
1

Towards Privacy-Aware Causal Structure
Learning in Federated Setting
Jianli Huang†, Xianjie Guo†, Kui Yu*, Fuyuan Cao, and Jiye Liang

Abstract—Causal structure learning has been extensively studied and widely used in machine learning and various applications. To
achieve an ideal performance, existing causal structure learning algorithms often need to centralize a large amount of data from
multiple data sources. However, in the privacy-preserving setting, it is impossible to centralize data from all sources and put them
together as a single dataset. To preserve data privacy, federated learning as a new learning paradigm has attached much attention in
machine learning in recent years. In this paper, we study a privacy-aware causal structure learning problem in the federated setting and
propose a novel Federated PC (FedPC) algorithm with two new strategies for preserving data privacy without centralizing data.
Specifically, we first propose a novel layer-wise aggregation strategy for a seamless adaptation of the PC algorithm into the federated
learning paradigm for federated skeleton learning, then we design an effective strategy for learning consistent separation sets for
federated edge orientation. The extensive experiments validate that FedPC is effective for causal structure learning in federated
learning setting.

Index Terms—Causal structure learning, Federated learning, Privacy preserving

F

1 INTRODUCTION

A Causal structure is often represented using a direct-
ed acyclic graph (DAG). In a DAG, a directed edge

X → Y means that X is a direct cause of Y while Y is
a direct effect of X [1]. Causal structure learning aims to
learn a DAG from observational data for revealing causal
relations and it plays a vital role in causal inference, machine
learning, and many other scientific tasks [2], [3], [4].

Various methods have been proposed for learning DAGs
from observational data in the past decades [5], [6], [7], [8],
[9]. Most existing DAG learning algorithms are designed
to work only on a single dataset. For achieving an ideal
performance, users often need to collect data from multiple
decentralized data resources and put them together as a
large-scale dataset, and the large scale of data are often
generated from different companies and parties. For exam-
ple, a large amount of web log data of an individual user
are distributed in different websites and healthcare data are
owned by different hospitals.

With the increasing data privacy concerns from both
governments and users, a series of data protection initiatives
and laws have been proposed in recent years. Decentralized
data (e.g. healthcare and log data) contains sensitive infor-
mation and the centralizing data strategy leads to potential

• † represents equal contribution.

• Jianli Huang, Xianjie Guo, and Kui Yu are with the Intelligent In-
terconnected Systems Laboratory of Anhui Province and the School of
Computer Science and Information Engineering, Hefei University of
Technology, Hefei 230601, China (e-mail: janelee@mail.hfut.edu.cn, xi-
anjieguo@mail.hfut.edu.cn, yukui@hfut.edu.cn).
(*Corresponding author: Kui Yu).

• Fuyuan Cao and Jiye Liang are with the Key Laboratory of Computational
Intelligence and Chinese Information Processing of Ministry of Education,
School of Computer and Information Technology, Shanxi University,
Taiyuan 030006, China (e-mail: {cfy, ljy}@sxu.edu.cn).

privacy leakage. Many data owners prefer not to share their
raw data with others owning to data privacy risk.

This makes most of DAG learning algorithms imprac-
tical in the privacy-preserving setting. To preserve data
privacy, federated learning as a new learning paradigm
has attracted increasing attention in machine learning [10].
Federated learning learns a local model from each client and
only sends the local model parameters to a central server for
aggregating them into a global model without access to each
client’s data [11].

In causal discovery area, little research has been done
in developing algorithms for privacy-aware causal structure
learning with the consideration of data privacy, although
there are many well-developed algorithms for causal struc-
ture learning.

To fill this gap, in this paper, we propose to make the
Peter-Clark (PC) algorithm [5] fit into the federated learning
setting for privacy-aware causal structure learning. The PC
algorithm is a constraint-based and widely used algorithm
for learning causal structures in various settings, and it is
computationally feasible to tackle sparse DAGs with up
to thousands of variables [12]. Furthermore, most of well-
established constraint-based algorithms are derived from
the PC algorithm, and thus the idea of the paper can be
directly applied to the PC-derived algorithms for designing
privacy-aware DAG learning algorithms.

To make the PC algorithm fit into the federated learning
setting, we face two challenging issues. First, since federated
learning is a distributed learning paradigm while the PC
algorithm is a centralized type of methods, it is challeng-
ing to seamlessly adapt the PC algorithm to the federated
learning paradigm. Second, in the PC algorithm, learning
separation sets is the key to orient edges. If adapting the PC
algorithm to federated learning, different clients may have
different separations sets for two non-adjacent variables. It
is challenging on how to identify consistent separation sets

2

in the federated learning setting.
To tackle the issues, our contributions are as follows.

• We propose a novel federated PC (FedPC) algo-
rithm for privacy-aware causal structure learning
in the federated learning setting. FedPC comprises
two novel subroutines, FedSkele and FedOrien, to
address the above two challenging issues.

• We design the FedSkele subroutine with a novel
layer-wise aggregation strategy to seamlessly adapt
the PC algorithm to the federated learning paradigm
for skeleton learning. This layer-wise strategy en-
ables each client to share and update its skeleton
parameters learnt at each layer of the FedPC algorith-
m at the server without sharing their original data.
Moreover, this strategy can guarantee that the sub-
routine naturally converges without requiring any
special parameters.

• We design the FedOrien subroutine with an effective
strategy to identify consistent separation sets across
clients for accurate edge orientation without central-
izing data from each client to the server.

