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A Proofs for Theorems 1 and 2
The conditional independence/dependence of two variables
are defined as follows.
Definition A.1 (Conditional Independence). Two variables
Xi and Xj for ∀i, j ∈ {1, 2, ..., d} are conditionally in-
dependent given a variable set Xz for ∀z ⊆ {1, 2, ..., d} if
P (Xi, Xj |Xz) = P (Xi|Xz)P (Xj |Xz); otherwise, they are
conditionally dependent given Xz.

In the following, Xi ⊥⊥ Xj |Xz and Xi ̸⊥⊥ Xj |Xz denote
that Xi and Xj are conditionally independent and dependent
given Xz, respectively.

A.1 Proof for Theorem 1
Proof. Given that the null hypothesis for a conditional in-
dependence (CI) test of Xi and Xj given an empty set is
“H0 : Xi ⊥⊥ Xj |∅”, the G2 statistic is defined as

G2(Xi, Xj |∅) = 2

ri∑
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i,j ln(
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i,j

Ea,b
i,j

), (1)

where Oa,b
i,j represents the observed number of samples sat-

isfying Xi = a and Xj = b, while Ea,b
i,j represents the ex-

pected number of samples satisfying Xi = a and Xj = b;
further, ri and rj are respectively the domain (number of
distinct values) of Xi and Xj . Due to the null hypothesis of
“H0 : Xi ⊥⊥ Xj |∅”, the G2 statistic can be reformulated as
follows (?).
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where Oa
i and Ob

j denote the number of samples satisfying
Xi = a and Xj = b, respectively.

According to the large sample theory and central limit the-
orem, the G2 statistic based on Eq. (2) is asymptotically dis-
tributed as χ2 with appropriate degrees of freedom (?), and
the number of degrees of freedom (df) used in the test is
calculated as

df = (ri − 1)(rj − 1). (3)
Therefore, when nck → ∞, we have:
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(4)

Assume that Xi ⊥⊥ Xj |∅ holds true in the underlying
causal structure behind Dck . Based on the law of large num-
bers, when nck → ∞, the sample distribution on Dck in-
finitely approaches the causal DAG used to generate Dck .
Thus, we have

P{ lim
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i,j − Ea,b
i,j = 0} = 1, (5)

or equivalently,
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2 = 0} = 1. (6)

We also have:

lim
nck

→∞
P (Xi = a)P (Xj = b) = t, (7)

where t is a constant greater than 0 but less than or equal to
1. Thus, we can obtain:

lim
nck

→∞
P (Xi = a)P (Xj = b)nck = +∞. (8)

Substitute Eq. (6) and Eq. (8) into Eq. (4), thus,
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Let U have the χ2 distribution with (ri− 1)(rj − 1) degrees
of freedom. Based on Eq. (9), then:

lim
nck

→∞
P (U > G2(Xi, Xj |∅)) = 1+, (10)

i.e., limnck
→∞ ρ = 1+.

In conclusion, Theorem 1 is true.

A.2 Proof for Theorem 2

Proof. Assume that Xi ̸⊥⊥ Xj |∅ holds true in the underly-
ing causal structure behind Dck . According the law of large
numbers, when nck → ∞, the sample distribution on Dck

infinitely approaches the true causal DAG used to gener-
ate Dck . Let A and B denote P (Xi = a,Xj = b) and
P (Xi = a)P (Xj = b), respectively. Thus, for ∀a, b, the
following equation holds.

P{ lim
nck

→∞
A−B ̸= 0} = 1, (11)

or equivalently,

P{ lim
nck

→∞
(A−B)2 ̸= 0} = 1. (12)

Further, we can obtain:

lim
nck

→∞
(A−B)2 ̸= 0. (13)



According to Eq. (4), due to the null hypothesis of “H0 :
Xi ⊥⊥ Xj |∅”, we have:
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Substitute Eq. (13) and Eq. (7) into Eq. (14), thus,
lim
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Let U have the χ2 distribution with (ri− 1)(rj − 1) degrees
of freedom. According to Eq. (15), we can obtain:

lim
nck

→∞
P (U > G2(Xi, Xj |∅)) = 0−, (16)

i.e., limnck
→∞ ρ = 0−.

