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FedECE: Federated Estimation of Causal Effect
Based on Causal Graphical Modelling
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Abstract— Causal effect estimation as a basic task in causal
inference has been widely studied in past decades. In recent
years, preserving data privacy has gained significant attention
due to increasing incidents of data abuse and data leakage,
however, most existing methods do not consider the problem of
protecting data privacy when calculating causal effects. Thus
in this paper, we propose a FedECE (Federated Estimation
of Causal Effect) framework for causal effect estimation in
a federated setting using causal graphical modelling, which
comprises two modules: a federated causal structure learning
(FedCSL) module and a federated causal effect (FedCE) module.
We first instantiate the FedECE framework with a basic FedECE
algorithm, called FedECE-B. FedECE-B presents a layer-wise
cooperative optimization strategy to learn a global skeleton by
the consideration of preserving data privacy. In addition, a dis-
tributed optimal consensus strategy for V-structure identification
is proposed to orient edges in the learned global skeleton. To
tackle the CPDAG problem in the learned causal structure,
FedECE-B presents a progressively integrated multiset strategy
for federated causal effect computation. To further improve the
computational efficiency and accuracy of FedECE-B, we also
propose the FedECE-L and FedECE-O algorithms. The extensive
experiments validate the effectiveness of the proposed methods.

Impact Statement—Calculating the causal effect of a treatment
variable on an outcome variable helps us understand how the
world works and how events are generated. However, with the
increasing number of data abuse and data leakage incidents in
recent years, accurately computing causal effects while protecting
users’ data privacy has become a significant challenge. Our
proposed method provides a new way to combine federated
learning with causal effect computation to solve this problem. By
using the FedCSL module, we can learn a global causal structure
in a federated setting, and then we employ the FedCE module
to perform federated causal effect computation based on this
structure. This approach allows us to estimate accurate causal
effects without compromising users’ data privacy. We validated
our algorithms on multiple datasets and achieved significant
improvements in both accuracy and stability compared to current
state-of-the-art methods. This approach is expected to play an
important role in causal inference in social sciences, biomedicine,
and more.

Index Terms—Causal effect estimation, Federated learning,
Causal structure learning, Privacy-preserving data.

I. INTRODUCTION

This work was supported by the National Science and Technology Major
Project of China (2021ZD0111801) and the National Natural Science Founda-
tion of China (under Grants 62376087 and 62176082). Corresponding author:
Kui Yu.

Yongsheng Zhao, Kui Yu, Guodu Xiang, and Xianjie Guo are
with the School of Computer Science and Information Engineer-
ing, Hefei University of Technology, Hefei 230601, China (e-mail:
yszhao@mail.hfut.edu.cn, yukui@hfut.edu.cn, xgd600600@mail.hfut.edu.cn,
and xianjieguo@mail.hfut.edu.cn).

Fuyuan Cao is with the School of Computer and Information Technology,
Shanxi University, Taiyuan 030006, China (e-mail: cfy@sxu.edu.cn).

CAUSAL effect estimation is the quantitative calculating
causal effect of a treatment variable on an outcome

variable, which has been widely applied to many fields, such
as medicine [1], economics [2], and government decision-
making [3]. For example, estimating the causal effect of
regulatory genes on a disease from genetic data can help
researchers to develop new drugs or make effective treatment
plans [4]. Calculating the causal effect of advertising place-
ment on product sales from sales data can support salesmen
to produce reasonable product marketing strategies [5].

The core challenge in causal effect estimation is how to
identify confounding variables. Randomized controlled trials
(RCTs) are the gold standard for causal inference since they
can effectively address the problem of confounding variables.
However, RCTs are often infeasible in most cases due to
ethical concerns, time constraints and other issues. Accord-
ingly, calculating causal effects from observational data has
become the mainstream research paradigm [6]. Data-driven
causal effect estimation models are mainly divided into two
categories: potential outcome models (POM) [7] and structural
causal models (SCM) [6]. Based on the two models, many
causal effect estimation methods have been proposed, such as
the doubly robust learning [8] and counterfactual regression
[9] methods based on POMs, as well as the IDA [4] and
IDP [10] algorithms based on SCMs.

In recent years, the issue of data privacy protection has
brought widespread attention due to an increasing number
of data abuse and data leakage incidents. For example, in
2021, a data leakage at Facebook results in the exposure
of personal details of over 500 million users. Due to data
privacy protection issues, datasets are often isolated in various
organizations or groups, making it hard to directly aggregate
or share those datasets. For example, for the consideration of
preserving patient privacy, it is not easy to collect patients’
electronic medical records from different hospitals for intelli-
gent medical data analysis. Federated learning [11] adopts
the learning paradigm of “data stays, computation moves”
to protect data privacy by sharing model parameters among
different clients/groups for joint computations on a server
without sharing or aggregating original data stored in different
clients/groups. For example, researchers in hospitals can use
the federated learning paradigm to co-train learning models for
disease diagnosis without touching patients’ medical records
stored in each hospital.

However, the majority of existing methods for causal effect
estimation usually require either aggregating data in different
platforms or sharing original datasets, and there are only a few
causal effect estimation methods taking data privacy protection
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into consideration currently based on the potential outcome
model, such as the work [12, 13]. Causal effect calculation
based on POMs requires knowing the potential treatment
variables of an outcome variable in advance, but it is a hard
issue on high-dimensional data and it is unable to identify
accurate confounding variables in high-dimensional datasets.
In the federated setting, the isolated datasets in various orga-
nizations/groups enhance the difficulty of the problems.

In contrast, SCMs provide accurate definitions of confound-
ing variables through directed acyclic graph (DAG), enabling
this type of causal effect calculation methods to accurately
identify confounding variables from high-dimensional dataset-
s, such as the well-established IDA algorithm, serving as the
basic algorithm for existing causal effect estimation methods
based on SCMs. However, IDA and its variations do not
take data privacy protection concerns into consideration. Thus
calculating causal effects based on causal graphical modelling
(SCMs) in a federated setting remains unexplored so far.
Thus in this paper, we propose FedECE (Federated Estimation
of Causal Effect), a novel federated causal effect estimation
framework based on causal graphical modelling, and the main
contributions are summarized below.
• We propose the FedECE framework for causal effect

estimation in a federated setting by integrating causal structure
learning and causal effect computation in a whole.
• We first instantiate the FedECE framework to a basic

method, FedECE-B. In the FedECE-B algorithm, we propose
a layer-wise cooperative optimization strategy for learning a
causal skeleton in a federated setting. To identify suitable
separation sets for orienting edges in the learned skeleton, we
design a distributed optimal consensus mechanism. To address
the multiset problem caused by CPDAG in a federated setting,
we design a progressively integrated multiset strategy.
• To improve the computational efficiency and accuracy

of FedECE-B, we propose the local FedECE (FedECE-L)
and optimal FedECE (FedECE-O) algorithms. FedECE-L op-
timizes computational efficiency, while FedECE-O improves
estimation accuracy.
• We conducted extensive experiments using synthetic,

benchmark, IHDP and real datasets to validate the effective-
ness of FedECE-B, FedECE-L and FedECE-O.

II. RELATED WORK

Over the past decade, a large number of data-driven causal
effect estimation methods have emerged, and most of this work
has been performed directly on accessible local data sources,
which can be broadly categorized into two types: the potential
outcome model proposed by Robin and the structural causal
model proposed by Pearl. Methods based on the potential
outcome model mainly aim at controlling confounders by
ensuring comparability or homogeneity between the treatment
variable and the outcome variable, such as covariate balanced
propensity score (CBPS) [14], inverse probability of treatment
effect weighting (IPTW) [15], and double machine learning
(DML) [16]. However, it is difficult for these methods to give
specific criteria for confounder identifications.

In contrast, methods based on the structural causal model
can graphically define confounders using backdoor criteria [6]

or generalized backdoor criteria [17]. For example, Pearl et
al. [6] argue that causal effects can be uniquely identified
and estimated from observational data if the DAG is known.
Additionally, Maathuis et al. [4] propose that causal effects can
be estimated from observational data using the IDA algorithm
in the absence of the DAG. Henckel et al. [18] and Witte et
al. [19] further improve the IDA algorithm by proposing an
optimal-IDA algorithm that minimizes the asymptotic variance
of the computed causal effects. However, these work was not
proposed for the federated setting.

