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Abstract

As an emerging research direction, federated causal structure
learning (CSL) aims at learning causal relationships from de-
centralized data across multiple clients while preserving data
privacy. Existing federated CSL algorithms suffer from scal-
ability and accuracy issues, since they require computation-
ally expensive CSL algorithms to be executed at each client.
Furthermore, in real-world scenarios, the number of samples
held by each client varies significantly, and existing methods
still assign equal weights to the learned structural informa-
tion from each client, which severely harms the learning ac-
curacy of those methods. To address these two limitations, we
propose FedCSL, a scalable and accurate method for feder-
ated CSL. Specifically, FedCSL consists of two novel strate-
gies: (1) a federated local-to-global learning strategy that en-
ables FedCSL to scale to high-dimensional data for tackling
the scalability issue, and (2) a novel weighted aggregation
strategy that does not rely on any complex encryption tech-
niques while preserving data privacy for tackling the accuracy
issue. Extensive experiments on benchmark datasets, high-
dimensional synthetic datasets and a real-world dataset ver-
ify the efficacy of the proposed FedCSL method. The source
code is available at https://github.com/Xianjie-Guo/FedCSL.

Introduction
Causal structure learning (CSL) is a primary approach to un-
cover causal relationships among variables (Lampinen et al.
2022), and it has been widely applied in various fields in-
cluding social science (Hedström and Ylikoski 2010), artifi-
cial intelligence (Glymour, Scheines, and Spirtes 2014; Wu
et al. 2023a), and systems biology (Lagani et al. 2016).

Related Work During the last decades, many CSL meth-
ods have been proposed (Vowels, Camgoz, and Bow-
den 2022), which can be broadly categorized into two
classes: combinatorial optimization-based and continuous
optimization-based methods. Methods in the former, such
as PC (Spirtes et al. 2000), GES (Chickering 2002) and
A* (Yuan, Malone, and Wu 2011), heuristically evaluate
the goodness-of-fit between the structural combinations over
variables and the dataset used to learn the optimal causal
structure. In contrast, methods in the latter class, such as
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NOTEARS (Zheng et al. 2018) and DAG-GNN (Yu et al.
2019), utilize gradient descent to optimize a weight adja-
cency matrix to fit causal relationships among variables, pro-
viding a new research approach for causal structure learning.

In practice, the performance of a learning algorithm is
largely attributed to the number of available samples. To
improve the learning performance, users often try to collect
data from multiple decentralized sources and aggregate them
into a large-scale dataset. However, due to concerns about
data privacy, data owners are increasingly reluctant to share
their local data with others (Yang et al. 2019). To address
this issue, federated learning (FL) has emerged as a novel
learning paradigm that trains a model from locally stored
data while preserving privacy (McMahan et al. 2017).

Although there has been significant research in the field of
FL (Zhang et al. 2023; Yu et al. 2023), the problem of causal
structure learning in the FL setting has received limited at-
tentions so far. Some notable work in this area includes
NOTEARS-ADMM (Ng and Zhang 2022), FedDAG (Gao
et al. 2023) and FedPC (Huang et al. 2023a). Specifically,
NOTEARS-ADMM directly applies the distributed opti-
mization algorithm ADMM (Boyd et al. 2011) to optimize
the NOTEARS method. FedDAG adopts a two-level struc-
ture for each local model, where the first level learns causal
structure by communicating with the server, and the second
level approximates variable relationships on each local data
for handling data heterogeneity. FedPC proposes a layer-
wise aggregation strategy for seamless integration of the PC
algorithm into the federated learning paradigm, which has
achieved promising performance on multiple types of data.

Challenges Existing federated CSL algorithms, however,
face the following two main challenges.

Challenge 1: Scalability issue. Learning a global causal
structure from a single data source is a computationally ex-
pensive task and is proven to be an NP-hard problem (Chick-
ering, Heckerman, and Meek 2004). Often complex opti-
mization methods or sophisticated neural network models
are required for achieving satisfactory performance (Yu et al.
2019). Existing federated CSL algorithms primarily rely on
global learning strategies, leading to significant computa-
tional challenges for these algorithms to deal with high-
dimensional data across multiple clients (data sources).