• We have conducted extensive experiments using
synthetic, benchmark, and real datasets, and have
compared FedPC with the state-of-the-art algorithms
to demonstrate the effectiveness of FedPC.

2 RELATED WORK

In the past decades, many algorithms have been designed
for learning DAGs from observed data for causal structure
learning [13]. In general, existing DAG learning algorithms
are categorized into three types, score-based, constraint-
based, and hybrid approaches. Score-based algorithms, such
as GES [14] and GGSL [15], use a scoring function and a
greedy search method to learn a DAG with the highest score
by searching over all possible DAGs in a dataset and the
representative algorithms. Constraint-based methods, such
as PC and FCI [5], employ conditional independence (CI)
tests to first learn a skeleton of a DAG, then orient the edges
in the skeleton. The hybrid methods, such as MMHC [16],
BCSL [17] and ADL [18], are the combinations of score-
based and constraint-based methods. The score-based and
constraint-based methods often return a completed partially
DAG (CPDAG), i.e., a Markov equivalence class.

Zheng et al. [19] recently proposed to learn DAGs using
gradient-based methods and designed the NOTEARS algo-
rithm. NOTEARS defines a DAG as a weighted adjacency
matrix and formulates the acyclic constraint as an equali-
ty acyclicity constraint and find the DAG using gradient-
based methods with least squares loss. NOTEARS is de-
signed under the assumption of the linear relations between
variables. Subsequent works have extended NOTEARS to
handle nonlinear cases, such as GOLEM [20] and DAG-
NoCurl [21]. Another kind of methods employ different
types of deep neural networks and a series of algorithms
for learning DAGs. For example, DAG-GNN [22], GraN-
DAG [23], NOTEARS-MLP [24] are some of the methods
proposed. Moreover, the MCSL (Masked gradient-based
Causal Structure Learning) algorithm [25] is also a gradient-
based causal structure learning method. By using the binary
mask, the results are mostly near either zero or one, so that

the edges are easily identified by the threshold. We refer
readers to the recent two survey papers of DAG learning
for more details [13], [26].

In addition to the algorithms designed to work only
on a single dataset, there is a line of work that is able to
learn causal structures directly from multiple datasets. On
the one hand, most of these methods require the multiple
datasets with non-identical sets but sharing a small common
set of variables [27], [28]. On the other hand, all of these
algorithms do not consider data privacy problems.

Recently, Xiong et al. [29] presented a causal inference
algorithm in the federated setting, but this algorithm does
not learn causal structures. It aims to calculate causal effect-
s. The closely related federated DAG learning algorithms
using gradient-based optimization are FedDAG proposed
by Gao et al. [30] and NOTEARS-ADMM proposed by Ng
and Zhang [31]. NOTEARS-ADMM uses the alternating
direction method of multipliers (ADMM), such that only
the model parameters have to be exchanged during the opti-
mization process and is capable of handling both linear and
nonlinear cases. In contrast, FedDAG proposes a two-level
structure consisting of a graph structure learning part and a
mechanism approximating part, separately learns the mech-
anisms on local data and jointly learns the DAG structure
to handle the data heterogeneity elegantly. Furthermore, the
FedDAG method is based on MCSL [21] that uses binary
masks, resulting in a binary adjacency matrix instead of
a real-valued one. However, these methods often require
employing complex neural network models or optimiza-
tion techniques to achieve satisfactory performance, which
can result in high computational overhead. In addition,
although existing methods perform well on synthetic linear
or nonlinear datasets, they may not be effective on discrete
datasets.

In summary, many algorithms have been proposed for
learning DAGs, but few methods have been designed for
learning causal structures by considering data privacy prob-
lems. In this paper, we propose to develop new algorithms
of causal structure learning by considering data privacy.

3 METHODOLOGY

In this section, we first briefly describe the original PC
algorithm in Section 3.1, then present our proposed FedPC
algorithm in Section 3.2, and finally discuss the privacy and
costs of FedPC in Section 3.3. Table 1 provides a summary
of the notations frequently used in this paper.

3.1 The PC algorithm

Let X = {X1, X2, ..., Xm} be the set of random variables in
a dataset, S an undirected graph representing the skeleton
of a DAG over X , and ne(S, Xi) the set of direct neigh-
bors of Xi in S , and Sc the complete (fully connected)
undirected graph over X . SepSet(Xi, Xj) is a separation
set (conditioning set) that makes Xi and Xj conditionally
independent, and Xi ⊥⊥ Xj |Z (Xi ⊥6⊥ Xj |Z) represents that
given a conditioning set Z, Xi and Xj are conditionally
independent (dependent). The size of a conditioning set is
denoted as `. An unshielded triple < Xi, Xk, Xj > in S
denotes the local skeleton Xi −Xk −Xj where Xi and Xj

3

TABLE 1
Summary of Notations.

Notation Meaning

X the set of variables in a dataset
Xi, Xj a single variable in X (i, j = 1, 2, ...,m)
N number of clients
Xi ⊥⊥Xj |Z Xiand Xj are conditionally dependent given Z
Xi ⊥6⊥Xj |Z Xiand Xj are conditionally independent given Z
ne(S, Xi) the set of direct neighbors of Xi in S
SepSet(Xi, Xj) a separation set of Xi from Xj

` the size of a separation set
Z a separation set with the length `
S a direct acyclic graph over X
Sc the complete undirected graph over X
S` the skeleton S` obtained at the `-th layer
S∗ the final skeleton obtained in FedSkele subroutine
< Xi, Xk, Xj > an unshield triple Xi −Xk −Xj in the skeleton
α the significance level of the statistical test

are not directly adjacent, but Xk is a direct neighbour of
Xi and Xj . An unshielded triple < Xi, Xk, Xj > forms a
v-structure, i.e., Xi → Xk ← Xj , if both Xi ⊥⊥ Xj |Z and
Xk /∈ Z hold.