Federated learning enables collaborative learning of a shared
prediction model while keeping all original data decentralized
at their local groups [11]. Recent work has also focused on
federated causal effect estimation, but those methods are based
on the potential outcome model. Xiong et al. [20] propose
a federated inverse probability weighted (IPW) estimation
method for calculating the average treatment effect (ATE) and
the average treatment effect on the treated (ATT) for the entire
study population. Vo et al. [12] propose a Bayesian approach
to model potential outcomes as random functions that follow
Gaussian processes distribution, which estimates the posterior
distributions of causal effects to understand the uncertainty of
causal estimands. Han et al. [21] propose to estimate causal
effects for target populations through adaptive and optimal
weighting of the source populations, considering the risk
of negative transfer when the source and target populations
are heterogeneous. Vo et al. [13] propose a causal inference
framework based on adaptive kernel methods for estimating
heterogeneous causal effects. Han et al. [22] use a multiply-
robust, privacy-preserving approach and transfer learning to
handle covariate shifts and mismatches in federated studies,
optimizing ensemble weights for efficient and robust causal
inference. Recently several algorithms have been proposed to
learn causal structures in a federated setting [23–30], but they
are not able to compute causal effects.

The work in this paper aims to establish a federated causal
effect estimation method based on causal graphical modelling
in a federated setting while considering data privacy.

III. NOTATION AND DEFINITIONS

In this section the relevant definitions are presented and the
notations used are summarized in Table I. Let Xi ⊥Xj | C
denote that two variables Xi and Xj are independent condi-
tioning on a variable set C and Xi 6⊥Xj | C denote that Xi and
Xj are dependent conditioning on C. C is called a conditioning
set and the size of a conditioning set is represented as `.
Definition 3.1 (Separation set [31]). If Xi ⊥ Xj |C holds,
C is called a separation set of Xi and Xj , denoted as
SepSet(Xi, Xj).
Definition 3.2 (V-structure [32]) An unshielded triple in a
local skeleton such as Xi −Xk −Xj , where Xi and Xj are
not directly connected, forms a V-structure, if Xi and Xj are
conditionally independent and Xk is not in SepSet(Xi, Xj).

For example, in Fig. 1(A), since W1 ⊥ W2 | X1 holds,
SepSet(W1,W2) = X1. In Fig. 1(B), since W1 ⊥ W2 | X1

holds, and W3 is not in the separation set {X1}, then W1 −
W3 −W2 forms a V-structure W1 →W3 ←W2.
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Fig. 1: Representations of a causal structure and its equiva-
lence class. (A) A global skeleton containing five variables,
(B) the PDAG of the skeleton in (A), (C) the CPDAG of
the skeleton in (A), (D) Three DAGs belonging to the same
equivalence class.

Definition 3.3 (Meek’s rules [33]). For a causal structure that
has recognized all V-structures (i.e., partially directed acyclic
graph (PDAG)), the following rules need to be satisfied when
orienting the remaining undirected edges in it:
• Rule 1. No new V-structures are generated. Whenever

there exists a directed edge Xi → Xk and Xi and Xj

are not connected, orient Xk −Xj as Xk → Xj ;
• Rule 2. Keep acyclicity. Whenever there exists a chain
Xi → Xk → Xj , if Xi and Xj have edges connected,
orient Xi −Xj as Xi → Xj ;

• Rule 3. Whenever there are two chains Xi −Xk → Xj

and Xi − Xl → Xj and Xk and Xl are not connected,
orient Xi −Xj as Xi → Xj .

For example, applying the Meek’s rules to the PDAG
in Fig. 1(B), since it satisfies Rule 1, orient W3 − X2 as
W3 → X2, and the CPDAG in Fig. 1(C) is obtained.
Definition 3.4 (DAG, PDAG and CPDAG [34]). A directed
graph contains only directed edges. A partially directed graph
may contain both directed and undirected edges. A directed
graph without directed cycles is a directed acyclic graph
(DAG). A partially directed acyclic graph (PDAG) is a partially
directed graph without directed cycles. If several DAGs have
the same skeleton and V-structure, they belong to the same
Markov equivalence class and are represented by a completely
partially directed acyclic graph (CPDAG). The CPDAG is
based on PDAG, which is formed by using the Meek’s rules
to orient all other-directed edges that can be oriented.

Fig. 1 illustrates the relationships between DAG, PDAG and
CPDAG with a simple example. The difference between a
PDAG and a CPDAG is that the CPDAG is formed by using
the Meek’s rules to orient all other-directed edges based on the
PDAG. Fig. 1(B) represents a PDAG containing only one V-

TABLE I: Summary of notations.

Notation Meaning

X = {X1, ..., XM} The set of random variables in a dataset
Xi, Xj A single variable in X (i, j = 1, 2, ...,M)
CN Number of clients

C Conditioning set
Z A valid adjustment set
` The size of a separation set
D A direct acyclic graph over X
G A completed partially directed acyclic

graph over X
GC A completely undirected graph over X
G` A skeleton obtained at the `-th layer
G∗ A final skeleton obtained in Fedske

Xi⊥Xj | C Xi and Xj are conditionally independent
given C

ne(G, Xi) The set of direct neighbors of Xi in G
pa(G, Xi) The set of parents of Xi in G

posspa(G, Xi) The set of possible parents of Xi in G
de(G, Xi) The set of descendants of Xi in G

possde(G, Xi) The set of possible descendants of Xi in G
cn(G, Xi, Xj) The set of variables excluding Xi on the

correct causal path from Xi to Xj in G
posscn(G, Xi, Xj) The set of possible variables excluding Xi on

the correct causal path from Xi to Xj in G
SepSet(Xi, Xj) A separation set of Xi from Xj
〈Xi, Xk, Xj〉 An unshielded triple Xi −Xk −Xj

in the skeleton
α The significance level of the statistical test

structure: W1 →W3 ←W2. Following Rule 1 of the Meek’s
rules, we infer a new directed edge: W3 → X2, constructing
a CPDAG, as shown in Fig. 1(C). In Fig. 1(D), three DAGs
have the same independence relation: W1⊥W2 | X1, i.e., they
belong to the same Markov equivalence class in Fig. 1(C).
Definition 3.5 (Forbidden set [18]). Given a CPDAG G,
a pair of variables (Xi, Xj) in G, the forbidden set with
respect to (Xi, Xj) and G is defined as forb(G, Xi, Xj)
= possde(G, posscn(G, Xi, Xj)) ∪ Xi. Where possde(G,X )
denotes the set of possible descendants of each variable of X
in G, posscn(G, Xi, Xj) denotes the set of possible variables
excluding Xi on the correct causal path from Xi to Xj in G.

In the example in Fig. 1(D)[(1)], since posscn(G, X1, X2) =
{W1, W2, W3, X2}, so forb(G, X1, X2) = possde(G, posscn
(G, X1, X2)) is {X1, W3, X2}.
Definition 3.6 (Valid adjustment set [17]). Given a CPDAG G
with a pair of variables (Xi, Xj) in G and a set of variables
Z in G. Then Z is a valid adjustment set relative to (Xi, Xj)
in G if and only if the following three conditions hold: (i)
every proper possibly causal path from Xi to Xj starts with
a directed edge out of Xi, (ii) Z ∩ forb(G, Xi, Xj) = ∅, (iii)
all non-causal paths from Xi to Xj are blocked by Z.

Taking Fig. 1(D)[(1)] as an example, since forb(D, X1,
X2) = {X1, W3, X2} and the two paths from X1 to X2

are causal paths, thus the valid adjustment set can be ∅. For
Fig. 1(D)[(2)], forb(D,X1,X2) = {X1,W3,X2}, and since W1

blocks the non-causal path from X1 to X2 (X1 ← W1 →
W3 → X2), the valid adjustment set is {W1}. Similarly the
valid adjustment set for Fig. 1(D)[(3)] is {W2}.
Definition 3.7 (Casual effect [17]). The causal effect of
variable Xi on variable Xj is a function of the probability
distribution space from Xi to Xj , denoted as f(Xj = xj |
do(Xi = xi)), abbreviated as f(xj | do(xi)). According
to the backdoor criterion [6] and the generalized backdoor
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Fig. 2: The workflow of the FedECE framework.

criterion [17], f(xj | do(xi)) can be expressed as follows:

f(xj | do(xi)) =

{
f(xj | xi) if Z = ∅∫
z
f(xj | xi, z)f(z)dz otherwise

(1)

Assuming X is generated by a linear structural equation
model (SEM) [6] with additive noise by (G, e), covariate
adjustment allows researchers to estimate the causal effect by
performing a multiple linear regression. In this setting, if Z
is an valid adjustment set relative to some variables in G for
Xi and Xj , the causal effect of Xi on Xj , denoted as θij , is
given by f(Xj | xi, z) = γ0 + γixi + γTz z (for some values
γ0, γi ∈ R and γz ∈ R|z|, where |z| is the cardinality of the
set z.). Here, γi represents the coefficient of Xi in the linear
regression of Xj on Xi and Z, and it is expressed as follows:

θij =

{
0 if Xj ∈ Z
γi otherwise

(2)

IV. OUR APPROACH

In this section, we introduce the FedECE framework for
causal effect estimation in a federated setting. This section
is organized as follows: First, we present a new framework
named as FedECE in Section IV-A. Next, in Section IV-B,
we instantiate the framework with the FedECE-B algorithm.
To address the computation and accuracy issues of FedECE-B,
we further propose the FedECE-L and FedECE-O algorithms
in Sections IV-C and IV-D, respectively.