In conclusion, Theorem 2 is true.

B Detailed Pseudo-code for FedCSL
The pseudo-code of the FedCSL algorithm is detailed in Al-
gorithm 1, and FedCSL consists of three steps: federated
causal neighbor learning (Lines 1-22), federated global
skeleton construction (Lines 23-36) and federated skeleton
orientation (Lines 37-50). Specifically, in Step 1, FedCSL
first employs a well-established HITON-PC (Aliferis et al.
2010) algorithm, which utilizes CI tests, to independently
learn the potential causal neighborhood sets for each vari-
able on every client. For client ck, at the end of this process,
we obtain the potential causal neighbor sets of all variables,
CN ck = {CN ck

i }i∈{1,2,...,d} = {CN ck
1 , CN ck

2 , ..., CN ck
d }

(Line 2). Concurrently, at Line 3, we record all the p-values
ρckij (i, j ∈ {1, 2, ..., d} and i < j) returned by conduct-
ing CI tests between every pair of variables under the empty
set condition and normalize them to be in the range [0, 1]
(Lines 4-8). Subsequently, using the normalized p-values
ρ̂ckij (i, j ∈ {1, 2, ..., d} and i < j), we calculate the weight
for each client (Lines 10-12), which serves as a basis for
the subsequent weighted aggregation strategy. However, it is
important to note that the potential causal neighbor learned
for each variable can differ across different clients. To ad-
dress this, at Lines 13-19, FedCSL employs a weighted ag-
gregation strategy to determine the optimal number of causal
neighbors for each variable, i.e., |CN∗

i | (i ∈ {1, 2, ..., d}).
To facilitate weighted aggregation, we utilize a mask matrix
Ψi ∈ Rm×maxm

k=1(|CN
ck
i |) to record the number of causal

neighbors for Xi obtained across m clients as follows.

Ψi(k, ξ)
k=1,2,...,m

ξ=1,2,...,maxm
k=1(|CN

ck
i |)

=

{
1 if ξ = |CN ck

i |
0 otherwise

, (17)

Algorithm 1: FedCSL

Require: DC = {Dc1 ,Dc2 , ...,Dcm}: m local datasets held by
m clients C = {c1, c2, ..., cm} (each dataset has the same vari-
able space X = (X1, X2, ..., Xd))

Ensure: G∗: the final causal structure
/* Step 1: federated causal neighbor learning */

1: for k = 1, 2, ...,m; i = 1, 2, ..., d do
2: CN

ck
i =HITON-PC(Dck , Xi) // use HITON-PC (Aliferis

et al. 2010) to learn the potential causal neighbor set of vari-
able Xi at client ck.

3: Record the p-value ρ
ck
ij (j ∈ {1, 2, ..., d} and i < j) re-

turned by conducting CI tests between Xi and Xj under the
empty set condition at client ck.

4: if ρckij ∈ [0, α] then

5: ρ̂
ck
ij =

α−ρ
ck
ij

α
// normalize the p-value ρ

ck
ij

6: else if ρckij ∈ (α, 1] then

7: ρ̂
ck
ij =

ρ
ck
ij −α

1−α
// normalize the p-value ρ

ck
ij

8: end if
9: end for

10: for k = 1, 2, ...,m do
11: wck = 2

d(d−1)

∑d
i=1

∑d
j=i+1 ρ̂

ck
ij // calculate the weight

value of client ck
12: end for
13: for i = 1, 2, ..., d do
14: if ∥ Ψi ∥1 ̸= 0 then
15: |CN∗

i | = M̊ax([wc1 , wc2 , ..., wcm ]Ψi) // calculating
the optimal number of causal neighbors for variable Xi