The well-known PC algorithm [5] as a constraint-based
method consists of the following three steps. Step 1 takes
Sc as the initial skeleton, then updates the skeleton layer
by layer by conducting conditional independence (CI) tests
with an increasing value of `.

The value of ` initially is set 0. At the first layer where
` = 0 and Sc is taken as the initial skeleton, all pairs of
adjacent variables in Sc (Sc is iteratively updated at this
layer) are tested with an empty conditioning set Z (i.e.
` = |Z| = 0). If Xi ⊥⊥ Xj holds, the edge between Xi and
Xj is removed from Sc and the empty set Z is saved as a
separation set in both SepSet(Xi, Xj) and SepSet(Xj , Xi).
After all pairs of adjacent variables have been checked,
the algorithm proceeds to the next layer with ` = 1, and
the skeleton obtained at the end of this layer is marked
as S0. Then at the layer with ` = 1 and S0 as the initial
skeleton, the algorithm chooses a pair of adjacent variables
(Xi, Xj) in S0, and checks whether there exsits a subset
Z ⊆ ne(S0, Xi)\{Xj}with |Z| = 1 which makes Xi⊥⊥Xj |Z
hold. If so, the edge between Xi and Xj is deleted from S0
and the conditioning set Z is saved in the separation sets for
both Xi and Xj . If all pairs of adjacent variables have been
checked, the algorithm increases ` by one up to 2 and the
skeleton obtained at the layer is marked as S1. This process
continuous layer by layer until the sizes of direct neighbors
of all variables in the skeleton of current layer are smaller
than `. We record the final skeleton as S∗.

Step 2 identifies the v-structures by considering all un-
shielded triples in S∗, and orients an unshielded triple
< Xi, Xk, Xj > as a v-structure if and only if Xk /∈
SepSet(Xi, Xj). Finally, Step 3 orients as many of the re-
maining undirected edges as possible using the Meek rules
[32]. The Meek rules require that orienting a remaining
undirected edge does not form a new v-structure or a
directed cycle in the current structure.

3.2 The proposed FedPC algorithm
Since the PC algorithm works only on a single dataset, a
simple strategy to adapt the PC algorithm into federated
learning is to learn a skeleton at each client independently,

then aggregate the learnt skeletons and orient edges at
a central server. However, the strategy has two potential
problems. First, the different qualities of data (e.g. noise
or small-sized samples) at different clients may lead to
learnt skeletons with highly varying qualities, then directly
aggregating them may not get a satisfactory final skeleton.
Second, during skeleton learning, when Xi and Xj are
conditionally independent, they may have a different sep-
aration set at each client due to the data quality problems,
while an inaccurate separation set will lead to errors in edge
orientations.

To protect data privacy and tackle the above two prob-
lems, we have designed the FedPC algorithm to work in
the federated setting and have two subroutines, FedSkele
(Federated Skeleton construction) and FedOrien (Federated
edge Orientation).

Client 1

Database 1

l-th layer

Client 2

Database 2

Client N

Database N

1

2

ServerServer

3

4

Learning skeleton

Sending skeleton

Aggregating skeleton

Updating skeleton

Phase 1

Phase 2

Phase 3

Phase 4

l-th layer

l-th layer

1= +

1−

1−

1−

1

1

2

2

N

N

1

1

2

2

1− =

Fig. 1. The FedSkele subroutine of FedPC

3.2.1 The FedSkele subroutine.
Assuming that there areN clients (labeled as Client 1, Client
2,· · ·, Client N) and one central server. Inspired by the
layer-by-layer skeleton learning idea of the PC algorithm,
FedSkele is equipped with a novel layer-wise aggregation
strategy to iteratively learn the skeleton with four phases in
each layer as shown in Figure 1.

FedSkele starts from the layer of ` = 0 with a complete
undirected graph Sc.

Phase 1: Each client learns the skeleton at the `-th
layer independently. At the `-th layer, each client uses the
FedSkele subroutine and its local dataset to update the ini-
tial skeleton (Sc when ` = 0, or the skeleton S`−1 obtained
at the (` − 1)-th layer) by first setting the size of the condi-
tioning set for CI tests to `. Then it traverses each adjacent
variable pairs (Xi, Xj) in S`−1 (or Sc if ` = 0), and checks
if ∃Z ⊆ ne(S`−1, Xi) \ {Xj} (or ∃Z ⊆ ne(Sc, Xi) \ {Xj} if
` = 0) with the size of ` makes Xi and Xj independent. If
so, the edge between Xi and Xj is removed from S`−1 (or
Sc). The skeleton learnt at the end of this phase at client n
is S`n (n ∈ {1, 2, . . . , N}).

Phase 2: Each client sends the skeleton learnt at the end
of Phase 1, i.e., S`n (n ∈ {1, 2, . . . , N}) simultaneously to the
server at the `-th layer.