In the federated learning paradigm, a group or an organiza-
tion that generates datasets is often called a client, assuming
that there are CN clients (labeled as Client 1, Client 2,...,
Client CN ) in the setup for this paper. A platform that
aggregates model parameters sent by the clients is denoted
as the server.

A. The FedECE framework

As shown in Fig. 2, our proposed FedECE framework con-
sists of two main modules: a federated causal structure learn-
ing (FedCSL) module and a federated causal effect(FedCE)
module.

Federated Causal Structure Learning. The FedCSL mod-
ule learns a global causal structure in a federated setting. To
achieve this without sharing the original datasets from each
client, inspired by constraint-based causal structure algorithms,
the module itself is divided into two submodules: a federated
global skeleton (FedSke) learning submodule with the con-
sideration of data privacy and a federated orientation (FedOri)

submodule for orienting the edges in G∗ learned in the FedSke
submodule.

Federated Causal Effects Computation. Due to the struc-
ture learned by the constraint-based causal structure learning
algorithm is usually a CPDAG with undirected edges, the
existing causal effect estimation methods based on CPDAG
often return a multiset of causal effect values. That is to
say, a treatment variable may have multiple causal effects
on the outcome variable. The FedCE module implements the
calculation of multiset of federated causal effects of pairs
of variables in a federated setting while protecting the data
privacy of each client.

We instantiate the FedECE framework with three algorithm-
s, FedECE-B, FedECE-L, and FedECE-O, as described in
Section IV-B, Section IV-C, and Section IV-D respectively.
These algorithms utilize the same federated causal structure
learning method, with the key distinction lying in the federated
causal effect computation component with three different
estimators.

B. The FedECE-B algorithm

In this section, we propose a basic instantiation of the
FedECE framework, called the FedECE-B algorithm (the
pseudocode detail of the algorithm is given in the Supple-
mentary Material). The details of the FedECE-B algorithm
are discussed as follows.

1) The FedSke submodule: Given that current constraint-
based structure learning algorithms are mostly designed for a
single dataset, a simple strategy to apply this type of algorithm-
s to federated learning is to learn a causal structure at each
client and subsequently aggregate the learned structures at the
server. However, this approach poses a potential challenge1:
the varying qualities of data, such as small-sized samples,
among different clients may result in learned structures with
significantly different qualities. Directly aggregating these
structures may not yield a satisfactory result.

Motivated by the layer-wise idea of constraint-based causal
structure learning algorithms, we propose a federated global
skeleton learning (FedSke) submodule with the consideration
of data privacy. In the FedSke submodule, we design a layer-
wise cooperative optimization (LCO) strategy which enables
each client to share and update its skeleton parameters learned
at each layer of the FedSke submodule at the server without
sharing their original data. The LCO strategy learns the
federated global skeleton process as shown in Fig. 3 and the
basic steps of the strategy are as follows.

Step 1 (Skeleton initialization). When ` = 0 (conditioning
set size is 0), the initial skeleton on each client is a completely
undirected graph GC .

Step 2 (Layer-wise iterative skeleton updates). At the `-th
layer (i.e., conditioning set of size `), each client uses its local
dataset to update the existence of edges between variables in
G(`−1) (G(`−1) denotes the skeleton obtained at the (` − 1)-
th layer; when ` = 0, G(`−1) = GC) by conducting the CI

1We simulate varying data quality across different clients in our experimen-
tal environment through setting different clients with different sample sizes.
In addition, we assume that the sample size information on each client is
private and cannot be accessed.
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test independently. Specifically, given the value of `, the set
of neighbors of each variable under the current graph G(`−1)
is first obtained, and then for Xi and its each neighbor Xj ,
if there exists a subset C ⊆ ne(G(`−1), Xi) \ {Xj} (or C ⊆
ne(GC , Xi) \ {Xj} if ` = 0) with |C| = `, Xi⊥Xj | C holds
(i.e., Xi and Xj are conditionally independent given C), Xj

is removed from the neighbor set of Xi. After all variables
have been tested, G(`−1) is updated with the new neighbor
sets of those variables. The updated skeleton on Client cn
is represented as G`cn (cn ∈ {1, 2, ..., CN}), and G`cn is a
adjacency matrix of size M ×M . G`cn(i, j) = 0 means that
there is no edge between Xi and Xj ; otherwise, there is an
edge. This is shown in Eq. (3):

G`cn(i, j) =

{
0 if Xi⊥Xj | C holds
1 otherwise

(3)

Then all clients send the skeletons G`1,G`2, ...,G`CN learned at
the `-th layer to the server simultaneously.

Step 3 (Cooperative optimization of the skeleton). The
server aggregates all skeletons sent by the clients, and based
on Eq. (4), we can obtain the total score matrix T ` of M×M
skeleton at the `-th layer, which reflects the consensus degree
among the clients regarding the connectivity of the variables
in the skeleton.

T `(i, j) =

CN∑
cn=1

G`cn(i, j) (4)

In Eq. (4), T `(i, j) is an element in the total score matrix
T `, which represents the total number of clients that consider
the existence of an undirected edge between Xi and Xj . For
example, if there are 10 clients, T `(i, j) = 5 indicates that 5
clients believe there is an undirected edge between Xi and
Xj .

Next, based on the total score matrix T `, the final skeleton
G` for the `-th layer is constructed, which is also an M ×M
adjacency matrix. In Eq. (5), when the number of clients that
believe that there is an edge between Xi and Xj is less than the
given threshold β, there is no edge between Xi and Xj in the
consensus skeleton G`, i.e., G`(i, j) = 0; otherwise, G`(i, j) =
1 indicates the presence of an edge in the consensus skeleton.

G`(i, j) =

{
0 if T `(i, j) < β

1 otherwise
(5)

Step 4 (Obtain the federated global skeleton). Set ` to
`+ 1 and send the aggregated skeleton G` back to the clients
as the initial skeleton of the (` + 1)-th layer. Steps 2 and 3
are repeated for a new iteration, continuing until the value of
` is bigger than the maximum number of direct neighbors that
a variable has in the `-th skeletons learned by all clients. We
record the final skeleton as G∗.

In Fig. 3, we show a simple example of federated skeleton
learning using the LCO strategy in the FedSke submodule.
Consider a scenario with 30 clients. Initially, a completely
undirected graph GC with five variables is constructed at the
central server. Subsequently, the server sends GC to each
client, where clients perform global updates to the skeleton
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Fig. 3: An example of the LCO strategy.

using their local datasets. At ` = 0, Client 1 takes W1 as the
target variable, and its neighbors are W2, W3, W4 and W5.
Assuming the CI test results show that W1 is conditionally
independent of W4 and W5 respectively under the empty set
condition, but the edges between W1 and W4, W1 and W5

are not deleted immediately until all conditional independence
tests are completed. In this round, 4 independent relationships
are found: W1⊥W4 | ∅, W4⊥W1 | ∅, W1⊥W5 | ∅ and W5

⊥W1 | ∅. Thus, at Client 1, the edge W1 and W4 and the
edge W1 and W5 are considered independent under the empty
set condition and are removed. This produces an adjacency
matrix G01 of size 5×5. Each client similarly updates the global
skeleton, obtaining G01 , G02 , ... , G030. These 30 skeletons learned
at the 0-th layer are sent to the server, which aggregates the
adjacency matrices to form a score matrix T 0 of size 5×5. For
example, T 0(2, 4) = T 0(4, 2) = 12 indicates that 12 clients
consider W2 and W4 not independent. If the threshold β is
set to 9, and since 12 > 9, it is concluded that W2 and
W4 have an edge in the consensus skeleton G0. Similarly,
for T 0(1, 4) = T 0(4, 1) = 5, as 5 < 9, it is concluded that
W1 and W4 do not have an edge in G0. Set G0 as the initial
skeleton at the 1-th layer and send it to each client for the next
round of updating. This process continues until ` = 3 (i.e., the
maximum number of direct neighbors in the learned 3-th layer
skeletons across all clients is 3). At this point the value of `
is not smaller than the maximum number of direct neighbors
in the `-th layer skeleton, the entire skeleton learning phase is
terminated, yielding the global skeleton G∗.

