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Supplementary Material for “FedECE: Federated
Estimation of Causal Effect based on Causal

Graphical Modelling”
Yongsheng Zhao, Kui Yu*, Guodu Xiang, Xianjie Guo, and Fuyuan Cao

I. THE PSEUDO-CODES OF FEDECE-B, FEDECE-L AND
FEDECE-O

Algorithm 1 gives the pseudo-codes of the FedECE-B
algorithm, where FedECE-B consists of two main modules:
a federated global causal structure learning module (Lines 1-
18) and a federated global causal effect computation mod-
ule (Lines 19-30). Among them, federated causal structure
learning includes two submodules: a federated global skeleton
learning submodule (Lines 1-13) and a federated skeleton
orientation submodule (Lines 14-18).

Specifically, in the construction of the federated global
skeleton, at each client, called Client cn, FedECE-B uses the
PCstable algorithm to independently learn the global skeleton
at the `-layer and obtains the potential skeleton G`cn of all vari-
ables (Line 6). It is important to note that the learned potential
skeletons may be different for different clients. To address this
issue, at Line 10, a layer-wise cooperative optimization (LCO)
strategy is employed to determine an optimal skeleton at each
layer by aggregating all skeletons learned by all clients at the
server, which then sends the optimal skeleton G` to all clients
as an initial skeleton for skeleton learning at the next layer.
The federated skeleton learning phase continues until the value
of ` is greater than the maximum number of direct neighbors
of the variables in the `-th skeleton learned by all clients. We
record the final skeleton as G∗.

In the federated skeleton orientation, a DOC mechanism is
employed for federated V-structure identification based on the
learned global skeleton G∗ (Line 14). For an unshielded triple
〈Xi, Xk, Xj〉, based on the identified optimal separation set
SepSet(Xi, Xj), if Xk /∈ SepSet(Xi, Xj) holds, then Xi −
Xk − Xj oriented as Xi → Xk ← Xj (Lines 15-17). Then
for the remaining undirected edges, the Meek’s rules is applied
on the server to orient edges as many as possible, resulting in
a CPDAG Ĝ.

In the federated global causal effect computation, due to
the existence of undirected edges in the learned CPDAG
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Ĝ, the causal effect output is often a multiset. We design
the PIM strategy to address the multiset problem in causal
effect computation within a federated setting. FedECE-B first
exhausts all the valid DAGs existing in the learned CPDAG
at the server, i.e., D1,D2, . . . ,DK (Line 19). Then, each Dk

(k ∈ {1, 2, . . . ,K}) is sent to all clients to obtain the value
of the causal effect of Xi on Xj , denoted as θkcn, using the
backdoor criterion (Lines 22-24). Due to the quality of the
datasets, different causal effect values may be obtained by
different clients. To solve this problem, the server adopts an
aggregation strategy to determine the causal effect value for
each DAG, i.e., θk = 1

CN

∑CN
cn=1 θ

k
cn. The federated causal

effect value for this round of DAGs is computed and θk

is added to the multiset θ, until all valid DAGs have been
traversed.

In Algorithm 1, we find that the key to computing the
effect lies in determining the parent set of Xi. Therefore,
instead of exhaustively enumerating the complete DAG from
the equivalence class, it is only necessary to locally identify
the possible parent set posspa(Xi) of Xi in the learned
CPDAG for computing causal effects. We propose an efficient
algorithm, called FedECE-L.

Since the existence of undirected edges in CPDAG, when
Algorithm 2 performs posspa(Xi) = {posspa1, posspa2,. . . ,
posspaK} at the server based on the learned CPDAG Ĝ, it has
to perform the local validity judgment of the parent set first,
i.e., if Xk which is connected to Xi through an undirected
edge is identified as a valid parent set, it must be ensured no
V-structure containing Xi as a collider. Then posspak is sent
to each client for causal effect computation. Then the server
averages over the computed causal effects sent by all clients
and obtains θk corresponding to the parent set posspak. Then k
is set to k+1, and the server continues to send the valid parent
set to all clients, until the set posspa(Xi) is traversed and the
multiset θL of the causal effect of Xi on Xi is obtained.