Challenge 2: Accuracy issue. In real-world scenarios, the
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Figure 1: Results of even and uneven sample allocations on
the different numbers of clients.

data volume of each client is often different (called uneven
sample allocation). In such cases, the quality of the learned
structures varies across different clients and is typically pos-
itively correlated with sample size at clients. However, exist-
ing methods assign an equal weight to each client when ag-
gregating the structures learned from different clients, lead-
ing to unsatisfactory performance. To illustrate the issue, we
conduct experiments on two benchmark Bayesian network
(BN) datasets, Child and Insurance (Tsamardinos, Brown,
and Aliferis 2006), using a state-of-the-art federated CSL
algorithm FedPC (Huang et al. 2023a). By keeping the total
sample size unchanged, we allocate samples to each client
in even and uneven ways, respectively. The experimental re-
sults in Fig. 1 clearly indicate that by assigning an equal
weight to each client, the performance in the uneven sample
allocation setting is significantly worse than that in the even
sample allocation setting. To alleviate this issue, a feasible
strategy is to assign different weights to clients based on the
sample sizes held by them (Ma et al. 2022). However, the
sample size information of each client is often private and
not known to the server (Kairouz et al. 2021). For example,
in a FL system for financial institutions, preserving sample
size privacy ensures that the exact number of transactions
or customer accounts held by each institution remains confi-
dential. Thus, without using complex encryption techniques,
the task of designing a weighted aggregation strategy be-
comes a significant challenge when the sample sizes held by
different clients are unknown.

Contributions In this paper, we propose a novel federated
CSL method, called FedCSL, to tackle the two challenges
above and make the following main contributions.

• To address Challenge 1, we design a federated local-
to-global learning strategy (instead of global learning
strategy adopted by exiting methods), which consists of
three steps: federated causal neighbor learning, feder-
ated global skeleton construction, and federated skeleton
orientation. This strategy enables the FedCSL algorithm
to scale to high-dimensional data.

• To address Challenge 2, we design a novel strategy to cal-
culate the weights of different clients in scenarios with
uneven sample allocation. This strategy preserves data
privacy without relying on encryption techniques, and
can infer the relative sample sizes held by each client for
computing the weights of different clients. Based on this

strategy, at each step of the local-to-global learning pro-
cess, FedCSL performs weighted aggregation of learned
structures by clients using different weights.

• We conduct comprehensive experiments on benchmark
BN datasets, high-dimensional synthetic datasets, and
real dataset to evaluate the performance of FedCSL.

Notations and Assumptions
Let X = {X1, X2, ..., Xd} be a set of d variables under
consideration, C = {c1, c2, ..., cm} be a set of m different
clients, andDck ∈ Rnck

×d represent the local dataset owned
by client ck, and nck is the number of samples inDck , where
k ∈ {1, 2, ...,m}.

A causal structure over X is often represented using a
causal directed acyclic graph (DAG) (Huang et al. 2023b).
In a causal DAG, if there is a direct edge Xi → Xj (i, j ∈
{1, 2, ..., d}), Xi is a direct cause (parent) of Xj , and Xj

is a direct effect (child) of Xi (Wu et al. 2022). In this pa-
per, if there is Xi → Xj or Xj → Xi, we say Xi and Xj

are causal neighbors to each other. Moreover, when Xi and
Xj are causal neighbors, Xi ̸⊥⊥ Xj |Xz always holds, where
Xz ⊆ X \ {Xi, Xj} and we use ̸⊥⊥ (or ⊥⊥) to represent
the dependence (or independence) relation. In this paper, we
use the G2 test (Spirtes et al. 2000), which is an alternative
to the χ2 test, to conduct conditional independence (CI) tests
between variables. Assume that ρ is the p-value returned by
the G2 test and α is a given significance level. Under the null
hypothesis of “H0 : Xi ⊥⊥ Xj |Xz”, for a CI test of Xi and
Xj given Xz, Xi ⊥⊥ Xj |Xz holds if and only if ρ > α.

In this work, we consider a horizontal federated learning
setting, and different clients share the same feature space but
have different sample space. Furthermore, we assume that
all local datasets DC = {Dc1 ,Dc2 , ...,Dcm} are uniformly
sampled from the same causal DAG G.

Federated causal structure learning aims to identify a
causal DAG G from DC in a privacy-preserving way. Con-
sidering the practical application scenarios, throughout this
paper, nck1

̸= nck2
if k1 ̸= k2 for ∀k1, k2 ∈ {1, 2, ...,m}

(i.e., clients have different data sample sizes), and Dck1 (or
Dck2 ) can be high-dimensional. Given a local dataset Dck

held by client ck, based on the law of large numbers, the
results of CI tests conducted on Dck will approximate the
ground truth infinitely as the sample size in Dck approaches
towards infinity. Thus, we make the following assumption.