4

ServerServer

for each unshielded triple

, ,i k jX X X in *

iX

kX

jX

Client 1

Database 1

Client 2

Client N

2

1(,)i jX XSepSet

, ,i k jX X X

2

, ,i k jX X X

2

, ,i k jX X X

2(,)i jX XSepSet

(,)Ni jX XSepSet

Database N

Database 2

with the highest p-value

(,)i jX XSepSet

next triple

4

5

Finding separation set

Transmitting separation set

Identifying v-structure

Orienting edge

Phase 2

Phase 3

Phase 4

Phase 5

Sending unshielded triplePhase 1

1

1

1

3

Fig. 2. The FedOrien subroutine of FedPC

Phase 3: The server aggregates all skeletons learnt at
the `-th layer. The server receives the learnt skeletons from
all clients, then aggregates these skeletons by merging S`1,
S`2,· · ·, S`N into a global S`. Specifically, for each pair of
variables Xi and Xj , if more than 30% (a default value)
of clients compute that there is an edge between Xi and Xj

at the `-th layer, the edge is kept in S`. In Section 4.5, we
will discuss why we use 30% as the default threshold.

Phase 4: The server sends the aggregated skeleton S` to
each client as the initial skeleton for skeleton learning at the
(`+1)-th layer, if the value of ` is smaller than the maximum
number of direct neighbors that a variable has in the `-th
layer skeletons learnt by all clients. Otherwise, the FedSkele
subroutine is finished and the FedOrien subroutine starts.

This layer-wise aggregation strategy enables each client
only to send and update its skeleton learnt at each layer
at the server while protects the data privacy of each client.
Then at each layer, by Phases 3 and 4, each client can achieve
a high quality of an initial skeleton from the server for skele-
ton learning especially for the client owning low-quality
data. For example, due to a small-sized sample problem,
at the `-th layer, if a true edge is wrongly deleted and not
in S`n at Client n, by the aggregation strategy, the edge
could be added to the skeleton S` for the (` + 1)-th layer
skeleton learning of Client n. Thus this layer-wise strategy
alleviates the problem of data quality. Additionally, as we
discussed above, through the number of direct neighbors
of a variable in the skeleton to control the layer size `,
the strategy guarantees that the FedSkele subroutine can
converge to a high-quality skeleton without requiring any
special parameters.

3.2.2 The FedOrien subroutine.
Let S∗ denote the final skeleton obtained in the FedSkele
subroutine. The FedOrien subroutine first identifies v-

structures in S∗, then orients the remaining undirected
edges. Note that Our proposed FedPC algorithm uses the
PC algorithm to learn the skeleton and orient the undirected
edges, hence the output of FedPC is a CPDAG instead
of a DAG. After five phases in the FedSkele subroutine,
we employ the acyclic constraint technology proposed in
reference [5] to transform CPDAG returned by FedPC into
DAG.

For an unshielded triple < Xi, Xk, Xj > in S∗, to check
whether the triple is a v-structure, as discussed above, we
need to have the separation set of Xi and Xj which makes
Xi and Xj conditionally independent. In fact, we can attain
such a separation set in the FedSkele subroutine. However,
due to potential data quality problems at clients, different
clients may have different separation sets for an unshielded
triple< Xi, Xk, Xj > in S∗. In addition, S∗ is an aggregated
skeleton, then the separation set for an unshielded triple
< Xi, Xk, Xj > in S∗ may be different from those sepa-
ration sets attained at the clients in the FedSkele subrou-
tine. Therefore FedPC does not save separation sets in the
FedSkele subroutine. But this brings challenges for finding a
separation set for the unshielded triple < Xi, Xk, Xj > that
is consistent with S∗ for v-structure learning in the FedOrien
subroutine.

Since each client does not share its raw data with the
server, the FedOrien subroutine cannot directly compute
the separation set for any non-adjacent variables in S∗ at
the server. Thus we have designed an effective strategy
for the FedOrien subroutine to identify consistent sepa-
ration sets for learning v-structures in S∗ across clients.
To validate the effectiveness of this proposed strategy, in
experiments, we also present a FedPC-simple-II algorithm.
It saves separation sets in the FedSkele subroutine and takes
the intersection of the separation sets of two non-adjacent
variables learnt from each client as their separation set in
S∗.

As outlined in Figure 2, the FedOrien subroutine consists
of the following five phases.

Phase 1 (Sending unshielded triples): The server first
identifies all the unshielded triples in S∗, then sends each
of them and the set of their direct neighors to each client for
learning separation sets. Here we use an unshielded triple
< Xi, Xk, Xj > in S∗ as an example. During this phase, the
server sends the triple < Xi, Xk, Xj > and ne(S∗, Xi) to
each client. Then the FedOrien subroutine asks each client
to independently find a subset Z ⊆ ne(S∗, Xi) \ {Xj} that
makes Xi ⊥⊥Xj |Z hold using its local data.

Phase 2 (Finding separation sets): Assume the null
hypothesis of “H0 : Xi ⊥⊥Xj |Z”, for a CI test of Xi and Xj

given a subset Z, Xi⊥⊥Xj |Z holds, if and only if the p-value
is greater than α (α is the significance level of the statistical
test). At Phase 2, if a client finds that Xi⊥⊥Xj |Z holds using
its local data, the client saves the separation set Z and the
p-value of the CI test . When finding all separation sets, the
client selects the separation set with the highest p-value as
the consistent separation set and send it to the server.

