logistic regression (LR) classifier. The figure shows
the performance of all methods in three metrics (Accuracy, RMSE, and F1 score from left to right)
under two different dataset dimensions, d = {40, 60}, from top to bottom.
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• The advantage of FedCIFL over “FedCIFL w/o weighting" emphasizes the significance of
the highly privacy-preserving weighted voting strategy. By effectively resolving conflicts
arising from the presence of multiple modes and accurately determining the optimal irrele-
vant feature set size without requiring knowledge of individual clients’ sample sizes, the
weighted voting strategy enables FedCIFL to achieve better performance.

• It is worth noting that as the number of clients varies, the performance of all other methods
exhibits significant fluctuations. In contrast, our FedCIFL maintains a consistently stable
performance across different client numbers, demonstrating its robustness and effectiveness
in learning causally invariant features, even when the local sample size on each client is
limited.

• Comparing the results of Figure 4 (using the LR classifier) with those of Figure 5 in the
main text (using the MLP classifier), we can observe that the performance of all methods
is generally lower when using the LR classifier. This suggests that the MLP classifier,
with its ability to capture more complex and nonlinear relationships, is better suited for the
Non-IID+OOD FFS setting. However, the relative performance of FedCIFL compared to the
variant algorithms remains consistent across both classifiers, highlighting the effectiveness
of each key module in our proposed method.

In summary, the ablation study results using the LR classifier, as presented in Figure 4, further
validate the effectiveness and necessity of each key module in our proposed FedCIFL method for the
FFS task. The iterative optimization of the confounder set, the use of a supervised autoencoder for
learning a low-dimensional representation space, and the highly privacy-preserving weighted voting
strategy all contribute to FedCIFL’s superior performance in capturing causally invariant features
and achieving improved generalization ability, even when using a simpler classifier like LR.

G Statistical Tests

In this section, we adopt the Friedman test and Nemenyi test [24] to verify whether FedCIFL is
significantly better than other methods on the real-world Amazon Review dataset.

We first perform the Friedman test [24] at the 0.05 significance level under the null hypothesis which
states that the performance of all algorithms is the same on all datasets (i.e., the average rankings
of all algorithms are equivalent). For real-world datasets, the average rankings of FedCIFL and the
baselines when using different metrics are summarized in Table 2. Table 2 shows that no matter
which classifier is used, the null hypothesis is rejected on these three metrics (i.e. Accuracy, RMSE
and F1 score). We also note that FedCIFL always performs better than the baselines on all metrics.
(In Table 2, the lower ranking value is better.)

To further analyze the significant difference between FedCIFL and the baselines, we perform the
Nemenyi test [24], which states that the performance levels of two algorithms are significantly
different if the corresponding average rankings differ by at least one critical difference (CD). The CD
for the Nemenyi test is calculated as follows (i.e., Eq. (28)).

CD = qα,θ

√
θ(θ + 1)

6η
, (28)

where α is the significance level, θ is the number of comparison algorithms, and η denotes the number
of datasets with different numbers of clients. In our experiments, θ = 9, qα=0.05,θ=9 = 3.102 at
significance level α = 0.05. When using the real-world Amazon Review dataset, η = 4 ∗ 2 = 8 (four
cross-domain tasks with two classifiers), and thus CD = 4.25.

Table 2: The average rankings of FedCIFL and the baselines on the real-world Amazon Review
dataset using Accuracy, RMSE and F1 score metrics.

Algorithm EAMB-V3 EAMB-V5 CVS-V3 CVS-V5 PCFS-V3 PCFS-V5 Fed-FiS FPSO-FS FedCIFL (Ours)

Avg rank
Accuracy 3 6.25 6.13 9 5.5 7.88 2.88 3.25 1.13

RMSE 2.25 5.38 7 8.5 5.38 6.88 4 4.13 1.5
F1 score 2.63 5.5 6.25 8.88 5.5 7.88 3.25 3.88 1.25
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Figure 5: Crucial difference diagram of the Nemenyi test for Accuracy metric on the real-world
Amazon Review dataset.
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Figure 6: Crucial difference diagram of the Nemenyi test for RMSE metric on the real-world Amazon
Review dataset.

Figs. 5-7 provide the CD diagrams on three different metrics, respectively. In each CD diagram,
the average ranking of each algorithm is marked along the axis (lower rankings to the right). When
using the Accuracy metric, we observe that FedCIFL significantly outperforms PCFS-V3, CVS-V3,
EAMB-V5, PCFS-V5 and CVS-V5, and FedCIFL achieves a comparable performance against Fed-
FiS, EAMB-V3 and FPSO-FS. When using the RMSE metric, we observe that FedCIFL achieves
a comparable performance against EAMB-V3, Fed-FiS, FPSO-FS, EAMB-V5 and PCFS-V3, and
FedCIFL significantly outperforms the other baselines. When using the F1 score metric, we observe
that FedCIFL achieves a comparable performance against EAMB-V3, Fed-FiS, FPSO-FS, and
FedCIFL significantly outperforms the other baselines. Additionally, on all metrics, FedCIFL is the
only algorithm that achieves the lowest ranking value.
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