Assumption 1. Given any two local datasetsDck1 andDck2

for ∀k1, k2 ∈ {1, 2, ...,m}, if nck2
> nck1

, the reliability of
CI tests performed on Dck2 is higher than that of CI tests
performed on Dck1 .

Method
As shown in Fig. 2, the proposed FedCSL consists of three
steps: federated causal neighbor learning, federated global
skeleton construction and federated skeleton orientation.

Federated Causal Neighbor Learning
Step 1-1: Learning the Potential Causal Neighbors of
Each Variable Independently. At each client, we first
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Figure 2: The framework of FedCSL, which consists of three steps.

employ a well-established local causal structure learning al-
gorithm, HITON-PC (Aliferis et al. 2010), which utilizes CI
tests, to learn the potential causal neighbors of each variable.
That is, for client ck, in this step, we obtain the causal neigh-
bor sets of all variables, i.e. CN ck = {CN ck

i }i∈{1,2,...,d} =
{CN ck

1 , CN ck
2 , ..., CN ck

d }. Learning a set of causal neigh-
bors for each variable rather than a global structure over all
variables makes FedCSL scalable to high-dimensional data,
since the search space for global structure learning grows ex-
ponentially with d; whereas the search space of local struc-
ture learning grows exponentially with the number of causal
neighbors of the target variable but linearly with d.

For this step, any state-of-the-art local causal structure
learning algorithm (Wu et al. 2019, 2020, 2023b,c; Guo et al.
2022c,b; Yang et al. 2023; Yu et al. 2020) can be utilized.

Step 1-2: Calculating the Weights of Different Clients.
According to Assumption 1, we can infer that the larger the
sample size held by a client, the more reliable the results of
the CI tests performed at that client. Therefore, we need to
assign higher weights to the causal structures learned from
the clients with larger sample sizes. However, due to high
data privacy protection, clients often are unwilling to dis-
close the sizes of the samples they hold. In this case, to indi-
rectly infer the relative sample sizes of each client, we first
propose Theorems 1 and 2 to establish the relationship be-
tween p-values of the CI tests and sample sizes. The proofs
of Theorems 1 and 2 are given in Appendix A.

Theorem 1. Let ρ be the p-value obtained by conducting G2

test to determine whether two variables Xi and Xj are con-
ditionally independent given an empty set, using a dataset
Dck . If Xi ⊥⊥ Xj |∅ holds true in the underlying causal
structure behind Dck , ρ→ 1− when nck →∞.

Theorem 2. If Xi ̸⊥⊥ Xj |∅ holds true in the underlying
causal structure behind Dck , ρ→ 0+ when nck →∞.

Given a dataset Dck , for a CI test of Xi and Xj given an
empty set, Theorem 1 implies that if the null hypothesis of
“H0 : Xi ⊥⊥ Xj |∅” is accepted, i.e., α < ρ ≤ 1, then a
larger ρ could indicate a larger nck . In contrast, Theorem 2
states that if the null hypothesis of “H0 : Xi ⊥⊥ Xj |∅” is
rejected, i.e., 0 ≤ ρ ≤ α, then a larger ρ could indicate
a smaller nck . Thus, based on Theorems 1 and 2, we have

the following hypothesis. We have experimentally validated
Hypothesis 1 in the experimental section.

Hypothesis 1. Let ρ
ck1
ij and ρ

ck2
ij be the p-values obtained

by conducting G2 tests to determine whether Xi ⊥⊥ Xj |∅
holds, using two local datasets Dck1 and Dck2 , respec-
tively. If Xi ⊥⊥ Xj |∅ holds true on both Dck1 and Dck2

(i.e. ρ
ck1
ij , ρ

ck2
ij ∈ (α, 1]), nck2

≥ nck1
if ρ

ck2
ij ≥ ρ

ck1
ij ;

if Xi ̸⊥⊥ Xj |∅ holds true on both Dck1 and Dck2 (i.e.
ρ
ck1
ij , ρ

ck2
ij ∈ [0, α]), nck2

≤ nck1
if ρ

ck2
ij ≥ ρ

ck1
ij .