16: else
17: |CN∗

i | = 0
18: end if
19: end for
20: for i = 1, 2, ..., d do
21: CN∗

i = T̊ op|CN∗
i |([wc1 , wc2 , ..., wcm ]Bi) // determining

the optimal causal neighbors of variable Xi

22: end for
/* Step 2: federated global skeleton construction */

23: for i = 1, 2, ...,m; j = 1, 2, ..., (i− 1) do
24: if Xi ∈ CN∗

j and Xj ∈ CN∗
i then

25: There is an undirected edge connecting Xi and Xj .
26: else if Xi /∈ CN∗

j and Xj /∈ CN∗
i then

27: There is no edge connection between Xi and Xj .
28: else {There is an asymmetric edge between Xi and Xj .}
29: if

∑m
k=1 AES(γ, k) > 0 then

30: There is an undirected edge connecting Xi and Xj .
31: else
32: There is no edge connection between Xi and Xj .
33: end if
34: end if
35: end for
36: Obtain the final global skeleton S∗.

/* Step 3: federated skeleton orientation */
37: for k = 1, 2, ...,m do
38: Ak

greedy search and scoring←−−−−−−−−−−−−−−−−−
Dck

S∗

39: end for
40: A∗ = (A1 ∗ wc1)⊕ (A2 ∗ wc2)⊕ · · · ⊕ (Am ∗ wcm)
41: for i = 1, 2, ...,m; j = 1, 2, ..., (i− 1) do
42: if A∗(i, j) > A∗(j, i) then
43: G∗ ⇐ {Xi → Xj}
44: else if A∗(i, j) ≤ A∗(j, i) and A∗(j, i) ̸= 0 then
45: G∗ ⇐ {Xi ← Xj}
46: else {There is no edge connection between Xi and Xj .}
47: G∗ ⇐ {Xi ⇎ Xj}
48: end if
49: end for
50: return G∗



where maxmk=1(|CN ck
i |) denotes the maximum number of

causal neighbors for Xi learned across all clients, and ξ rep-
resents an indicator variable for the number of causal neigh-
bors (ξ ∈ {1, 2, ...,maxmk=1(|CN ck

i |)}). Eq. (17) denotes
that if the number of causal neighbors for Xi learned at
client ck is ξ, Ψi(k, ξ) = 1; otherwise, Ψi(k, ξ) = 0. Finally,
FedCSL utilizes the weighted aggregation strategy again to
determine the optimal causal neighbor set for each variable,
i.e., CN∗

i (i ∈ {1, 2, ..., d}) (Lines 20-22). Here, for Xi,
its potential causal neighbor sets learned at all clients are
recorded in a mask matrix Bi ∈ Rm×d as follows.

Bi(k, j)
k=1,2,...,m;j=1,2,...,d

=

{
1 if Xj ∈ CN ck

i
0 otherwise

, (18)

where if Xj is a causal neighbor of Xi at client ck, then
Bi(k, j) = 1; otherwise, Bi(k, j) = 0.

In Step 2, FedCSL utilizes the learned optimal
causal neighbor sets for all variables, i.e. CN∗ =
{CN∗

1 , CN∗
2 , ..., CN∗

d }, to construct a global skeleton.
Given any two variables Xi and Xj , if there is an edge con-
necting Xi and Xj in the true casual structure, then Xi and
Xj are necessarily each other’s causal neighbors; otherwise,
they are not causal neighbors of each other. Therefore, we
set that if Xi ∈ CN∗

j and Xj ∈ CN∗
i , we connect Xi and

Xj with an undirected edge (Lines 24-25); if Xi /∈ CN∗
j

and Xj /∈ CN∗
i , we consider that there is no edge between

Xi and Xj (Lines 26-27). However, we may also encounter
cases where Xi ∈ CN∗

j but Xj /∈ CN∗
i (or Xi /∈ CN∗

j and
Xj ∈ CN∗

i ). In this case (Line 28), there is an asymmet-
ric edge between Xi and Xj . To correct asymmetric edges,
at Lines 29-33, FedCSL design a weighted scoring strategy
to determine whether each asymmetric edge should be pre-
served as an undirected edge in the initial global skeleton
(Lines 29-30) or removed from it (Lines 31-32). Here, the
score of the γ-th asymmetric edge on the k-th client is de-
noted as AES(γ, k), and we have:

AES(γ, k) =


(1 + 1) ∗ wck

if Xi ∈ CN
ck
j ∧ Xj ∈ CN

ck
i

(−1 − 1) ∗ wck
if Xi /∈ CN

ck
j ∧ Xj /∈ CN

ck
i

(−1 + 1) ∗ wck
if Xi ∈ CN

ck
j ∧ Xj /∈ CN

ck
i

(1 − 1) ∗ wck
if Xi /∈ CN

ck
j ∧ Xj ∈ CN

ck
i .