Phase 3 (Transmitting separation set): To achieve a con-
sistent separation set for identifying whether the unshielded
triple < Xi, Xk, Xj > in S∗ is a v-structure, all clients
send separation sets and p-values about the unshielded
triple < Xi, Xk, Xj > to the server. Then at the sever

5

the FedOrien subroutine selects the separation set with the
highest p-value from those separation sets as the consistent
separation set for v-structure learning. The rationale behind
the idea is described as follows. For an unshielded triple
< Xi, Xk, Xj > in S∗, Xi and Xj are assumed that they
are independent in the skeleton S∗. Thus, if a CI test of Xi

and Xj given a separation set with the highest p-value, the
separation set has a high probability to make Xi and Xj

really independent and to be a true separation set in the
underlying DAG. Then this kind of separation sets can help
us identify accurate v structures.

Phase 4 (Identifying v-structure): Based on the selected
consistent separation sets for all unshielded triples in S∗, at
the server, the FedOrien algorithm identifies the v-structures
from all unshielded triples without access to each client’s
data. For example, for the unshielded triple < Xi, Xk, Xj >
in S∗, ifXk is not in the separation set ofXi andXj found in
Phase 3, the FedOrien subroutine considers < Xi, Xk, Xj >
as a v-structure and orients it as Xi → Xk ← Xj .

Phase 5 (Orienting remaining edges): Based on the
learnt v-structures, at the server, the FedOrien subroutine
orients the remaining undirected edges as many as possible
using the Meek rules without requiring clients’ data.

3.3 Privacy preservation and communication cost

Data privacy when using FedPC. In a federated learning
setting, when the clients and the sever exchange causal
skeletons, it would reveal the independence/dependence
relationships between variables. To protect the semantic in-
formation of variables while avoiding direct communication
between clients, we design an easily implementable privacy
protection strategy in the FedPC algorithm. Specifically, we
require the remote server to send instructions to each client,
requesting them to sort and assign unique identifiers (e.g.,
“1”, “2”, “3”, ...) to the semantic information of all variables
based on their alphabetical order. If variables share the same
first letter, they are further sorted based on the second letter
of their semantic information, and so on. Each client then
sends only the assigned identifiers to the remote server for
aggregation (we provide an illustrative example of this strat-
egy in Section S-2 of the Supplementary Material.). Given
our assumption that the feature space dimensions are the
same across different clients, this strategy ensures variable
alignment without the need for communication between
clients, while maintaining the confidentiality of variable
semantics from the remote server. Meanwhile, compared
with existing federated causal structure learning algorithm-
s, FedPC exchanges the skeleton without including edge
directions, which further reduces the possibility of leaking
sensitive information indirectly.

Communication costs of FedPC. The communication
costs of FedPC are analyzed as follows. In the FedSkele
subroutine, at each layer, each client needs to send to and
receive from the server an adjacency matrix respectively.
Since FedPC uses the layer-wise aggregation strategy to
learn skeletons, it seems that there might have many com-
munication rounds between the server and clients. In fact,
the communication costs can be managed and regulated
by the maximum size of direct neighbors of a variable in
the currently learnt skeleton. As we discussed in Section

TABLE 2
Details of the five benchmark Bayesian networks

Network Number of
variables

Number of
edges

Maximum
in/out-degree

alarm 37 46 4/5
insurance 27 52 3/7
win95pts 76 112 7/10

andes 223 338 6/12
pigs 441 592 2/39

4.4, as the value of ` increases, falsely direct neighbors
will be removed from the currently learnt skeleton and the
sizes of direct neighbors of the variables become small. The
FedSkele subroutine ends if the value of ` is bigger than
the sizes of direct neighbors of all variables in the currently
learnt skeleton. Thus, the convergence of this subroutine
is determined by the maximum size of direct neighbors
of a variable in the learnt skeleton. The subroutine often
converges with a small value of `, especially with a spare
underlying DAG. On average, the parameter converges
when the value of ` lies between 3 and 5. This makes the
communication costs of FedPC predictable and adjustable,
and the system can be scaled up or down depending on the
communication resources available.

4 EXPERIMENTS

In this section, we conduct experiments to verify the effec-
tiveness of FedPC against its rivals. We first describe the
experimental settings in Section 4.1, then discuss the exper-
imental results on synthetic and real datasets in Sections 4.2
and 4.3, respectively. Finally, we analyze the parameters
related to FedPC in Section 4.4 and 4.5.

4.1 Experiment settings
4.1.1 Datasets.
The datasets used in the experiments include the following
synthetic and real datasets.

We assume that there are K data samples in a dataset
andN clients exists, andN lies in {3, 5, 10, 15}. To introduce
unevenness, we randomly assigned the data samples to
each client while ensuring that each client contains at least
K
N∗2 data samples. This approach aims to ensure that the
data distribution is not heavily skewed towards any specific
client. The dataset in each client has the same set of variables
and we assume that the dataset in each client is generated
from the same ground-truth DAG.

• Benchmark Bayesian network (BN) datasets. We
use five benchmark BNs, alarm, insurance, win95pts,
andes and pigs, to generate five discrete datasets,
respectively. Each dataset contained 5000 samples.
The details of the five benchmark BNs are presented
in Table 2.