According to Hypothesis 1, without the use of complex
encryption techniques, we design a novel strategy to cal-
culate the weights of different clients without knowing the
actual sample sizes of each client, thus highly preserving
data privacy. In Step 1-1, we have obtained the p-values re-
turned by conducting CI tests between every pair of vari-
ables given an empty set. To facilitate the calculation of the
weight values of different clients, we need to uniformly scale
the p-values in [0, α] and (α, 1] to the interval [0, 1] us-
ing the following two rules. At client ck, for each p-value
ρckij (i, j ∈ {1, 2, ..., d} and i < j) obtained by conduct-
ing CI tests between Xi and Xj conditioning on an empty
set, if ρckij ∈ (α, 1], we proportionally scale up ρckij to the
[0, 1] interval, since the p-values in (α, 1] are directly pro-
portional to the sample size, as indicated by Hypothesis 1.
If ρckij ∈ [0, α], we first proportionally scale up ρckij to the
[0, 1] interval, and then apply a central symmetric flip to the
values within this interval. This is because, as indicated by
Hypothesis 1, p-values in [0, α] are inversely proportional to
the sample size. Here, we denote the transformed ρckij in the
two rules mentioned above as ρ̂ckij . Thus, we have:

ρ̂ckij =


α−ρ

ck
ij

α if ρckij ∈ [0, α]
ρ
ck
ij −α

1−α if ρckij ∈ (α, 1]
(1)

Finally, we calculate the average of all the values in
{ρ̂ckij }i,j∈{1,2,...,d},i<j , denoted as wck , and use it as the
weight for client ck. That is,

wck =
1

d(d−1)
2

d∑
i=1

d∑
j=i+1

ρ̂ckij . (2)
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By following this procedure, we can compute the weights for
all clients, wC = {wck}k∈{1,2,...,m} = {wc1 , wc2 , ..., wcm},
and the higher the weight of a client, the larger the size of the
samples the client has. Note that the total number of CI tests
performed on different clients may vary, but the total num-
ber of CI tests between any two variables under the empty
set condition is always the same (i.e., d(d − 1)/2 CI tests).
Therefore, to ensure fairness, we only utilize the p-values
returned from the CI tests given an empty set to estimate the
weights of different clients.

Step 1-3: Calculating the Optimal Number of Causal
Neighbors for Each Variable. In Step 1-1, the learned
causal neighbor set of each variable may vary across dif-
ferent clients, so it is necessary to first compute the opti-
mal number of causal neighbors for each variable. Specif-
ically, for Xi, we first send the client weights wC and
the causal neighbor sets of Xi obtained at all clients
{CN ck

i }k∈{1,2,...,m} to the server. Let |CN ck
i | represent the

number of causal neighbors for Xi learned at client ck. To
facilitate weighted aggregation, we utilize a mask matrix
Ψi ∈ Rm×maxm

k=1(|CN
ck
i |) to record the number of causal

neighbors for Xi obtained across m clients as follows.

Ψi(k, ξ)
k=1,2,...,m

ξ=1,2,...,maxm
k=1(|CN

ck
i |)

=

{
1 if ξ = |CN ck

i |
0 otherwise

, (3)

where maxmk=1(|CN ck
i |) denotes the maximum number of

causal neighbors for Xi learned across all clients, and ξ rep-
resents an indicator variable for the number of causal neigh-
bors (ξ ∈ {1, 2, ...,maxmk=1(|CN ck

i |)}). Eq. (3) denotes that
if the number of causal neighbors for Xi learned at client ck
is ξ, Ψi(k, ξ) = 1; otherwise, Ψi(k, ξ) = 0.

At the server side, for each ξ, we add up the weights of
the clients on which the number of causal neighbors for
Xi learned is equal to ξ (as shown in Fig. 2). Then we
choose the number of causal neighbors that corresponds to
the maximum sum of weights as the best estimate for the op-
timal number of causal neighbors for Xi, denoted as |CN∗

i |.
Eq. (4) below summarize the above described operation.

|CN∗
i | =

{
M̊ax([wc1 , wc2 , ..., wcm ]Ψi) if ∥ Ψi ∥1 ̸= 0
0 otherwise

,

(4)
where M̊ax(·) is utilized to select the index value corre-
sponding to the maximum value in a vector, and ∥ Ψi ∥1
denotes the calculation of the L1 norm of matrix Ψi to de-
termine if Ψi is a zero matrix. Finally, we obtain the optimal
number of federally learned causal neighbors of each vari-
able over all clients, i.e., {|CN∗

i |}i∈{1,2,...,d}.

Step 1-4: Determining the Optimal Causal Neighbors
of Each Variable. According to the optimal number of
causal neighbors for each variable obtained in Step 1-3, this
step aims to federally learn an optimal set of causal neigh-
bors for each variable across all clients. Specifically, for Xi,
its potential causal neighbor sets learned at all clients are
recorded in a mask matrix Bi ∈ Rm×d as follows.