(19)

Finally, FedCSL corrects all asymmetric edges in the initial
global skeleton and construct the final global skeleton S∗.

In Step 3, the cloud server first sends S∗ to each client,
and then FedCSL uses a Bayesian score criteria, BDeu (Scu-
tari 2016), and a search procedure, hill-climbing (Gámez,
Mateo, and Puerta 2011) to greedily orient the undirected
edges in S∗ at each client (Lines 37-39). Here, the BDeu
score for the causal structure Gk learned on dataset Dck is
defined as follows.
BDeu(Gk,Dck) = logP (Gk)

+

d∑
i=1

qi∑
l=1

[
log

Γ (H
′

qi
)

Γ (Hil +
H′

qi
)
+

ri∑
u=1

log
Γ (Hilu + H′

riqi
)

Γ ( H′

riqi
)

]
,

(20)
where Γ is the Gamma function, i is the index over the d
variables, l is the index over the qi combinations of val-
ues of the parents of variable Xi, and u is the index of

the ri possible values (states) of Xi; further, Hilu is the
number of instances in Dck where Xi has the u-th value,
and its parents have the l-th combination of values, and
Hil =

∑ri
u=1 Hilu; H ′ is the equivalent sample size (ESS,

also sometimes known as the imaginary sample size, ISS)
representing the confidence level in the prior parameters;
P (Gk) is the prior probability of a particular graph structure
which is generally assumed to be the same for all graphs
and so can be ignored. By alternately performing the search
procedure and the scoring criteria, FedCSL gets a global
causal structure with the highest scoring at each client. Let
Ak denote the adjacency matrix corresponding to the learned
causal structure Gk at client ck, and “Ak(i, j) = 1” de-
notes that there is an edge from Xi to Xj in Gk. Subse-
quently, at Line 40, FedCSL sends all adjacency matrices
(i.e., A1,A2,...,Am) back to the server to compute the aggre-
gated adjacency matrix A∗. Here, the symbol ⊕ represents
the element-wise addition of matrices. Finally, at Lines 41-
49, FedCSL compares the elements at corresponding posi-
tions on the diagonal of matrix A∗ for obtaining the final
causal structure (marked as G∗). Here, we set a condition
that if A∗(i, j) > A∗(j, i), then there exists a directed edge
from Xi to Xj (Lines 42-43); if A∗(i, j) ≤ A∗(j, i) and
A∗(j, i) ̸= 0, then there exists a directed edge from Xj to
Xi (Lines 44-45); otherwise, there is no edge connected be-
tween Xi and Xj (Lines 46-47).

Finally, we obtain the final causal structure G∗ (Line 50).

C Time Complexity of FedCSL
Step 2 of FedCSL, i.e., federated global skeleton construc-
tion, is to design a weighted scoring strategy to correct each
asymmetrical edge. During this computation, we can di-
rectly access the learning results of causal neighbor sets for
each variable on every client obtained in Step 1, as well as
the weight values for each client. Therefore, there is no need
for any additional significant time overhead, and the time
complexity of Step 2 can be considered negligible. Addi-
tionally, Step 3 of FedCSL performs the score-and-search
strategy on the given final global skeleton S∗ rather than
on an empty graph. It means that during the search process,
FedCSL does not need to perform adding edges and remov-
ing edges operations, but only needs to perform reversing
edges operation to achieve the highest score, that is, the en-
tire search space is very small.