2) The FedOri submodule: For any unshielded triple
〈Xi, Xk, Xj〉 in the G∗, the triple can be identified as a V-
structure Xi → Xk ← Xj if there exists a conditioning set
(separation set) C in G∗ such that Xi⊥Xj | C and Xk /∈ C
holds, to complete the orientation of the triple 〈Xi, Xk, Xj〉
in G∗. Therefore, accurate separation set identification is key
to identify V-structures. But there are two inconsistencies in
learning separation set in the federated setting:

First, the problem of within-layer inconsistency. At the same
`-th layer, different clients may have different separation sets
for the unshielded triple 〈Xi, Xk, Xj〉, due to the potential data
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quality problem of clients. For example, the separation sets
learned at the `-th layer for the unshielded triple 〈Xi, Xk, Xj〉
on different clients are C`1,C

`
2, ...,C

`
CN (C`CN denotes the

separation set learned at the `-th layer on client CN ), which
exhibit the inconsistency problem.

Second, the problem of between-layer inconsistency. Since
G∗ learned by the LCO strategy is an aggregated skeleton, the
separation set for unshielded triple 〈Xi, Xk, Xj〉 in G∗ may
be different from those obtained at the clients in the FedSke
phase. Specifically, assuming that the skeleton updating stops
when ` = 3. At this time, Xi and Xj are conditionally
independent, and the separation set of the unshielded triple
〈Xi, Xk, Xj〉 is C3. But during the iterative updating of the
skeleton at ` = 0, 1, 2, there are cases where a few clients
consider that Xi ⊥ Xj | C` holds (C` obtained at the `-th
layer) , obtaining C0, C1 and C2. The four separation sets C0,
C1, C2 and C3 are completely different, so how do we choose
the most accurate separation set from them?

As each client does not share its raw data with the server, the
FedOri submodule faces a challenge in directly computing the
separation set for any non-adjacent variables in G∗ at the server
and it is crucial to tackle the aforementioned inconsistency
problems. Thus, motivated by [26], we propose a federated
orientation (FedOri) submodule for orient the edges in the
learned global skeleton G∗ in FedSke submodule. In this
submodule, we design a distributed optimal consensus (DOC)
mechanism to identify consistent separation sets in a federated
setting for learning V-structures in G∗ across clients. The main
steps of the DOC mechanism are outlined as follows.

Step 1 (Unshielded triple identification). The server iden-
tifies all unshielded triples in G∗ and then sends each triple and
its direct neighbors to each client for learning the separation
set. Here we use the unshielded triple 〈Xi, Xk, Xj〉 in G∗ as
an example, which represents the local skeleton Xi−Xk−Xj ,
where Xi and Xj are not directly adjacent to each other, but
Xk is the direct neighbors of Xi and Xj . The server sends
the triple 〈Xi, Xk, Xj〉 and ne(G∗, Xi) to the clients.

Step 2 (Distributed separation set learning). If Xi⊥Xj |
C holds using the local dataset on a client, the client sends the
separation set C and the p-value (as shown in Eq. (6) obtained
from the CI test to the server.

p−value = P(|z| ≤ zα
2
| H0) (6)

where z denotes, under the null hypothesis H0 of inde-
pendence, for the linear Gaussian model, the transformation
of partial correlation into value obeying a standard normal
distribution through Fisher’s Z transformation and zα

2
is the

critical value of the standard normal distribution. The p-value
denotes the probability of accepting the null hypothesis of
conditional independence between two variables.

Fig. 4 uses a simple example to illustrate the distributed
separation set identifying at each layer. Suppose there are 30
clients in Fig. 4. For an unshielded triple 〈Xi, Xk, Xj〉 in G∗,
at ` = 0, assuming that the set {∅} corresponds to a maximum
number of votes of 10 and it is unique, C0 = ∅ is chosen as the
separation set at ` = 0. Similarly, at ` = 1, assuming that the
set {W3} with the maximum number of votes of 10 is chosen
as the separation set for this layer, C1 = {W3}. At ` = 3,
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Fig. 4: An example of the DOC mechanism.

assuming that there are four sets with the maximum votes of
3, so we select the separation set according to p-values. We
assume that C3

2 has the highest p-value of 0.278 (note that
the p-values obtained from the CI tests given in this example
are all assumed), so C3 = {W2,W3,W4} is selected as the
separation set for this layer.

Step 3 (Accurate separation set identification). After
Step 2, the server aggregates the separation sets and p-
values sent by the clients to get CS = {C1, C2, ..., Cq}
and the corresponding p-value set ps = {p1, p2, ..., pq}. We
count each separation set in CS to obtain the count set
V = {v1, v2, ..., vq} to identify the index corresponding to
the separation set with the largest number of votes in CS, and
we label this index set as MV S:

MV S = arg max(V ) = {s1, ..., st} (7)

If all sT (T ∈ {1, ..., t}) in MV S = {s1, ..., st} point to
the same separation set in CS, i.e., Cs1 = ... = Cst holds,
then the separation set with the maximum number of votes
is unique, and the set is the optimal separation set. However,
if there are multiple different separation sets with the same
maximum votes, further filtering is required. To obtain the
optimal decision, we consider the set of p-value corresponding
to the set {Cs1 , ..., Cst} to get MP = {ps1 , ..., pst}. Then
we select the separation set corresponding to the maximum
value in MP as the final consistent separation set, as shown
in Eq. (8):

SepSet =

{
Csi if ∀si, sj ∈MV S : Csi = Csj
Cargmax(MP ) otherwise

(8)
For example, in Fig. 3, for C0, C1, C2 and C3, although

the number of votes for C0 is the same as that for C1, the
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p-value of {W3} is bigger than that of C0, so we finally
select {W3} as the optimal consistent separation set for
〈Xi, Xk, Xj〉. That is, SepSetXi, Xj) = {W3}. Then based
on the obtained consistent separation set, the server determines
whether 〈Xi, Xk, Xj〉 is a V-structure. For example, for the
unshielded triple 〈Xi, Xk, Xj〉, if Xk /∈ SepSet(Xi, Xj)
holds, then we consider 〈Xi, Xk, Xj〉 as the V-structure and
orient it as Xi → Xk ← Xj .

Step 4 (Orient remaining edges). Specifically, for the
PDAG that has recognized all V-structures, the Meek’s rules
is used to orient the remaining undirected edges as many as
possible. Since this part of the processing does not involve the
clients’ data, in the federated setting, based on the learned V-
structures, we complete the federated orientation propagation
of the remaining undirected edges at the server, and finally
learn CPDAG Ĝ.

The DOC mechanism improves upon the method proposed
by Huang et al. [26] by introducing a dual-selection process.
It first prioritizes the separation set with the most votes,
enhancing the robustness of the selection process. If multiple
sets receive the same number of votes, DOC then chooses the
set with the largest p-value. This two-step approach increases
the likelihood of selecting a separation set that accurately rep-
resents the data distribution, thereby improving the reliability
and precision of causal discovery in a federated setting.

3) The FedCE module: In a federated setting, it is more
challenging to compute causal effects between variables from
CPDAG while protecting data privacy of each client. In
addition, due to the existence of equivalence class, existing
causal effect estimation methods based on a CPDAG often
return a multiset of causal effects. In a federated setting, due to
different data quality of different clients, there may be different
multisets in each client for a pair of variables. So how to deal
with those federated multisets is also a challenge.

To tackle these problems, we propose a federated causal
effect (FedCE) module with a novel progressive integrated
multiset (PIM) strategy for causal effect calculation in the
federated setting (FedECE-B uses the global estimator to
calculate the causal effect). The basic idea of the PIM strategy
consists of the following steps.

Step 1 (Identification of valid DAGs). At the server, all
the undirected edges in the learned CPDAG Ĝ are oriented
to obtain different valid DAGs = {D1,D2, ...,DK}, and then
each valid DAG Dk (k ∈ 1, 2, ...,K) is sent to each client in
turn.

Step 2 (Distributed causal effect computation). Using the
local dataset, for a pair of treatment variable Xi and outcome
variable Xj in Dk, each client computes the causal effect of Xi

on Xj , θkn = γxi|pa(Dk,xi) on Dk using the backdoor criterion
and sends the value to the server.

Step 3 (Causal effect aggregation based on DAG). The
server averages the CN values of θk1 , θ

k
2 , ..., θ

k
CN obtained

from the clients. θk = 1
CN

∑CN
cn=1 θ

k
cn. We consider θk to

be the consistent causal effect of Xi on Xj corresponding to
DAG Dk in the federated setting.

Step 4 (Causal effect aggregation based on DAGs). Set
k to k+ 1 and the server continues to send valid DAG to the
client for the calculation of relevant causal effects. Executing

Step 2 and Step 3 until all DAGs are traversed. This allows
us to obtain the final consistent causal effect multiset θ of Xi

on Xj :

θ =
{
θ1, θ2, . . . , θk

}
=
{
γ̄xi|pa(D1,xi), γ̄xi|pa(D2,xi), . . . , γ̄xi|pa(Dk,xi)

} (9)

where θ is the multiset of causal effects calculated based
on Ĝ in the federated setting.