Since the valid adjustment set is not unique, different
valid adjustment sets usually provide different causal effect
estimations. In Algorithm 3 of FedECE-O, we introduce the
O-set instead of the parent set in Algorithm 2 as the valid
adjustment set for accurate estimation of causal effects. Note
that another difference between Algorithm 2 and Algorithm
3 lies in the fact that Algorithm 2 only checks whether
Xj /∈ posspa(Xi) holds, while Algorithm 3 checks further
a strong condition Xj ∈ possde(Xi). These two conditions
ensure that the adjustment set is valid.
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Algorithm 1: FedECE-B
INPUT: Dataset D(X ) generated from a probability

distribution faithful to a DAG Dtrue, the number of clients
CN and the significance level of the statistical test α

OUTPUT: the multisets θ of possible causal effects
// Phase 1: Federated causal structure learning

// Step 1: Federated causal skeleton learning
1: Form complete undirected graph Gc on the variable set
X

2: Let depth ` = 0
3: repeat
4: when ` = 0, G`−1 = Gc
5: for Client cn ∈ {1, 2, ..., CN} do
6: Use the local dataset to update the skeleton G`−1 to

get G`cn
7: end for
8: Send the independently learned skeleton G`cn at the

`-th layer at each client to the server
9: At the server, do the following steps:

10: - Aggregate the skeletons sent by the clients to get the
skeleton of the `-th layer G`

11: - Send the aggregated skeleton G` to each client as the
initial skeleton for skeleton learning at the (`+ 1)-th
layer

12: ` = `+ 1
13: until the maximum number of neighbors of a variable

learned by all clients at the `-th layer < `
// Step 2: Federated causal skeleton Orientation

14: Adopt DOC mechanism to get SepSeti,j of the
unshielded triple < Xi, Xk, Xj >

15: if Xk /∈ SepSetij then
16: Orient < Xi, Xk, Xj > as Xi → Xk ← Xj

17: end if
18: Use Meek’s rules to orient as many of the remaining

undirected edges as possible to obtain CPDAG Ĝ
// Phase 2: Federated casual effect calculation

19: At the server, determine all DAGs D1,D2,...,DK in the
Ĝ, then send Dk to each client

20: Let k = 1
21: repeat
22: for Client cn ∈ {1, 2, ..., CN} do
23: Use local dataset to compute causal effect of Xi on

Xj as θkcn, i.e. θkcn = γxi|pa(Dk)

24: end for
25: Send the θkcn independently calculated by each client

to the server simultaneously
26: At the server, do the following steps:
27: - θk= 1

CN

∑CN
cn=1 θ

k
cn

28: - Add θk to θ
29: k = k + 1
30: until the set DAGs is traversed

TABLE I: Comparison of the MAE values of FedECE-B,
FedECE-L and FedECE-O with the ten baseline methods on
the synthetic dataset of 10 variables with CN ∈ {5, 8, 10, 15}.