Therefore, the time complexity of FedCSL mainly lies in
Step 1, and the computational cost of this step is measured
via the number of CI (conditional independence) tests. Let
| · | denote the size of a variable set and p denote the largest
size of the causal neighbor set of any variable in a dataset.
For Step 1-1 in FedCSL, on a single dataset (a local dataset
held by a client), the time complexity of the causal neighbor
learning process of any variable is O(2p|X|) = O(2pd) (Al-
iferis et al. 2010), and thus the time complexity of learn-
ing the causal neighbors for all d variables on all m local
datasets is O(2pd2m). In the subsequent Step 1-2, Step 1-3
and Step 1-4, the FedCSL algorithm does not conduct any
additional CI tests. Overall, the computational complexity
of FedCSL is O(2pd2m) CI tests.
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Figure 1: An example illustrating the encryption of semantic information for variables.

D Privacy and Costs Discussion
D.1 Privacy Issues of FedCSL
The proposed FedCSL algorithm only exchanges structural
information and weight parameter information throughout
the entire federated learning process, without leaking the
raw data stored at each client. Moreover, to prevent the infer-
ence of original local data from the learned structural infor-
mation and weight parameters, we apply the following two
techniques. (1) We apply additive homomorphic encryption
technique (Paillier’s scheme (Paillier 1999)) in the weighted
aggregation strategy of Step 1 and Step 3 to prevent poten-
tial leakage of the relative sample sizes held by each client
through their weight values. (2) To protect the semantic in-
formation of variables and avoid direct communication be-
tween clients, we apply an easily implementable privacy
protection strategy (Huang et al. 2023) to the FedCSL al-
gorithm. Specifically, the remote server instructs each client
to sort and assign unique identifiers (e.g., “1,” “2,” “3,” and
so on) to the semantic information of all variables, follow-
ing their alphabetical order. In case variables share the same
first letter, they are further sorted based on the second letter
of their semantic information, and this process continues.
Subsequently, each client sends only the assigned identifiers
to the remote server for aggregation, ensuring the protec-
tion of variable semantics. As shown in Fig. 1, we provide
an example demonstrating how the semantic information of
variables is encrypted.

D.2 Communication Cost
Communication is a critical bottleneck in federated
networks. Therefore, developing communication-efficient
methods during the training process in federated learning is
essential. Here, we argue that FedCSL introduces relatively
low communication pressure. In Step 1, each client needs the
server to transmit the learned causal neighbors for each vari-
able and the weight values specific to each client, requiring
a total of O(md|CN ck

i | +m) = O(md2 +m) = O(md2)
information cost. In Step 2, the entire federated global skele-
ton construction process is executed on the server, incur-

ring no additional communication expenses. In Step 3, first,
the final global skeleton needs to be sent from the server
to each client. Then, the adjacency matrices learned at each
client along with the weight values specific to each client
are sent back to the server for obtaining the final causal
structure through a weighted aggregation strategy, resulting
in a total information cost of O(m|S∗| + m|Ak| + m) =
O(md2 +md2 +m) = O(md2).

E Implementation Details
All experiments were conducted on a computer with In-
tel Core i9-10900 3.70-GHz CPU, NVIDIA GeForce RTX
3060 GPU and 64-GB memory. The significance level for
CI tests is set to 0.01. For the ADL1, NOTEARS-ADMM2,
NOTEARS-MLP-ADMM3, GS-FedDAG4, AS-FedDAG5

and FedPC6 algorithms, we used the source codes provided
by their authors. NOTEARS-ADMM and NOTEARS-MLP-
ADMM use 0.3 as the threshold to prune edges in a causal
structure, and GS-FedDAG and AS-FedDAG use 0.5 as the
threshold, those are the same as the original paper. FedPC,
ADL-AllData, ADL-Avg, ADL-Best, ADL-Voting and our
method are implemented in MATLAB, and NOTEARS-
ADMM, NOTEARS-MLP-ADMM, GS-FedDAG and AS-
FedDAG are implemented in PYTHON.