Note that the multiset is similar to a set, with the only
difference being that in a multiset, the multiplicity of elements
is important. In a multiset, the multiplicity of an element
indicates how many times that element is repeated in the
multiset and different elements may have different multiplic-
ities. For example, the sets {a,a} and {a} are equal, but the
multisets {a,a} and {a} are not equal because the multiplicity
is different.
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Fig. 5: An example of federated global causal effects
estimation, where CPDAG Ĝ is assumed to be the causal

structure learned by FedCSL.

Fig. 5 shows a specific application of the global estimator
of the federated causal effect. In this example, we assume
that Ĝ in Fig. 5 is the CPDAG learned by FedCSL. When
calculating θ, the set of possible causal effects of Xi on Xj ,
for the CPDAG Ĝ in Fig. 5, we first exhaust all valid DAGs
in the equivalence class of Ĝ. Since Ĝ contains 6 undirected
edges W1 – W2, W2 – W3, W3 – W4, W4 – W5, Xi – W3 and
Xi – W7, there are 64 possible ways to direct these edges, but
some of these lead to graphs that are not in the equivalence
class of Ĝ. For example, the configuration W1 ← W2, W2 ←
W3, W3 ← W4, W4 → W5, Xi → W3, and Xi ← W7 is
invalid because it creates a new V-structure Xi →W3 ←W4

that is incompatible with the equivalence class represented by
Ĝ. Excluding such these invalid configurations, seven DAGs
remain that in the equivalence class of Ĝ (see D1, . . ., D7 in
Fig. 5). Then for each k (k = 1, . . . , 7), we use Steps 21-
30 of Algorithm 1 (presented in the Supplementary Material)
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to compute the causal effect θk of Xi on Xj in a federated
setting, yielding

θ =
{
θ1, θ2, . . . , θ7

}
=
{
γ̄xi|∅, γ̄xi|W3 , . . . , γ̄xi|W7

}
= {0.1457, 0.0789, . . . , 0.0487}

(10)

where we assume that {0.1457, 0.0789, 0.0789, 0.0789, 0.0789,
0.0789, 0.0487} is the specific causal effect value of Xi on
Xj computed for the seven valid DAGs in a federated setting.

C. The FedECE-L algorithm

The FedECE-B performs well when the number of variables
is relatively small (e.g., less than about 10). However, as
the number of variables in an equivalence class increases, it
quickly becomes infeasible to enumerate all valid DAGs of
this equivalence class. Thus we further improve this method
and give the FedECE-L algorithm. FedECE-L uses the local
estimator to calculate the causal effect.

In FedECE-B, we find that the key to computing the
causal effect of Xi on Xj relying on the parent set of Xi.
Then instead of exhaustively enumerating all DAGs from an
equivalence class, it is only necessary to locally identify a
possible parent set posspa(Xi) of Xi in a CPDAG. Thus to
tackle the computational problem of FedECE-B, we develop
an efficient FedECE-L algorithm (the pseudocode of FedECE-
L is given in Algorithm 2 in the Supplementary Material).
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Fig. 6: The diamonds ♦ indicate O(Ĝ, Xi, Xj), while the boxes
2 indicate posspa(Ĝ, Xi).

The federated causal structure learning module of the al-
gorithm is the same as that of FedECE-B algorithm. The
difference between FedECE-B and FedECE-L is that FedECE-
L replaces the exhaustively DAG enumerating step with a
much simpler step which only checks if Gposspa→Xs is locally
valid, meaning that Gposspa→Xs does not contain an additional
V-structure with Xs as a collider. Gposspa→Xs denotes the
graph that is obtained by changing all undirected edges
Xk – Xs with Xk ∈ posspa(G, Xs) into directed edges
Xk → Xs, and all undirected edges Xk – Xs with Xk ∈
ne(G, Xs)\posspa(G, Xs) into directed edges Xk ← Xs. In
the example in Fig. 6(a) to (c), Ĝposspa→Xi is locally valid for
posspa = ∅, {W3} and {W7} respectively, and it is not locally
valid for posspa = {W3, W7}.

For each valid parent set, we compute the causal effects
of Xi on Xj on each client. We then compute the multiset
of the causal effects of Xi on Xj by taking the average of
the elements γxi|posspa on all clients. For example, in Fig. 6(a)
to (c), by computing the causal effects of Xi on Xj using
three different parent sets, assuming that the final values of
the causal effect of Xi on Xj are 0.1457, 0.0789, and 0.0487

respectively, the final multiset of causal effects are shown as
follows.

θL =
{
γ̄xi|∅, γ̄xi|W3 , γ̄xi|W7

}
= {0.1457, 0.0789, 0.0487}

(11)

For example, in Eq. (10), we assume θ = {0.1457, 0.0789,
0.0789, 0.0789, 0.0789, 0.0789, 0.0487} while θL = {0.1457,
0.0789, 0.0487} in Eq. (11). Due to pa(D1, xi) = ∅,
pa(D2, xi) = pa(D3, xi) = pa(D4, xi) = pa(D5, xi) =
pa(D6, xi) = {W3} and pa(D7, xi) = {W7}, thus D2, . . . ,D6

correspond to the same value of causal effect, 0.0789, so the
multiplicity (the multiplicity of a multiset is the number of
times a particular element occurs in the multiset) of 0.0789 in θ
is 5. Similarly, D1 and D7 correspond to causal effect values of
0.1457 and 0.0487, respectively, and the multiplicity in θ is 1.
The causal effect values in the multiset θL are 0.1457, 0.0789
and 0.0487, and the multiplicities are all 1. Furthermore, the
unique values in both θ and θL are 0.1457, 0.0789 and 0.0487.
Therefore, it can be concluded that for the CPDAG in Fig. 5,
the multisets of the causal effects of FedECE-B and FedECE-
L have the same unique values, but their multiplicities may be
different.

D. The FedECE-O algorithm

Learning a valid adjustment set is key to causal effect
estimation. From FedECE-B and FedECE-L, the parent set of
a treatment variable is crucial for the federated causal effect
calculation because the parent set is the valid adjustment set.
However, from the definition of valid adjustment set given in
Section III, we can see that the parent set is not the unique
valid adjustment set. And in theory, the causal effect of Xi

on Xj computed with different valid adjustment sets should
be consistent. However, in practice, due to data quality issues,
for Xi and Xj , different valid adjustment sets may produce
different causal effects of Xi on Xj . So if the multiple valid
adjustment sets are available for Xi and Xj , which one should
be used for causal effect estimation?

Recent studies [18] [19] propose the concept of O-set from
the asymptotic variance perspective and prove that the causal
effect results obtained by estimating using O-set as the valid
adjustment set have the smallest asymptotic variance, when the
underlying causal model conforms to the linear assumption.
The graph criterion of O-set is shown in Eq. (12). Let Xi and
Xj be disjoint variable sets in CPDAG, the O-set is defined
as follows:

O(Xi, Xj) = pa(posscn(Xi, Xj)) \ forb(Xi, Xj) (12)

To improve the accuracy problem of FedECE-B, we pro-
pose FedECE-O (the pseudocode of FedECE-O is given in
Algorithm 3 in the Supplementary Material). In FedECE-O,
we introduce the O-set to replace the parent set of FedECE-
L as the valid adjustment set for the federated causal effect
estimation. For comparison in Fig. 6, the boxs show the adjust-
ment sets in FedECE-L, i.e., posspa(Ĝ, Xi), and the diamonds
show the O-set in FedECE-O. In (a)-(c), O(Ĝ, Xi, Xj) = {W3,
W7}, {W4, W7}, {W3, W7}, and posspa(Ĝ, Xi) = ∅, {W3},
{W7}, where the former improves efficiency.
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After valid adjustment set identification, there is also a
little difference between FedECE-L and FedECE-O when the
client utilizes the local dataset for causal effect computation:
while FedECE-L only checks if Xj /∈ posspa(Xi) holds,
FedECE-O further checks if Xj ∈ possde(Xi) holds. These
two conditions ensure that the considered adjustment set is
a valid adjustment set. Since the learning of the parent set
in FedECE-L only needs to focus on the information about
the neighborhoods of Xi, therefore we set Xj /∈ posspa(Xi)
as the local identification condition to complete the validity
adjustment; while since the learning of the O-set in FedECE-
O focuses on the entire causal path between Xi to Xj , we
set Xj ∈ possde(Xi), a non-local identification condition,
to complete the validity adjustment. Note that this additional
checking approach in Algorithm 3 makes it less robust than
Algorithm 2. This is because if the CPDAG is estimated
well, the non-local identification tends to perform better than
the local identification because it requires more information
about the CPDAG; whereas if the CPDAG is not estimated
accurately, the non-local identification is more likely than the
local identification to use the incorrect information from the
estimated CPDAG, which can amplify errors due to erroneous
edges in the estimation of causal effects.