Bi(k, j)
k=1,2,...,m;j=1,2,...,d

=

{
1 if Xj ∈ CN ck

i
0 otherwise

, (5)

where if Xj is a causal neighbor of Xi at client ck, then
Bi(k, j) = 1; otherwise, Bi(k, j) = 0.

After obtaining all potential causal neighbors of Xi in
Step 1-1, for each potential causal neighbor Xj of Xi, we
check if Xj is learned at client ck as a potential causal neigh-
bor of Xi. If it is, the score of Xj is increased by wck ; other-
wise, its score remains unchanged (as shown in Fig. 2). This
process is repeated for all clients to obtain the final score
of Xj (as a potential neighbor of Xi). Finally, the scores
of all potential causal neighbors of Xi are sorted, and the
top |CN∗

i | potential causal neighbors of Xi are selected as
the federally learned optimal set of causal neighbors for Xi

across all clients, denoted as CN∗
i . Therefore, we have:

CN∗
i = T̊ op|CN∗

i |([wc1 , wc2 , ..., wcm ]Bi), (6)

where T̊ op|CN∗
i | is used to obtain the variable index corre-

sponding to the top |CN∗
i | elements in a vector based on

their score order.

Federated Global Skeleton Construction
In this step, we utilize the learned optimal causal neighbor
sets for all variables in Step 1-4, i.e., {CN∗

i }i∈{1,2,...,d},
to construct a global skeleton. Given any two variables Xi

and Xj , if there is an edge connecting Xi and Xj in the
true causal structure, Xi and Xj must be each other’s causal
neighbors; otherwise, they are not causal neighbors of each
other. Thus, if Xi ∈ CN∗

j and Xj ∈ CN∗
i , we connect

Xi and Xj with an undirected edge; if Xi /∈ CN∗
j and

Xj /∈ CN∗
i , we consider that there is no edge between Xi

and Xj . However, as shown in Fig. 2, we may also encounter
the case that Xi ∈ CN∗

j but Xj /∈ CN∗
i (or Xi /∈ CN∗

j but
Xj ∈ CN∗

i ). In this case, we say that there is an asymmet-
ric edge between Xi and Xj , denoted as Xi ↮ Xj . How to
tackle these asymmetric edges in a federated setting?

To deal with this issue, we first utilize {CN∗
i }i∈{1,2,...,d}

obtained in Step 1-4 to construct an initial global skeleton
that may contain some asymmetric edges. Then we design a
weighted scoring strategy to determine whether each asym-
metric edge should be preserved as an undirected edge in
the initial global skeleton or removed from it. We assign a
score to each asymmetric edge as follows. For an asymmet-
ric edge Xi ↮ Xj , if the learned causal neighbor results
at client ck indicate that Xi is a causal neighbor of Xj and
Xj is also a causal neighbor of Xi, we let the score of this
edge be [(1 + 1) ∗ wck)]. If it is determined that Xi is not
a causal neighbor of Xj and Xj is also not a causal neigh-
bor of Xi, we set the score of this edge to [(−1− 1) ∗ wck ].
In all other cases, i.e., Xi ∈ CN ck

j but Xj /∈ CN ck
i (or

Xi /∈ CN ck
j but Xj ∈ CN ck

i ), we set the score of this edge
to [(−1 + 1) ∗ wck ] = 0. The score of the γ-th asymmetric
edge at client ck is denoted as AES(γ, k), and we have:

AES(γ, k) =


(1 + 1) ∗ wck

if Xi ∈ CN
ck
j ∧ Xj ∈ CN

ck
i

(−1 − 1) ∗ wck
if Xi /∈ CN

ck
j ∧ Xj /∈ CN

ck
i

(−1 + 1) ∗ wck
if Xi ∈ CN

ck
j ∧ Xj /∈ CN

ck
i

(1 − 1) ∗ wck
if Xi /∈ CN

ck
j ∧ Xj ∈ CN

ck
i .

(7)

Then the overall score of the γ-th asymmetric edge consid-
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ering all clients is

AES(γ, :) =
m∑

k=1

AES(γ, k). (8)

Finally, if the overall score of the γ-th asymmetric edge is
greater than 0, then it is retained in the initial global skeleton;
otherwise, it is removed from the initial global skeleton. We
denote the final global skeleton as S∗.

Federated Skeleton Orientation
As shown in Fig. 2, after having obtained the federally
learned global skeleton S∗, the next step aims to orient the
edges in S∗ by a weighted aggregation strategy.