• Synthetic datasets. We conduct FedPC on synthetic
linear and nonlinear datasets. We present experimen-
tal results of FedPC on linear datasets in Section 4.2,
and the results on nonlinear datasets in Section S-1-3
in the Supplementary Material. For the linear syn-
thetic datasets, we generate five continuous datasets

6

using an open-source toolkit [33] with the number of
variables to 10, 20, 50, 100 and 300 respectively. Each
synthetic dataset contains 5000 continuous samples.
The generative process employs a linear causal mech-
anism represented as follows:

y = XW +×E, (1)

where +× denotes either addition or multiplication,
X denotes the vector of causes, and E represents
the noise variable accounting for all unobserved
variables. For the nonlinear synthetic datasets, the
causal mechanism used in the generative process
is Gaussian Process (GP), and the mechanisms are
represented as:

y = GP (X) +×E. (2)

The proportion of noise in the mechanisms is set
to 0.4. Gaussian noise was used in the generative
process. On nonlinear datasets, we utilize the Kernel-
based Conditional Independence test (KCI-test) [34]
instead of Fisher’s Z Conditional Independence test
for detecting nonlinear dependencies.

• Real dataset. We also compare FedPC with its ri-
vals on a real biological dataset with 853 samples,
Sachs [35]. Sachs is a protein signaling network ex-
pressing the level of different proteins and phospho-
lipids in human cells. It is commonly considered as
a benchmark graphical model with 11 nodes (cell
types) and 17 edges.

4.1.2 Evaluation metrics.
To evaluate the performance of FedPC with its rivals, we
use the following frequently used metrics in causal structure
learning (More evaluation metrics and the corresponding
results please see the Supplementary Material).

• SHD (Structural Hamming Distance). The value of
SHD is calculated by comparing the learnt causal
structure with the true causal structure. Specifically,
the value of SHD is the sum of undirected edges,
reverse edges, missing edges and extra edges. In Sec-
tion S-1 of the Supplementary Material, we present
reverse, extra, miss metrics of our method and its
rivals to further validate the effectiveness of our
method.

• F1. The F1 measure is a comprehensive eval-
uation metric, and it is calculated as F1 =
2∗Recall∗Precision
Recall+Precision . Precision is equal to the number of

correctly predicted arrowheads in the output divided
by the number of edges in the output of an algorithm,
while Recall is the number of correctly predicted
arrowheads in the output divided by the number
of true arrowheads in the true causal structure. We
present more experimental results in Section S-1 of
the Supplementary Material, where Precision and
Recall are shown to compare the performance of
FedPC with that of its rivals. SHD and F1 are used
to measure structure error and structure correctness,
respectively.

• Time. We report running time (in seconds) as the
efficiency measure of different algorithms.

FedPC utilizes the PC algorithm to learn the skeleton
and orient the undirected edges in the causal graph. There-
fore, the output of FedPC is a CPDAG, which contains
both directed and undirected edges. We employ the acyclic
constraint technology proposed in reference [5] to transform
CPDAGs returned by FedPC into DAGs, and then calculat-
ed the Structural Hamming Distance (SHD) and F1 scores of
these DAGs.

4.1.3 Comparison methods.
FedPC is compared with 8 rivals. The comparison methods
are as follows:

(1) NOTEARS-Avg. We run the NOTEARS [19] algorith-
m at each client independently, then calculate the averaging
results of SHD and F1 of all learnt DAGs as the final results.

(2) NOTEARS-ADMM. We run the NOTEARS-ADMM
algorithm [31], and then calculate the SHD and F1 of the
learnt DAG as the final results.

(3) FedDAG. We run the FedDAG [30] algorithm and
then calculate the SHD and F1 of the learnt DAG as the final
results.

(4) PC-Avg. We first run the PC algorithm at each client
independently for obtaining N DAGs (N is the number of
clients), and then calculate the averaging SHD values and
F1 values of all learnt DAGs as the final results of PC-Avg.

(5) PC-Best. We first run the PC algorithm at each client
independently to get N DAGs, and then select the DAG
with the lowest SHD value as the final output.

(6) PC-All. We centralize all clients’ data to a single
dataset and run the PC algorithm on it.

(7) FedPC-Simple-I. We run the PC algorithm at each
client independently to learn the DAGs, then aggregate all
learnt DAGs at the server by the strategy that if more than
30% (the same ratio as our method) of the learnt DAGs
contain a directed edge between two variables, this edge
is kept in the final DAG.

(8) FedPC-Simple-II. We run the PC algorithm to learn
the skeletons independently at each client, then aggregate
all learnt skeletons at the server by the strategy that if an
undirected edge between two variables exists on more than
30% of the skeletons, this edge will be kept in the final
skeleton. Then we take the intersection of the separation
sets between two variables learnt from each client to learn
v-structures. This is an ablation study of our proposed algo-
rithm, by removing the layer-wise strategy of the FedOrien
subroutine.

4.1.4 Implementation Details.
All experiments were conducted on a computer with Intel
Core i9-10900F 2.80-GHz CPU and 32-GB memory. The sig-
nificance level for CI tests is set to 0.01. For PC, NOTEARS,
and NOTEARS-ADMM, we used the source codes provided
by their authors. NOTEARS-Avg and NOTEARS-ADMM
use 0.3 as the threshold to prune edges in a DAG and
FedDAG uses 0.5 as the threshold, those are the same as
the original paper. The source codes of FedPC are provided
in the Supplementary Materials.

4.2 Results on synthetic and benchmark data
In the section, we report SHD, F1 and running time of FedPC
and its rivals, respectively.

7

4.2.1 The SHD metric.
Figures 3 to 4 (the top row in each figure) show the SHD
values of FedPC and its 8 rivals using five discrete BN
datasets and five continuous synthetic datasets, respectively.
The smaller value of SHD denotes better performance of an
algorithm. We can see that FedPC outperforms its six rivals.