V. EXPERIMENTS

In this section, we conduct experiments to verify the effec-
tiveness of the FedECE framework. We first conduct simula-
tion performance studies for the three algorithms proposed in
this paper, FedECE-B, FedECE-L, and FedECE-O, in Section
V-A, and then evaluate the performance of FedECE-L and
FedECE-O with the baseline algorithms on synthetic dataset,
BN dataset, IHDP dataset, and real dataset in Section V-B.

All experiments were conducted on a computer with In-
tel(R) Core(TM) i7-8700 3.20 GHZ CPU and processor 16-
GB memory. All statistical independence tests are performed
under the significance level α = 0.01.

A. Evaluation of FedECE-B, FedECE-L and FedECE-O

We evaluate FedECE-B, FedECE-L and FedECE-O, in
terms of multiplicity, runtime, and accuracy.

1) Multiplicity Analysis: To demonstrate the performance
of FedECE-B, FedECE-L, and FedECE-O in terms of multi-
plicity, we generate a random causal weighted DAG D with
the number of variables p = 8 and the number of expected
neighbors EN = 3, and generate the corresponding CPDAG
G. We also randomly select a treatment variable Xi and an
outcome variable Xj on G to compute the causal effects (Note
that the DAG with its unique true causal effect is simulated
for convenience only. Conceptually, we draw directly from
the space of CPDAGs, which is why we consider the whole
multiset of possible effects to be the truth). We generate 100
datasets of size 2000 from this DAG D. The generative process
employs a linear causal mechanism represented as follows:

X ← BTX + e (13)

where e = (e1, ..., eM ) is a continuous random vector of
jointly independent error variables with mean 0, B is a weight

matrix of M×M , and← in Eq. (13) emphasizes a generative
mechanism.

For each dataset, we use α = 0.01 on the number of clients
CN = 5 to estimate the multiset of possible causal effects. We
then aggregate these 100 estimates and construct a density
plot. The true possible causal effects are 0 and 0.356, as
shown by the vertical lines in Fig. 7, where the height of
each line indicates the relative frequency of the given value
in the multiset. Fig. 7 shows the smoothed density curves for
the causal effect estimations returned by FedECE-B, FedECE-
L, and FedECE-O. The higher a particular value is on the
density curve, the more often that value occurs in the data.
For example, in Fig. 7, the highest height of the vertical
coordinate of FedECE-B at horizontal coordinate 0 indicates
that FedECE-B achieves the highest multiplicity at an effect
value of 0. Thus, a peak in the density plot indicates a high
multiplicity of that particular value.
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Fig. 7: Density plot in the style of Maathuis et al. [4].
Shown are density curves for estimated possible causal

effects returned by FedECE-B(red), FedECE-L(green), and
FedECE-O(blue). The true possible causal effects are 0 and
0.356 (vertical lines; heights indicate relative frequency of

values)

We find that all three methods pick up the set of possible
causal effects quite reliably. The FedECE-B algorithm cap-
tures the multiplicities better than the other two methods,
while there is little difference in multiplicity performance
between FedECE-L and FedECE-O. The reason that FedECE-
B outperforms the others in multiplicity is mainly that the
multiplicity of the element θk (i.e., the causal effect of Xi

on Xj computed on a valid DAG Dk) in the multiset θ
corresponds to the number of DAGs in the equivalence class,
whereas the multiplicity of the element θk in θL and θO
corresponds to the number of valid adjustment sets in FedECE-
L and FedECE-O. Since each adjustment set corresponds to
at least one valid DAG in the equivalence class, this results
in FedECE-L and FedECE-O losing the multiplicity of some
of the values compared to FedECE-B. Specifically, in the
example of Fig. 5, the valid parent set {W3} corresponds to
valid DAG D2, . . . ,D6, and thus the multiplicity of γxi|W3

is
5 in FedECE-B, while in Fig. 6 the multiplicity of γxi|W3

is
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1 in FedECE-L.

TABLE II: Mean runtime in seconds of FedECE-B, FedECE-
L and FedECE-O over 10 replicates. A value NA means that
at least one of the 10 replicates took more than 48 hours to
compute, so that the computation was aborted.

p = 5 p = 10 p = 15 p = 30 p = 50 p = 100

FedECE-B 0.4148 43.4882 NA NA NA NA

FedECE-L 0.3182 0.4461 0.9109 7.4489 34.1472 43.8953

FedECE-O 0.3735 0.4762 0.9471 7.3960 34.4555 44.4461

2) Runtime Analysis: This section considers the runtime of
the FedECE-B, FedECE-L and FedECE-O. Table II shows
the mean runtime in seconds of FedECE-B, FedECE-L and
FedECE-O over 10 replicates with EN = 2, S = 1000,
CN = 5, and p denoting the number of variables. A value
NA means that at least one of the 10 replicates took more
than 48 hours, so that the computation was aborted. As we
analyzed earlier, due to the relatively more time-consuming
enumeration method of FedECE-B, causal structures with 15
variables or more cannot be handled reliably by FedECE-B,
making FedECE-B suitable for datasets with a small number
of variables. FedECE-L and FedECE-O perform similarly in
terms of runtime.

3) Accuracy Analysis: In this section, we carry out a simula-
tion study to compare the accuracy performance of FedECE-
L and FedECE-O. Since the issue of excessive runtime for
FedECE-B when dealing with more than 10 variables, in this
section, we only compare FedECE-L and FedECE-O. The
purpose of the experiments is to reflect the differences between
the estimated causal effect values and the true causal effect
values of the two algorithms for Xi on Xj based on the
estimated CPDAG. Since the result obtained by the algorithms
is a set of values, we use the Hausdorff distance to calculate
the distance between the estimated set θ̂ and the true set θ∗:

H(θ̂, θ∗) = max{sup
u∈θ̂

inf
v∈θ∗
|u− v| , sup

v∈θ∗
inf
u∈θ̂
|u− v|} (14)

Based on the Hausdorff distance, we primarily employ the
mean squared error (MSE) to compare the estimated multisets
of causal effects with the true multisets of causal effects:

MSE({θ̂}Ni=1, {θ∗}Ni=1) =
1

N

N∑
i=1

(H(θ̂, θ∗))2 (15)

We consider the comparisons for different number of vari-
ables p ∈ {10, 20, 50, 100} and the expected number of
neighbors per variable EN = 2 and the sample dataset
size S = 5000. In each setting, we generate 250 different
synthetic graphs. For each graph, we randomly select a DAG D
with p variables, generate the corresponding CPDAG G, and
randomly choose two variables (Xi, Xj) to compute causal
effects. Then for each DAG, the following is repeated 5
times: a dataset with S observations is generated from a linear
causal model based on D where the non-zero coefficients are
randomly selected from a uniform distribution on [-1,-0.1] ∪
[0.1,1]. We then use FedECE-L and FedECE-O separately on

the sample dataset to obtain two estimated multisets of causal
effects. We calculate the MSE values between the estimated
values and the true values, i.e., the squared error between
the estimated effect set and the true effect set, by averaging
over 5 replications. Specifically, we compute the relative MSE
(RMSE = MSEFedECE−O/MSEFedECE−L) to compare the
MSE value between the two algorithms. An RMSE of less than
one indicates that FedECE-O is more accurate than FedECE-L
in estimating causal effects.
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Fig. 8: Violin plot in the style of Witte et al. [19].
FedECE-L and FedECE-O are applied to the estimated

CPDAG Ĝ. The dot marks the geometric means and the plus
signs the medians.

TABLE III: Geometric means and medians of the RMSEs
(MSEFedECE−O/MSEFedECE−L) over 250 repetitions with
different numbers of variables (p).

p = 10 p = 20 p = 50 p = 100

Geometic mean 0.9541 0.7049 0.6364 0.5854
Median 0.9151 0.8424 0.7216 0.6513

Fig. 8 shows the violin plots of RMSEs for p ∈
{10,20,50,100} with 250 different DAGs. The accompanying
geometric mean and median provide a concise summary of the
central tendency within each RMSE distribution. Meanwhile,
Table III summarizes the geometric means and medians for all
scenarios with varying numbers of variables (i.e., the values of
MSEFedECE−O/MSEFedECE−L). Just as discussed above,
a geometric mean or a median of the RMSEs less than one
indicates that FedECE-O is more accurate than FedECE-L in
estimating the multiset of causal effects. In Table III, in most
cases, FedECE-O outperforms FedECE-L in terms of the MSE
metric.
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B. Comparing with existing baselines
In this section, we compare the causal effect values estimat-

ed by FedECE-B, FedECE-L and FedECE-O. To evaluate the
performance of FedECE-B, FedECE-L and FedECE-O with
rivals, we use the Mean Absolute Error (MAE), a frequently
used metric in causal effect estimation [35]. The MAE between
the estimated θ̂ and ground-truth θ∗ in this paper is calculated
based on the Hausdorff distance.