Method CN = 5 CN = 8 CN = 10 CN = 15

IDA-AvgL 0.0882 0.1000 0.1084 0.1245

IDA-BestL 0.0716 0.0871 0.0881 0.0936

IDA-AvgO 0.0954 0.1118 0.1206 0.1408

IDA-BestO 0.0767 0.0924 0.0976 0.1054

FedECEL
min 0.0788 0.1060 0.1209 0.1529

FedECEL
max 0.0764 0.1088 0.1238 0.1568

FedECEL
vote 0.0707 0.0861 0.0880 0.0893

FedECEO
min 0.0760 0.0984 0.1087 0.1341

FedECEO
max 0.0745 0.1011 0.1118 0.1384

FedECEO
vote 0.0625 0.0630 0.0701 0.0806

FedECE-B 0.0474 0.0552 0.0540 0.0582

FedECE-L 0.0474 0.0552 0.0540 0.0582

FedECE-O 0.0540 0.0625 0.0624 0.0724

II. ADDITIONAL EXPERIMENTAL RESULTS

A. Experiment results on four synthetic datasets

In this section, we present the full experimental results on
the four synthetic datasets. The synthetic datasets are generated
based on the following parameter settings: each dataset con-
sists of 5000 samples to ensure reliable statistical estimations.
Random DAGs are generated using the Erdos-Renyi model
[1] with an expected number of edges per variable of EN
= 2, ensuring moderately sparse structures. The weights of
causal edges in the DAGs are randomly sampled from the
range [−1,−0.5]∪ [0.5, 1], ensuring all edges have significant
weights. Gaussian noise with a mean of 0 and a standard
deviation which is dynamically determined by the covariance
matrix derived from the random DAG structure is added to
each variable to simulate realistic data variability. Table I to IV
show the MAE values of FedECE-B, FedECE-L and FedECE-
O and their rivals using four synthetic datasets, respectively.

Generally, we can see that FedECE-B, FedECE-L and
FedECE-O achieve lower MAE values than their competitors,
indicating the superiority of our methods. This is due to the
following reasons: the superior performance of FedECE relies
on accurately learned causal structures, and the proposed Fed-
CSL module constructs a more accurate CPDAG. Additionally,
the PIM strategy makes full use of the local datasets of each
client to identify the valid adjustment set for federated causal
effect calculation, resulting in more accurate causal effect
values.

The MAE values computed by IDA-AvgL and IDA-BestL

are higher than those computed by FedECE-L and FedECE-
O, indicating that FedECE-L and FedECE-O achieve a more
accurate multiset of causal effects. This is likely because IDA-
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TABLE II: Comparison of the MAE values of FedECE-B,
FedECE-L and FedECE-O with the ten baseline methods on
the synthetic dataset of 20 variables with CN ∈ {5, 8, 10, 15}.
A value NA means that the calculation took more than 48
hours, so the calculation was terminated.

Method CN = 5 CN = 8 CN = 10 CN = 15

IDA-AvgL 0.0855 0.1043 0.1098 0.1303

IDA-BestL 0.0747 0.0862 0.0990 0.1038

IDA-AvgO 0.0864 0.1077 0.1147 0.1383

IDA-BestO 0.0762 0.0873 0.0970 0.1067

FedECEL
min 0.0708 0.1002 0.1175 0.1535

FedECEL
max 0.0704 0.0980 0.1148 0.1507

FedECEL
vote 0.0666 0.0831 0.0790 0.0863

FedECEO
min 0.0572 0.0793 0.0921 0.1221

FedECEO
max 0.0583 0.0809 0.0954 0.1242

FedECEO
vote 0.0662 0.0827 0.0877 0.1028

FedECE-B NA NA NA NA

FedECE-L 0.0382 0.0418 0.0448 0.0487

FedECE-O 0.0357 0.0405 0.0462 0.0554
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Fig. 1: Runtime on 4 synthetic datasets.
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Fig. 2: Runtime on 2 BN datasets.

Algorithm 2: FedECE-L
Output: Dataset D(X ) generated from a probability

distribution faithful to a DAG Dtrue, the number of clients
CN and the significance level of the statistical test α

Input: the multisets θL of possible causal effects
// Phase 1: Federated causal structure learning
// Phase 2: Federated causal effect calculation

1: At the server, do the following steps:
2: - ne(Ĝ, Xi) ← {Xk ∈ X \Xi : Xi −Xk in Ĝ}
3: for each subset SS of ne(Ĝ, Xi) do
4: if ĜSS is locally valid (i.e., has no new V-structure

with collider Xi) then
5: Add SS ∪ pa(Xi) to posspa(Xi)
6: end if
7: end for
8: Send the posspak ∈ posspa(Xi) to each client
9: Let k = 1

10: repeat
11: for Client cn ∈ {1, 2, ..., CN} do
12: if Xj /∈ posspak then
13: θkcn = γxi|posspak
14: else
15: θkcn = 0
16: end if
17: end for
18: Send the θkcn independently calculated by each client

to the server simultaneously
19: At the server, do the following steps:
20: - θk= 1

CN

∑CN
cn=1 θ

k
cn

21: - Add θk to θL
22: k = k + 1
23: until the set posspa(Xi) is traversed
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Fig. 3: Runtime on IHDP dataset.