• The value of SHD of FedPC is much smaller than that
of NOTEARS-Avg, NOTEARS-ADMM and FedDAG
on all datasets. Since it is hard for the two rivals
to select a suitable threshold to prune false directed
edges, the DAGs learnt by these two rivals often
contain a larger number of false edges, leading to
inaccurate DAGs.

• FedPC is superior to FedPC-Simple-I and FedPC-
Simple-II on the SHD metric. FedPC-Simple-I di-
rectly applies the PC algorithm to each client and
directly aggregates the learnt DAGs to get the final
DAG. FedPC-Simple-II simply aggregates skeletons
and takes the intersection of the separation sets to
orient edges. However, FedPC uses a layer-wise ag-
gregation strategy for accurate skeleton learning and
a consistent separation set identification strategy for
accurate edge orientations.

• FedPC is better than PC-Avg and PC-Best, since
PC-Avg and PC-Best do not exchange information
between a client and the server. This further verifies
the effectiveness of the two strategies of FedPC. The
results obtained by FedPC may not be as accurate
as those have a sufficient sample size like PC-All
because PC-All centralizes all independent clients
datasets. However, on synthetic datasets, FedPC per-
forms better than PC-All. The explanation is that
synthetic datasets is ideal while benchmark networks
and the real dataset are not ideal datasets. So data
samples with uncertainty cannot be generated in
synthetic dataset.

• We can observe that as the number of clients increas-
es, the Structural Hamming distance (SHD) metric
increases while the F1 metric decreases. This is due to
the reduced number of samples per client when the
total number of data samples among all clients. The
decrease in sample size interferes with the accuracy
of the conditional independence test and reduces the
confidence in accepting the null hypothesis of con-
ditional independence between two variables. Con-
sequently, a larger number of erroneous separation
sets are identified, leading to incorrect identifica-
tion of v-structures and a decline in the algorithm’s
performance. However, to mitigate the impact of
the reduced sample size, we choose the separation
set with the highest p-value, indicating the highest
likelihood of conditional independence between the
two variables. This approach minimizes the influence
of the smaller sample size on the final determination
of independence or dependence.

4.2.2 The F1 metric.
Figures 3 to 4 (the second row in each figure) show the F1
values of FedPC and its rivals using five benchmark BN
datasets and five synthetic datasets, respectively. The higher

value of F1 denotes better performance of an algorithm. We
can see that FedPC achieves a higher F1 than its rivals. The
explanations are as follows.

FedDAG identifies most of correct directed edges while
many wrong edges are included. NOTEARS-Avg and
NOTEARS-ADMM identify only a small number of correct
directed edges, while PC-Avg and PC-Best wrongly remove
many correct edges. FedPC-Simple-I and FedPC-Simple-
II just aggregate the DAGs and skeletons learnt by each
client and lack an effective strategy to identify consistent
separation sets, thus there are many false edges in the final
result.

In addition, NOTEARS-Avg and NOTEARS-ADMM are
sensitive to the user-defined threshold. Different clients may
have different thresholds for edge pruning. An unsuitable
threshold may prune either correct edges or retain false
edges.

As the number of clients increases, using the five BN
datasets, the F1 and SHD values of FedPC and its six rivals
decrease, while they do not change much, even increase
a little. The possible explanation is that PC-derived algo-
rithms employ the chi-squared test for discrete data while
using the Fisher Z test for continuous data for CI tests. In
general, PC-derived algorithms need more data samples for
discrete BN data sets than continuous synthetic data for
reliable CI tests. Then as the number of clients increases,
the number of data samples of each client becomes insuf-
ficient, accordingly the performance of FedPC and its six
rivals degrades a little using discrete data. However, with
FedPC a client owns insufficient data examples leading to
incorrect CI tests, the layer-wise aggregation strategy makes
FedPC exchange enough information between clients and
the server for accurate DAG learning.

To give a comprehensive performance comparison be-
tween FedPC with its rivals, in Section 4.2.4, we conducted
statistical tests to show that FedPC is significantly better
than other methods.

4.2.3 Time Efficiency.

Figures 3 to 4 (the last row in each figure) show the exe-
cution time of FedPC and its rivals on the five discrete BN
datasets and the five continuous synthetic datasets. With the
five continuous datasets and most BN datasets, FedPC is
faster than NOTEARS-Avg and NOTEARS-ADMM. FedPC
is a little slower than PC-Avg, PC-Best, FedPC-Simple-I and
FedPC-Simple-II since FedPC needs more time than those
baselines for communications between clients and the server
during skeleton learning and it also needs to find separation
sets at each clients for getting consistent separation sets. As
the number of clients increases, the running time of most
algorithms increases accordingly. FedPC spends more time
on the pigs dataset since the size of direct neighbors of
variables in the pigs dataset is much larger than that in the
other datasets, leading to more time to learn skeletons and
separation sets. In summary, at most times, FedPC is com-
petitive with PC-Avg, PC-Best, FedPC-Simple-I and FedPC-
Simple-II on running time and faster than NOTEARS-Avg
and NOTEARS-ADMM.