F Detailed Experimental Results
F.1 More Evaluation Metrics.
Let TP be the number of true positives (edges in both the
true structure and learned structure); FP the number of false
positives (edges in the learned structure but not in the true
causal structure; TN the number of true negatives (edges

1https://github.com/Xianjie-Guo/ADL.
2https://github.com/ignavierng/notears-admm.
3https://github.com/ignavierng/notears-admm.
4https://github.com/ErdunGAO/FedDAG.
5https://github.com/ErdunGAO/FedDAG.
6https://github.com/Xianjie-Guo/FedPC.



not in either the true or learned structure); and FN the num-
ber of false negatives (edges in the true structure but missing
from the learned structure). To further evaluate the perfor-
mance of FedCSL in comparison to its rivals, we employ
five new metrics, False Discovery Rate (FDR), True Posi-
tive Rate (TPR), Reverse, Miss and Extra, as follows.

• False Discovery Rate (FDR). FDR is the ratio of false
edges in the learned causal structure to the edges in the
learned causal structure. That is, FDR = FP

TP+FP .

• True Positive Rate (TPR). TPR is the ratio of correct
edges in the learned causal structure to total edges in the
true causal structure. That is, TPR = TP

TP+FN .

• Reverse. The number of edges with wrong directions ac-
cording to the true causal structure.

• Miss. The number of missing edges in the causal struc-
ture learned by the algorithm against the true causal
structure.

• Extra. The number of extra edges in the learned causal
structure.

In all figures, (↑) means the higher the better, and (↓) means
the lower the better.

F.2 Experiment Results on Benchmark Bayesian
Network Data

In this section, we report the experimental results of Fed-
CSL and its baselines on benchmark BN datasets in terms of
FDR, TPR, Reverse, Miss and Extra metrics.

From Fig. 2, we observe that in most cases, our method
achieves higher TPR (True Positive Rate) and lower FDR
(False Discovery Rate), Reverse, Miss, and Extra values
compared to the baseline algorithms, which validates the su-
periority of our method. As the number of clients increases,
all algorithms experience a certain degree of performance
degradation. However, our method demonstrates excellent
stability, particularly on the Pigs and Gene BN datasets. In
comparison to the best baseline FedPC, when the number
of clients is greater than 5, FedPC exhibits a significant de-
cline in performance, whereas our method remains remark-
ably stable.

F.3 Experiment Results on High-dimensional
Synthetic Data

Since existing federated CSL methods cannot be scaled to
such high-dimensional datasets (with 5,000 variables). Thus,
we develop the following four new algorithms (i.e., ADL-
AllData, ADL-Avg, ADL-Best and ADL-Voting) using an
efficient and effective CSL method, ADL (Guo et al. 2023),
and compare them with our method on the high-dimensional
synthetic datasets.

• ADL-AllData. We centralize all clients’ data to a single
dataset and run the ADL algorithm on it.

• ADL-Avg. We first run the ADL algorithm at each client
independently for obtaining m causal structures, and then
calculate the average value of the metrics corresponding
to all learned causal structures as the final result.

• ADL-Best. We first run ADL at each client independently
to get m causal structures, and then select the causal
structure with the highest F1 score as the final output.

• ADL-Voting. We apply a voting method (Na and Yang
2010) to the ADL algorithm.

In this section, we present the experimental results of Fed-
CSL and four new baselines on the high-dimensional syn-
thetic datasets in terms of FDR, TPR, Reverse, Miss and Ex-
tra metrics. As shown in Fig. 3, our method outperforms all
other baseline algorithms significantly in terms of TPR and
Reverse metrics. Regarding the FDR metric, our method is
only slightly worse than ADL-Voting when the number of
clients is 2. Additionally, for the Miss and Extra metrics,
our method performs slightly worse than ADL-AllData and
ADL-Voting, respectively.

These experimental results further demonstrate the sub-
stantial superiority of our method not only on the benchmark
Bayesian network datasets but also on the high-dimensional
synthetic datasets, highlighting the outstanding performance
of the FedCSL algorithm in causal structure learning tasks
under privacy-preserving scenarios.

F.4 Statistical Tests
In this section, we adopt the Friedman test and Nemenyi
test (Demšar 2006) to verify whether FedCSL is signifi-
cantly better than other methods.