Specifically, the server first sends S∗ to each client, then
we use a Bayesian score criteria, BDeu (Scutari 2016), and a
search procedure, hill-climbing (Gámez, Mateo, and Puerta
2011) to greedily orient the undirected edges in S∗ at each
client to obtain a global causal structure with the highest
score at each client. Let Gk denote the global causal struc-
ture learned at client ck and Ak denote the adjacency matrix
corresponding to Gk, and “Ak(i, j) = 1” denotes that there
is an edge from Xi to Xj in Gk.

Subsequently, we sends all adjacency matrices (i.e.,
A1,A2,...,Am) back to the server to compute the aggregated
adjacency matrix A∗ as follows.

A∗ = (A1 ∗ wc1)⊕ (A2 ∗ wc2)⊕ · · · ⊕ (Am ∗ wcm), (9)

where ⊕ represents the element-wise addition of matrices.
Finally, we compare the elements at corresponding posi-
tions on the diagonal of matrix A∗ for obtaining the final
causal structure (marked as G∗). Specifically, if A∗(i, j) >
A∗(j, i), then there exists a directed edge from Xi to Xj ;
if A∗(i, j) ≤ A∗(j, i) and A∗(j, i) ̸= 0, then there exists
a directed edge from Xj to Xi; otherwise, there is no edge
between Xi and Xj . To summarize, we have

G∗ ⇐

{
Xi → Xj if A∗(i, j) > A∗(j, i)
Xi ← Xj if A∗(i, j) ≤ A∗(j, i) ∧A∗(j, i) ̸= 0
Xi ⇎ Xj if A∗(i, j) = 0 ∧A∗(j, i) = 0,

(10)
where “Xi ⇎ Xj” denotes that there is no edge connected
between Xi and Xj .

Experiments
Experiment Setting
Datasets. We utilize the following three types of datasets.

• Benchmark BN datasets. We use five benchmark BN
datasets: Child with 20 variables, Insurance with 27 vari-
ables, Alarm with 37 variables, Pigs with 441 variables
and Gene with 801 variables, and each dataset contains
5,000 samples (Tsamardinos, Brown, and Aliferis 2006).

• High-dimensional synthetic datasets. We first construct
a causal DAG with 5,000 variables, where the maximum
number of parents for each variable is 3, and the average
degree of each variable is 2. Then, based on this causal

DAG, we use an open-source software package1 to gen-
erate three datasets, each containing 5,000 samples.

• Real-world datasets. We also compare the proposed
method with the baselines on the Sachs (Sachs et al.
2005) dataset. Sachs is a benchmark graphical model rep-
resenting protein signaling networks in human cells. It
consists of 11 nodes (cell types) and 17 edges. Our exper-
iments use 7,466 commonly used observational samples.

In our experiments, the local datasets at different clients
have different sizes. Let n =

∑m
k=1 nck be the sum of sam-

ple sizes owned by the m clients, the sample size of each
local dataset is set as follows.

nc1 = ⌊ n

2m
⌋, nck − nck−1 = ⌊2(n−mnc1)

m(m− 1)
⌋,

nck = nc1 + ⌊2(n−mnc1)

m(m− 1)
⌋(k − 1), k ∈ 2, 3, ...,m.

(11)

Evaluation metrics. We use the Structural Hamming Dis-
tance (SHD) and F1 score (Guo et al. 2022a) to evaluate the
discovered causal structures in a federated setting.

Baselines. We compare FedCSL with five state-of-the-
art federated CSL methods, including NOTEARS-ADMM,
NOTEARS-MLP-ADMM (Ng and Zhang 2022), GS-
FedDAG, AS-FedDAG (Gao et al. 2023) and FedPC (Huang
et al. 2023a), on the benchmark BN datasets and the real-
world dataset. In addition, as existing federated CSL meth-
ods do not scale up to high-dimensional data, we develop the
following four baselines using an efficient and effective CSL
method, ADL (Guo et al. 2023), and compare them with our
method on the high-dimensional synthetic datasets.
• ADL-AllData. We centralize all clients’ data to a single

dataset and run the ADL algorithm on it.
• ADL-Avg. We first run ADL at each client for obtaining
m causal structures, and then calculate the average value
of the metrics corresponding to m causal structures.

• ADL-Best. We first run ADL at each client independently
to get m causal structures, and then select the causal
structure with the highest F1 score as the final output.

• ADL-Voting. We apply a voting method (Na and Yang
2010) to the ADL algorithm.

Results on Benchmark BN Data
In this section, we report the experimental results of Fed-
CSL and the baselines on benchmark BN datasets in terms
of SHD, F1 score and Time (i.e., running time) metrics.