AvgL and IDA-BestL do not exchange information between
clients, whereas FedECE-L leverages information exchange
between clients for both federated structure learning and
federated causal effect computation. This further validates the
effectiveness of FedECE-L and FedECE-O.

In summary, on all four synthetic datasets, FedECE-L
and FedECE-O significantly outperform all of their rivals.
FedECE-O outperforms FedECE-L when the number of clients
CN = 5 and 8. However, it is inferior to FedECE-L in all cases
where CN = 10 and 15. This may be attributed to the fact
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Algorithm 3: FedECE-O
Output: Dataset D(X ) generated from a probability

distribution faithful to a DAG Dtrue, the number of clients
CN and the significance level of the statistical test α

Input: the multisets θO of possible causal effects
// Phase 1: Federated causal structure learning
// Phase 2: Federated causal effect calculation

1: At the server, the optimal adjustment set
O(Xi, Xj) = {O1,O2, ...,OK} is learned based on Ĝ.
Then send Ok to each client

2: Let k = 1
3: repeat
4: for Client cn ∈ {1, 2, ..., CN} do
5: if Xj ∈ possde(Xi) then
6: θkcn = γxi|Ok

7: else
8: θkcn = 0
9: end if

10: end for
11: Send the θkcn independently calculated by each client

to the server simultaneously
12: At the server, do the following steps:
13: - θk= 1

CN

∑CN
cn=1 θ

k
cn

14: - Add θk to θO
15: k = k + 1
16: until the set O(Xi, Xj) is traversed

that an increase in the number of clients and a decrease in the
amount of data allocated to each client, leads to an inaccurate
CPDAG, which in turn results in an inaccurate adjustment set.

B. Time Efficiency

Fig. 1 to 3 present the execution times of FedECE-L and
FedECE-O, along with their competitors, on the four synthetic
datasets, two BN datasets and one IHDP dataset (due to the
small scale of the DREAM4 dataset, its execution times are
trivial and thus not reported). For most datasets, FedECE-
L is slower than IDA-Avg, IDA-Best, and FedECEL

vote, but
comparable to FedECEL

min and FedECEL
max. This is because

FedECE-L requires additional time for communication be-
tween clients and the server during skeleton learning, finding
separation sets at each client, and aggregating causal effect
values computed at each client to obtain a consistent multiset.
As the number of clients increases, the running time of
most algorithms also increases. In summary, FedECE-L is
generally competitive with FedECEL

min and FedECEL
max. The

comparison of FedECE-O with its competing algorithms is
similar to that of FedECE-L. Notably, both FedECE-L and
FedECE-O are significantly faster than FedCI and CausalRFF
on the IHDP dataset.

C. Stability Analysis of Experimental Results

To verify the stability of our proposed methods, we conduct
extensive experiments using synthetic datasets under identical

TABLE III: Comparison of the MAE values of FedECE-B,
FedECE-L and FedECE-O with the ten baseline methods on
the synthetic dataset of 50 variables with CN ∈ {5, 8, 10, 15}.
A value NA means that the calculation took more than 48
hours, so the calculation was terminated.

Method CN = 5 CN = 8 CN = 10 CN = 15

IDA-AvgL 0.0918 0.1049 0.1148 0.1317

IDA-BestL 0.0671 0.0847 0.0871 0.0897

IDA-AvgO 0.0927 0.1082 0.1186 0.1407

IDA-BestO 0.0653 0.0866 0.0878 0.0898

FedECEL
min 0.0719 0.0989 0.1155 0.1651

FedECEL
max 0.0655 0.0927 0.1087 0.1544

FedECEL
vote 0.0635 0.0816 0.0865 0.0895

FedECEO
min 0.0546 0.0747 0.0861 0.1213

FedECEO
max 0.0518 0.0731 0.0843 0.1190

FedECEO
vote 0.0680 0.0708 0.0875 0.1007

FedECE-B NA NA NA NA

FedECE-L 0.0316 0.0335 0.0332 0.0406

FedECE-O 0.0293 0.0327 0.0353 0.0471

parameter settings. Specifically, for each network, we random-
ly generate 5 datasets, each with a sample size of 5000, to
evaluate the stability of the results based on multiple datasets
generated from the same network. We employ the Hausdorff
distance metric to measure the distance between the causal
effect estimated set θ̂, computed by the proposed algorithms,
and the true causal effect set θ∗.