We first perform the Friedman test at the 0.05 significance
level under the null-hypothesis which states that the perfor-
mance of all algorithms is the same on all datasets (i.e., the
average ranks of all algorithms are equivalent). The aver-
age ranks of FedCSL and the baselines when using differ-
ent metrics are summarized in Table 1. As GS-FedDAG and
AS-FedDAG do not yield any output on the Pigs and Gene
datasets, we only utilize experimental results from the Child,
Insurance, and Alarm datasets across different numbers of
clients for conducting statistical tests. From Table 1, we can
see that the null hypothesis is rejected on these two metrics
(i.e. SHD and F1 score). We also note that FedCSL performs
better than the baselines (the lower rank value is better).

Table 1: The average ranks of FedCSL and the baselines
using SHD and F1 metrics. (Since GS-FedDAG and AS-
FedDAG fail to produce any output on the Pigs and Gene
datasets, we only employ experimental results on the Child,
Insurance and Alarm datasets across various numbers of
clients to conduct statistical tests.)

Algorithm Avg rank
SHD F1

NOTEARS-ADMM 5.67 3.33
NOTEARS-MLP-ADMM 5.2 3.8

GS-FedDAG 3.77 5.47
AS-FedDAG 3.27 5.4

FedPC 2.1 2
FedCSL (Ours) 1 1

To further analyze the significant difference between Fed-
CSL and the baselines, we perform the Nemenyi test, which
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(a) FDR metric
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(b) TPR metric
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(c) Reverse metric
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(d) Miss metric

2 4 6 8 10 12
Number of clients

0

10

20

30

40

50

Ex
tra

 (
)

Child

2 4 6 8 10 12
Number of clients

0

10

20

30

40

50

60

70
Insurance

2 4 6 8 10 12
Number of clients

0

20

40

60

80

Alarm

2 4 6 8 10 12
Number of clients

0

50

100

150

200

Pigs

2 4 6 8 10 12
Number of clients

0

10

20

30

40

50

60
Gene

NOTEARS-ADMM NOTEARS-MLP-ADMM GS-FedDAG AS-FedDAG FedPC FedCSL (Ours)

(e) Extra metric

Figure 2: Structure learning results on the benchmark BN datasets. There are 5,000 samples in total, distributed unevenly across
{2, 3, 5, 8, 12} clients. We show the performance of all methods in five metrics (FDR, TPR, Reverse, Miss and Extra from top
to bottom). Note that due to insufficient memory, GS-FedDAG and AS-FedDAG are unable to produce results on the Pigs and
Gene networks.
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Figure 3: Structure learning results on the high-dimensional synthetic datasets with 5,000 variables. There are 5,000 samples in
total, distributed unevenly across {2, 3, 5, 8, 12} clients. We show the performance of all methods in five metrics (FDR, TPR,
Reverse, Miss and Extra from left to right).

states that the performance levels of two algorithms are sig-
nificantly different if the corresponding average ranks differ
by at least one critical difference (CD). The CD for the Ne-
menyi test is calculated as follows (i.e., Eq. (21)).

CD = qα,θ

√
θ(θ + 1)

6η
, (21)

where α is the significance level, θ is the number of com-
parison algorithms, and η denotes the number of datasets
with different numbers of clients. In our experiments, θ = 6,
qα=0.05,θ=6 = 2.85 at significance level α = 0.05. Whether
using SHD or F1 metrics, η = 3 ∗ 5 = 15 (three bench-
mark BN datasets across {2, 3, 5, 8, 12} clients), and thus
CD = 1.95.

CD=1.95
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Figure 4: Crucial difference diagram of the Nemenyi test for
SHD and F1 metrics on the benchmark BN datasets.

Figs. 4(a) and 4(b) provide the CD diagrams, where
the average rank of each algorithm is marked along the
axis (lower ranks to the right). Whether using SHD or
F1 metrics, we observe that FedCSL significantly outper-
forms NOTEARS-ADMM, NOTEARS-MLP-ADMM, GS-
FedDAG and AS-FedDAG, and FedCSL achieves a com-
parable performance against FedPC. Additionally, FedCSL
is the only algorithm that achieves the lowest rank value
whether using SHD or F1 metrics.
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