From Fig. 3, we can observe that regardless of the num-
ber of clients, FedCSL consistently achieves the lowest
SHD value and the best F1 score on all datasets, which
validates the superiority of our method. Especially, Fed-
CSL achieves significant performance improvement when
the number of clients reaches 12. This highlights the ef-
fectiveness of our designed weighted aggregation strategy
in addressing the challenge of uneven sample allocation in
the horizontal federated learning scenario, as the number of

1The code is available at https://www.cs.ubc.ca/ murphyk/Soft-
ware/DAGlearn/index.html.
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Figure 3: Structure learning results on the benchmark datasets. There are 5,000 samples in total, allocated unevenly across {2,
3, 5, 8, 12} clients. We show the performance of all methods in two metrics (SHD and F1 score from top to bottom). Note that
due to insufficient memory, GS-FedDAG and AS-FedDAG are unable to produce results on the Pigs and Gene datasets.

Method Time (↓)
Child Insurance Alarm Pigs Gene

NT-ADMM 31.9 42.2 57.4 8270.6 14149.4
NT-M-ADMM 57.2 80.6 121.5 12611.2 44131.0
GS-FedDAG 3274.6 4322.7 7956.8 OOM OOM
AS-FedDAG 3052.8 4674.5 7238.4 OOM OOM
FedPC 2.6 3.7 4.3 3198.5 1069.2
FedCSL (Ours) 0.7 0.9 1.2 322.6 220.9

“NT-ADMM” refers to NOTEARS-ADMM.
“NT-M-ADMM” refers to NOTEARS-MLP-ADMM.

OOM: OUT OF MEMORY.

Table 1: Running time (in seconds) of each algorithm on the
benchmark datasets when the number of clients is set to 12.

clients increases. Compared with the best baseline FedPC,
the F1 score of FedCSL is 20%˜42% higher on the Child BN
dataset. The SHD values achieved by our method are signif-
icantly smaller than those achieved by NOTEARS-ADMM,
NOTEARS-MLP-ADMM, GS-FedDAG and AS-FedDAG,
since it is hard for these four baselines to select a suitable
threshold to prune false directed edges, the causal structures
learned by these four baselines often contain a larger number
of false edges, leading to inaccurate causal structures.

Table 1 shows the execution time of all methods, and
we can see that FedCSL is significantly faster than all the
baselines. Especially, on large-scale datasets (e.g., Pigs and
Gene), our method is more than 10 times faster than all
baselines, indicating that the proposed local-to-global strat-
egy indeed enhances the efficiency of FedCSL. NOTEARS-
ADMM, NOTEARS-MLP-ADMM, GS-FedDAG and AS-
FedDAG incur significant computational costs on large-
scale BN datasets due to the adoption of complex neural
network models or sophisticated optimization methods.

Results on High-dimensional Synthetic Data
Since existing federated causal structure learning methods
do no scale up to high-dimensional datasets (e.g. with 5,000
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Figure 4: Structure learning results on high-dimensional
synthetic datasets with 5,000 variables.

variables), we develop the four new algorithms as baselines
to verify the effectiveness and efficiency of our method.
From Fig. 4, we can observe that FedCSL outperforms its
baselines significantly in terms of SHD and F1 score met-
rics, surpassing even ADL-AllData. Furthermore, as the
number of clients increases (with a reduced allocation of
samples per client), the performance of ADL-Avg, ADL-
Best and ADL-Voting deteriorates noticeably. However, our
method maintains its ideal performance. This is attributed
to two factors: on the one hand, during federated global
skeleton construction, our designed weighted scoring strat-
egy enhances the accuracy of causal neighbor learning by
correcting asymmetric edges. On the other hand, our pro-
posed weighted aggregation strategy helps mitigate the in-
terference caused by erroneous structure learning results at
clients with a lower allocation of samples.

The running times of FedCSL and the baselines on high-
dimensional datasets are shown Table 2. It is worth noting
that, except for ADL-AllData, ADL-Avg and ADL-Best are
also executed on a single dataset, since their execution pro-
cesses at each client are separated. Even so, we find that
FedCSL has a minimal difference in runtime compared to
ADL-AllData, ADL-Avg and ADL-Best. In comparison to
ADL-Voting, FedCSL exhibits a clear efficiency advantage,
and as the number of clients increases, the efficiency gap
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Method Time (↓)
2 clients 3 clients 5 clients 8 clients 12 clients

ADL-AllData 2141.8 2103.7 2122.1 2167.6 2120.5
ADL-Avg 2176.6 2544.1 3350.6 4888.9 7084.3
ADL-Best 2014.0 2080.7 2126.0 3105.5 4421.2
ADL-Voting 5088.8 9272.0 22373.9 42635.8 86896.9
FedCSL (Ours) 1925.0 2397.8 3368.9 4773.5 6662.8

Table 2: Running time (in seconds) on the synthetic datasets.