The stability analysis examines scenarios with varying
numbers of network clients and variables, where for each
network configuration, 5 datasets are generated using different
random seeds to evaluate consistency. The mean performances
and variances of the Hausdorff distance for FedECE-L and
FedECE-O under these scenarios are presented in Table V
and Table VI, respectively. Due to the constraints of the global
estimator, FedECE-B is unsuitable for datasets with more than
15 variables and thus its stability analysis is excluded. The
calculation formulas of the mean and variance are shown in
the Eq. (1) and Eq. (2), where N represents the number of
experiments.

Mean =
1

N

N∑
i=1

H(θ̂, θ∗) (1)

V ariance =
1

N

N∑
i=1

(H(θ̂, θ∗)−Mean)2 (2)

As shown in Table V and Table VI, the variance is par-
ticularly low for smaller networks, indicating the efficiency
and stability of the algorithm when dealing with simpler
problem Settings. As the number of variables increases, a
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TABLE IV: Comparison of the MAE values of FedECE-
B, FedECE-L and FedECE-O with the ten baseline meth-
ods on the synthetic dataset of 100 variables with CN ∈
{5, 8, 10, 15}. A value NA means that the calculation took
more than 48 hours, so the calculation was terminated.

Method CN = 5 CN = 8 CN = 10 CN = 15

IDA-AvgL 0.0955 0.1014 0.1064 0.1182

IDA-BestL 0.0685 0.0853 0.0936 0.1057

IDA-AvgO 0.1021 0.1066 0.1132 0.0495

IDA-BestO 0.0684 0.0882 0.0989 0.0439

FedECEL
min 0.0852 0.0957 0.1127 0.1501

FedECEL
max 0.0852 0.0954 0.1120 0.1473

FedECEL
vote 0.0684 0.0754 0.0693 0.0786

FedECEO
min 0.0626 0.0695 0.0834 0.1093

FedECEO
max 0.0614 0.0699 0.0834 0.1096

FedECEO
vote 0.0587 0.0558 0.0771 0.0949

FedECE-B NA NA NA NA

FedECE-L 0.0337 0.0286 0.0304 0.0321

FedECE-O 0.0296 0.0272 0.0320 0.0398

TABLE V: Mean performances and variances of FedECE-L
under different networks and clients.

Variables Clients Mean± Variance

10

5 0.018864±0.000104
8 0.015104±0.000102

10 0.020512±0.000086
15 0.021206±0.000058

20

5 0.007358±0.000009
8 0.009922±0.000080

10 0.006544±0.000020
15 0.006322±0.000020

50

5 0.012498±0.000039
8 0.015308±0.000025

10 0.016380±0.000080
15 0.015588±0.000102

100

5 0.030874±0.000038
8 0.021288±0.000052

10 0.021698±0.000056
15 0.020088±0.000072

slight increase in variance is observed. This increase is due to
the increasing complexity of the problem space as the dimen-
sion increases. However, the variance remains within a small
range, which indicates that the proposed method is robust and
adaptable even in large-scale network environments.

For smaller networks with fewer variables, the variance
is very low regardless of the number of clients. In large
networks with more variables, the variance increases slightly
as the number of clients increases. This trend is evident in
both algorithms, especially for configurations with 15 clients.

TABLE VI: Mean performances and variances of FedECE-O
under different networks and clients.

Variables Clients Mean± Variance

10

5 0.014290±0.000150
8 0.011826±0.000111

10 0.014480±0.000099
15 0.010578±0.000115

20

5 0.008130±0.000023
8 0.007378±0.000087

10 0.007824±0.000016
15 0.006650±0.000007

50

5 0.012508±0.000039
8 0.015268±0.000025

10 0.016246±0.000084
15 0.014702±0.000107

100

5 0.013688±0.000136
8 0.013778±0.000073

10 0.010924±0.000052
15 0.011850±0.000076

However, the overall variance remains small, indicating that
both algorithms are robust to an increase in the number of
clients even in complex scenarios.
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