MAE({θ̂}Ni=1, {θ∗}Ni=1) =
1

N

N∑
i=1

H(θ̂, θ∗) (16)

The comparison methods are as follows:
1) IDA-Avg: We first run the IDA algorithm at each client

for obtaining CN causal effect multisets (CN is the
number of clients), and then compute the averaging
MAE values of all the computed causal effect multisets
as the final result of IDA-Avg.

2) IDA-Best: we first run the IDA algorithm independently
at each client to get CN causal effect multisets, and then
select the causal effect multiset with the lowest MAE
value as the final output.

3) FedECEmin: we run the FedCSL module to learn a
unique federated causal structure, and then compute the
causal effect multiset based on this structure. When
aggregating CN effect values at the server, we choose
the minimum value as the round-wise consistent causal
effect value.

4) FedECEmax: we run the FedCSL module to learn a
unique federated causal structure, and then compute the
causal effect multiset based on this structure. When
aggregating CN effect values at the server, we choose
the maximum value as the round-wise consistent causal
effect value.

5) FedECEvote: we run the PCstable algorithm [36] (the
clients’ updating mechanism in our designed FedCSL
module is similar to the PCstable algorithm) at each
client to learn the CPDAG, and then we aggregate
all learned CPDAGs at the server by the strategy that
if the number of the learned CPDAGs containing a
directed edge between two variables is more than a given
threshold, this edge is kept in the final CPDAG. Finally,
we calculate the multiset of causal effects using the PIM
method based on the learned CPDAG.

6) FedCI: we run the FedCI [12] algorithm and compute
the MAE between the estimated causal effect values and
the true effect values.

7) CausalRFF: we run the CausalRFF [13] algorithm and
then compute the MAE between the estimated causal
effect values and the true effect values.

Since FedCI and CausalRFF require knowing potential causal
relationships for a treatment variable and an outcome variable
in a dataset in advance, they are not applicable to all the
datasets in this experiment. Thus we only compare FedCI and
CausalRFF with our two algorithms using the IHDP dataset.

As Section IV-B3 discussed, computing causal effects based
on a causal structure requires the identification of valid adjust-
ment set. FedECE-L uses a parent set as a valid adjustment

set and FedECE-O uses an O-set as a valid adjustment set.
Then for ease presentation, we use IDA-AvgL, IDA-BestL,
FedECELmin, FedECELmax, and FedECELvote to denote that
those methods use a parent set as a valid adjustment set,
while IDA-AvgO, IDA-BestO, FedECEOmin, FedECEOmax and
Fe2dECEOvote to denote that the methods use an O-set as a
valid adjustment set.

1) Results on synthetic data: We conduct a simulation study
by combing four synthetic datasets with p ∈ {10, 20, 50, 100}
and CN ∈ {5, 8, 10, 15}. We evaluate EedECE-B, FedECE-
L and FedECE-O and the rivals on 250 synthetic graphs
generated for each number of variables. As we generate data
for each DAG 5 times, we have a total of N = 1250 runs. We
use the MAE as the measure and an algorithm with a smaller
MAE value indicates that the algorithm achieves more accurate
causal effects.

TABLE IV: Comparison of the MAE values of FedECE-B,
FedECE-L and FedECE-O with the ten baseline methods with
CN = 5 and p ∈ {10, 20, 50, 100}. A value NA means that
the calculation took more than 48 hours, so the calculation
was terminated.

Method p = 10 p = 20 p = 50 p = 100

IDA-AvgL 0.0882 0.0855 0.0918 0.0955

IDA-BestL 0.0716 0.0747 0.0671 0.0685

IDA-AvgO 0.0954 0.0864 0.0927 0.1021

IDA-BestO 0.0767 0.0762 0.0653 0.0684

FedECELmin 0.0788 0.0708 0.0719 0.0852

FedECELmax 0.0764 0.0704 0.0655 0.0852

FedECELvote 0.0707 0.0666 0.0635 0.0684

FedECEOmin 0.0760 0.0572 0.0546 0.0626

FedECEOmax 0.0745 0.0583 0.0518 0.0614

FedECEOvote 0.0625 0.0662 0.0680 0.0587

FedECE-B 0.0474 NA NA NA

FedECE-L 0.0474 0.0382 0.0316 0.0337

FedECE-O 0.0540 0.0357 0.0293 0.0296

Table IV shows the MAE values of FedECE-B, FedECE-L
and FedECE-O with the rivals using the synthetic datasets with
p ∈ {10, 20, 50, 100} and CN = 5 (Due to space constraints,
please see the Supplementary Material for the complete MAE
analysis for CN ∈ {5, 8, 10, 15}). Among them, the first
part of the configuration in Table IV involves variants of
existing causal effect estimation algorithms based on graphical
structures adapted to single-source datasets (i.e., modifications
of the IDA algorithm to handle federated settings). The second
part comprises self-comparison algorithms designed according
to the proposed algorithms in this paper to validate the
effectiveness of the FedECE-B, FedECE-L, and FedECE-O
algorithms.

The smaller value of MAE indicates the better performance
of an algorithm. We can see that FedECE-L and FedECE-O
outperform all rivals at p ∈ {20, 50, 100} (FedECE-B cannot
be handled reliably on datasets with more than 15 variables
due to the use of the global estimator). FedECE-L outperforms
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IDA-AvgL and IDA-BestL since IDA-AvgL and IDA-BestL

do not exchange information between clients and the server
during causal structure learning and causal effect estimation.
This further validates the effectiveness of the LCO strategy,
DOC mechanism, and PIM strategy proposed in this paper for
causal effect calculations in a federated setting.

FedECE-L is superior to FedECELmin, FedECELmax
and FedECELvote on the MAE metric. FedECELmin and
FedECELmax use the minimum and maximum value for causal
effect aggregation at each round respectively, which can be
sensitive to the outliers of causal effects. FedECE-L adopts
the mean value which helps reduce the impact of the outliers
of causal effects, and the experimental results also validate
this conclusion. FedECELvote directly applies the PCstable
algorithm to each client, aggregates the learned CPDAGs to get
the final CPDAG, and then adopts the PIM method to calculate
causal effects based on this CPDAG. Since the CPDAGs
learned from FedECELvote are not correct, thus FedECELvote
does not get an accurate adjustment set from the learned
CPDAG, leading to unsatisfactory results.

The comparison of FedECE-O with those baseline algo-
rithms is consistent with the results for FedECE-L. And we
find that, when p ∈ {20, 50, 100}, the MAE value of FedECE-
O is lower than that of FedECE-L, which further confirms
our conclusion in Section V-A3 that FedECE-O can provide
more accurate causal effects than FedECE-L as the number of
variables increases as the estimated CPDAG is accurate.

2) Results on benchmark datasets: Magic-niab: Magic-
niab is a linear Gaussian DAG with 44 variables and 66 edges.
We select the variables G257 and MTL as the treatment and
outcome variables, respectively. We sample the data 50 times,
with each dataset containing 5000 samples, and then compare
the performance of FedECE-B, FedECE-L and FedECE-O
with the first five baseline algorithms with the number of
clients CN ∈ {5, 8, 10, 15}. Table V shows that FedECE-O
outperforms most of the baselines in terms of accuracy and
demonstrates stable performance across all four client number
scenarios.

According to Section IV-B3, causal effect calculation based
on the O-set is more sensitive to the accuracy of the learned
CPDAG, but if the learned CPDAG is accurate, the computed
causal effect values become precise. FedECE-L outperforms
its rivals significantly and demonstrates stable performance
across different number of clients CN ∈ {5, 8, 10, 15}.

In addition, comparing FedECE-L with FedECE-O, we find
that the causal effect values computed by FedECE-O are more
accurate than FedECE-L at CN ∈ {5, 8, 15}.

Magic-irri: Magic-irri is a linear Gaussian DAG with 64
variables and 102 edges. We select the variables G3964 and
CHALK as the treatment and outcome variables, respectively.
We sample the data 50 times, with each dataset containing
5000 samples, and then compare the performance of FedECE-
B, FedECE-L and FedECE-O with the first five baseline
algorithms with the number of clients CN ∈ {5, 8, 10, 15}.
Table VI shows that FedECE-L and FedECE-O outperform
almost all baseline algorithms on CN ∈ {5, 8, 10, 15}.