Method SHD (↓)
2 clients 3 clients 5 clients 8 clients 12 clients

NT-ADMM 32 32 34 32 29
NT-M-ADMM 21 25 23 32 27
GS-FedDAG 22 20 19 20 13
AS-FedDAG 23 20 19 19 12
FedPC 41 40 40 41 26
FedCSL (Ours) 12 18 22 15 17

“NT-ADMM” refers to NOTEARS-ADMM.
“NT-M-ADMM” refers to NOTEARS-MLP-ADMM.

Table 3: Results on the real Sachs dataset.

between FedCSL and ADL-Voting further widens.

Results on Real-World Data
The experimental results on the real dataset, Sachs (Sachs
et al. 2005), are presented in Table 3. From the table, it can
be observed that FedCSL achieves the lowest SHD value
when the number of clients is 2, 3, and 8. Although our
method does not outperform the baselines in terms of per-
formance when the number of clients is 5 and 12, the dif-
ference in achieved SHD values is minimal. Since the Sachs
dataset is relatively small in scale, the execution time of each
algorithm is negligible, and thus it is not reported in Table 3.

Ablation Study
To validate the effectiveness of the proposed weighted ag-
gregation strategy, we conduct ablation experiments in this
section. Specifically, we first develop a variant of Fed-
CSL, denoted as “FedCSL w/o weighting”, which maintains
equivalent weights for all clients (i.e., wck1

= wck2
holds

for ∀k1, k2 ∈ {1, 2, ...,m}) throughout the learning process.
Then FedCSL is compared with “FedCSL w/o weighting”
using five benchmark BN datasets. The results are presented
in Fig 5. We observe that FedCSL achieves higher F1 scores
and lower SHD values than “FedCSL w/o weighting” on all
benchmark BN datasets, demonstrating the effectiveness of
our designed weighted aggregation strategy in the horizontal
federated learning setting, especially when dealing with the
scenario of uneven sample sizes held by different clients.

Validation of Hypothesis 1
In this section, we validate Hypothesis 1 by conducting ex-
periments on the benchmark datasets. Specifically, we first
generate three datasets using Child BN, each containing 300,
400, and 500 samples, respectively. Then, we perform causal
neighbor learning on these datasets and record the p-values
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Figure 5: Results of ablation experiments. (“D1”, “D2”,
“D3”, “D4”, and “D5” represent Child, Insurance, Alarm,
Pigs, and Gene BN datasets, respectively.)
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Figure 6: Experimental Verification of Hypothesis 1.

returned by the CI tests when the condition set is empty. For
ease of observation, we randomly select 20 CI test results
with p-values indicating conditional independence and 20 CI
test results with p-values indicating conditional dependence
for each dataset. The results are presented in Fig. 6.

As shown in the left sub-figure of Fig. 6, when two
variables are conditional dependent (i.e., the p-values is in
[0, α]), the obtained p-values on datasets with smaller sam-
ple sizes are consistently higher than those on datasets with
larger sample sizes. Here, the red points are higher than
the green points, and the green points are higher than the
blue points. In contrast, as illustrated in the right sub-figure
of Fig. 6, when two variables are conditionally indepen-
dent (i.e., the p-values is in (α, 1]), the obtained p-values
on datasets with smaller sample sizes are consistently lower
than those on datasets with larger sample sizes. Here, the red
points are lower than the green points, and the green points
are lower than the blue points. Overall, the results presented
in Fig. 6 perfectly validate the correctness of Hypothesis 1.

Conclusion

In this paper, we propose a novel method FedCSL, which
overcomes the scalability and accuracy issues encountered
by existing federated CSL algorithms. Specifically, we de-
sign a federated local-to-global learning strategy that en-
ables FedCSL to scale to high-dimensional data. Based on
theoretical analysis, we devise a highly privacy-preserving
weighted aggregation strategy, which ensures that FedCSL
achieves high learning accuracy even in scenarios with un-
even sample allocations. Extensive experiments on various
types of data demonstrate the accuracy and scalability of our
method. In future, we plan to extend this work to more gen-
eralized scenarios, such as the scenarios with data hetero-
geneity and the presence of latent variables.
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