3) Results on the IHDP dataset: The Infant Health and
Development Program (IHDP) dataset collected from a ran-

TABLE V: Comparison of the MAE values of FedECE-B,
FedECE-L and FedECE-O with the ten classes of baseline
methods on the magic-niab dataset with CN ∈ {5, 8, 10, 15}.
A value NA means that the calculation took more than 48
hours, so the calculation was terminated.

Method CN = 5 CN = 8 CN = 10 CN = 15

IDA-AvgL 0.0300 0.0370 0.0414 0.0501

IDA-BestL 0.0230 0.0290 0.0671 0.0302

IDA-AvgO 0.0271 0.0295 0.0310 0.0348

IDA-BestO 0.0247 0.0264 0.0271 0.0268

FedECELmin 0.0484 0.0695 0.0918 0.1339

FedECELmax 0.0310 0.0422 0.0512 0.0910

FedECELvote 0.0265 0.0490 0.0400 0.0313

FedECEOmin 0.0307 0.0393 0.0490 0.0928

FedECEOmax 0.0388 0.0475 0.0579 0.0921

FedECEOvote 0.0278 0.0279 0.0246 0.0170

FedECE-B NA NA NA NA

FedECE-L 0.0180 0.0191 0.0197 0.0177

FedECE-O 0.0171 0.0170 0.0199 0.0148

TABLE VI: Comparison of the MAE values of FedECE-B,
FedECE-L and FedECE-O with the ten baseline methods on
the magic-irri dataset with CN ∈ {5, 8, 10, 15}. A value NA
means that the calculation took more than 48 hours, so the
calculation was terminated.

Method CN = 5 CN = 8 CN = 10 CN = 15

IDA-AvgL 0.3163 0.4099 0.4534 0.5457

IDA-BestL 0.2462 0.3172 0.3494 0.3869

IDA-AvgO 0.3873 0.7918 0.9862 1.3148

IDA-BestO 0.2786 0.3529 0.4931 0.7736

FedECELmin 0.4366 0.7050 0.8682 1.3509

FedECELmax 0.5158 0.7754 0.8663 1.2049

FedECELvote 0.2106 0.2771 0.2667 0.2754

FedECEOmin 0.4067 0.6645 0.8731 1.4370

FedECEOmax 0.4555 0.7283 0.8843 1.3383

FedECEOvote 0.1317 0.1220 0.2641 0.6980

FedECE-B NA NA NA NA

FedECE-L 0.1332 0.1231 0.1237 0.1302

FedECE-O 0.1148 0.1089 0.1613 0.4989

domized study that investigated the causal effect of home
visits by specialists on future cognitive test scores [37]. There
are 25 pretreatment variables and 747 infants, including 139
treated (having home visits by specialists) and 608 controls.
Two potential outcomes for the treatment (with or without a
specialist visit) of each child are generated using the NPCI
package [38]. The experimental settings for the FedCI [12]
algorithm and the CausalRFF [13] algorithm are adopted from
the source codes provided in the original paper. Considering
the small sample size of this dataset, the experiments are
conducted with the number of clients, CN ∈ {5, 8, 10}.

Table VII shows that both FedECE-L and FedECE-O are
better than almost all rivals in most cases. The possible reason
for FedECE-L and FedECELvote having consistent results is
that both algorithms learn the same valid parent set of the
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TABLE VII: Comparison of the MAE values of FedECE-B,
FedECE-L and FedECE-O with the twelve baseline methods
on the IHDP dataset with CN ∈ {5, 8, 10}. A value NA means
that the calculation took more than 48 hours, so the calculation
was terminated.

Method CN = 5 CN = 8 CN = 10

IDA-AvgL 0.3449 0.4369 0.5837

IDA-BestL 0.1545 0.2910 0.3593

IDA-AvgO 0.3504 0.5701 0.6588

IDA-BestO 0.2879 0.3297 0.2648

FedECELmin 0.5851 1.1338 1.4964

FedECELmax 0.5032 0.5890 0.8966

FedECELvote 0.0921 0.1143 0.1408

FedECEOmin 0.5356 1.4300 1.2504

FedECEOmax 0.3780 0.5738 0.8988

FedECEOvote 0.1935 0.1365 0.1085

FedCI 0.4249 0.3217 0.1774

CausalRFF 0.4275 0.4260 0.6701

FedECE-B NA NA NA

FedECE-L 0.0921 0.1143 0.1408

FedECE-O 0.1042 0.1453 0.0957

treatment variable, leading to the same results.
FedECE-L and FedECE-O outperform FedCI and Causal-

RFF since FedCI and CausalRFF cannot identify accurate
confounders (i.e., the valid adjustment set of the treatment
variable) in a federated setting. In contrast, the CPDAG learned
by the FedCSL module allows FedECE-L and FedECE-O to
identify of accurate confounders, leading to accurate causal
effects.

4) Results on real data: In this section, FedECE-B,
FedECE-L and FedECE-O are applied on the synthetic gene
expression dataset from the DREAM4 in silico challenge
[39]. Here we use the 4-th Size10 dataset which is a small
network containing 10 gene variables. Fig. 9 shows the true
gene regulation network which is constructed based on the net-
works of living organism. In the experiment, we use only the
observational data in each dataset including 61 observations
and normalize the dataset.

G1
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Fig. 9: The gene regulation network from the DREAM4
dataset.

Based on the DAG in Fig. 8, a treatment Xi and an outcome

Xj are randomly selected. Considering that the size of the
observational dataset is only 61, we conduct experiments for
the first five methods with CN ∈ {3, 5} on the DREAM4
dataset. The MAE results are shown in Table VIII. It can be
observed that FedECE-O significantly outperforms the first
five baseline algorithms, while FedECE-L, except for the
number of clients CN = 5, is better than the other rivals. In
addition, in the comparison between FedECE-L and FedECE-
O, the latter achieves a favorable advantage. This may be due
to the highest accuracy of the CPDAG learned by FedCSL,
resulting in results in accurate O-set for FedECE-O. The
possible reason why the MAE values of FedECELvote and
FedECEOvote do not change is that there may be missing edges
or misdirected edges in the causal paths between Xi and Xj

during the CPDAG learning process of FedECEvote, which
further demonstrates that the effectiveness of the skeleton
learning and skeleton orientation strategy designed in the
FedCSL module.

TABLE VIII: Comparison of the MAE values of FedECE-B,
FedECE-L and FedECE-O with the ten baseline methods on
the DREAM4 dataset with CN ∈ {3, 5}.

Method CN = 3 CN = 5

IDA-AvgL 0.3999 0.2370

IDA-BestL 0.1479 0.1239

IDA-AvgO 0.3999 0.3693

IDA-BestO 0.3999 0.2509

FedECELmin 0.1751 0.1239

FedECELmax 0.2038 0.2543

FedECELvote 0.5259 0.5259

FedECEOmin 0.1814 0.2509

FedECEOmax 0.1206 0.1272

FedECEOvote 0.3999 0.3999

FedECE-B 0.0440 0.0717

FedECE-L 0.0440 0.0717

FedECE-O 0.0420 0.0554

VI. DISCUSSION

In this paper, we integrate the federated causal structure
learning and the federated causal effect calculation as a unified
framework, and propose three methods for a federated causal
estimation. Although our methods achieve promising results,
the following directions deserve further exploration.

More Complex Settings. FedECE currently handles causal
effect estimation under a single intervention (i.e., the causal
effect of a treatment variable on the outcome variable). Future
research should explore algorithms capable of managing joint
interventions [40] to capture more complex causal relation-
ships. Additionally, in practical settings, as multiple privacy-
preserving datasets may contain hidden variables [41] [42], it
is worth extending FedECE to handle the complex case.

Reduced boundary range. The bounded causal effect-
s computed by FedECE exhibit a potentially wide range,
limiting their ability to precisely indicate the exact causal
effect values. A key future improvement lies in narrowing
the range of these bounded causal effects [43] [44]. This not
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only reduces the uncertainty for causal relationship between
variables but also enhances the precision of the boundary
estimation of causal effects.

Computation cost. The FedCSL module in FedECE learns
a global causal structure. However, this type of global struc-
ture learning approach is inefficient when dealing with high-
dimensional data. A future development direction can integrate
less computationally expensive causal structure learning algo-
rithms [27] [28] [29] [30] into the FedECE framework.

Federated Optimization. The FedECE framework employs
federated averaging for model aggregation. However, this s-
traightforward averaging approach may not effectively capture
the unique information from each client, potentially impacting
the performance of the global model. An important direction
for future is to explore the use of other federated optimization
techniques such as federated matched averaging [45], to better
integrate models from diverse clients.
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