8

3 5 10 15
Number of clients

25

50

75
SH

D
(

)

alarm

FedPC
PC-All

PC-Avg
PC-Best

FedPC-Simple-I
FedPC-Simple-II

NOTEARS-Avg
NOTEARS-ADMM

FedDAG

3 5 10 15
Number of clients

25

50

75

100

insurance

3 5 10 15
Number of clients

60

80

100

win95pts

3 5 10 15
Number of clients

100

200

300

andes

3 5 10 15
Number of clients

0

1000

2000
pigs

3 5 10 15
Number of clients

0.25

0.50

0.75

F1
(

)

alarm

3 5 10 15
Number of clients

0.2

0.4

0.6

insurance

3 5 10 15
Number of clients

0.0

0.2

0.4

0.6

win95pts

3 5 10 15
Number of clients

0.00

0.25

0.50

0.75

andes

3 5 10 15
Number of clients

0.25

0.50

0.75

1.00
pigs

3 5 10 15
Number of clients

0

10000

20000

Ti
m

e(
)

alarm

3 5 10 15
Number of clients

0

2500

5000

7500

insurance

3 5 10 15
Number of clients

0

100

200

win95pts

3 5 10 15
Number of clients

0

250

500

750

andes

3 5 10 15
Number of clients

0

2000

4000

pigs

Fig. 3. Results on 5 benchmark BN datasets

3 5 10 15
Number of clients

5

10

15

20

SH
D

(
)

10 nodes

FedPC
PC-All

PC-Avg
PC-Best

FedPC-Simple-I
FedPC-Simple-II

NOTEARS-Avg
NOTEARS-ADMM

FedDAG

3 5 10 15
Number of clients

20

40

20 nodes

3 5 10 15
Number of clients

50

100

50 nodes

3 5 10 15
Number of clients

100

200

100 nodes

3 5 10 15
Number of clients

1000

2000

300 nodes

3 5 10 15
Number of clients

0.25

0.50

0.75

F1
(

)

10 nodes

3 5 10 15
Number of clients

0.2

0.4

0.6

20 nodes

3 5 10 15
Number of clients

0.2

0.4

0.6

0.8
50 nodes

3 5 10 15
Number of clients

0.2

0.4

0.6

100 nodes

3 5 10 15
Number of clients

0.2

0.4

0.6

300 nodes

3 5 10 15
Number of clients

0

200

400

Ti
m

e(
)

10 nodes

3 5 10 15
Number of clients

0

1000

2000

3000

20 nodes

3 5 10 15
Number of clients

0

10000

20000

30000

50 nodes

3 5 10 15
Number of clients

0

250

500

750

100 nodes

3 5 10 15
Number of clients

0

2500

5000

7500

300 nodes

Fig. 4. Results of 5 synthetic datasets

9

4.2.4 Statistical Tests.
To give a comprehensive performance comparison between
FedPC with its rivals, the Friedman test and Nemenyi
test [36] are performed.

We first perform the Friedman test at the 0.05 signifi-
cance level under the null-hypothesis, which states that the
performance of all algorithms is the same on all datasets
(i.e., the average ranks of all algorithms are equivalent).
Then, we perform the Nemenyi test, which states that the
performance of two algorithms is significantly different
if the corresponding average ranks differ by at least one
critical difference (CD). Note that we only perform these
tests on the datasets where all algorithms can run the results.

Figs. 5(a), (b), (c) and (d) provide the CD diagram-
s, where the average rank of each algorithm is marked
along the axis (lower ranks to the right). FedPC is the
only algorithm that achieves the lowest rank value on both
synthetic and benchmark datasets. On synthetic datasets,
whether F1 metric or SHD metric, we observe that FedPC
achieves a comparable performance against PC-Best and
FedPC-Simple-I, and it is significantly better than the other
algorithms. In terms of the SHD metric of each algorithm
on BN datasets, we note that FedPC significantly outper-
forms NOTEARS-Avg, NOTEARS-ADMM and PC-Avg, and
it achieves a comparable performance against the other
algorithms.

4.3 Results on real data
In this section, we compare FedPC with its rivals on a real
dataset, Sachs [35], and the experimental results are shown
in Figure 6. From Figure 6, we can see that FedPC achieves
the lowest value of SHD regardless of the number of clients.
For the F1 metric, when the number of clients is 5 or 10, the
F1 value of FedPC is significantly higher than that of other
algorithms. Due to the small scale of the Sachs dataset, the
execution time of each algorithm is trival and thus we do
not report the running time in Figure 6.

4.4 Parameter analysis
As discussed above, the value of ` is determined by the
maximum size of direct neighbors of a variable in the
skeleton. Figure 7 shows the relation of the value of ` and
the convergence of FedPC. We can see that the number of
edges in a skeleton gradually decreases when ` is from 0 to
5. On average, the FedSkele subroutine converges when the
value of ` lies between 3 and 5. The possible explanation is
that the underlying DAG of a dataset is often a sparse one.

4.5 Analysis of the ratio of clients.
In Phase 3 of the FedSkele subroutine, a threshold ratio of
30% is chosen to remove or keep an edge in an aggregated
skeleton. This threshold ratio is chosen after considering
that if the ratio is too low, many incorrect edges may be
kept in the skeleton, while if it is too high, many correct
edges may be removed from the skeleton.

To further analyze the effect of the threshold ratio, ex-
periments were conducted with ratios ranging from 20% to
90%. The SHD values of the aggregated skeleton using all
10 datasets were observed, and the values were normalized

CD=2.01

7 6 5 4 3 2 1

1.43 FedPC

2.28 FedPC-Simple-I

2.55 PC-Best

4 PC-Avg

NOTEARS-Avg 6.5
NOTEARS-ADMM 6.4

FedPC-Simple-II 4.85

(a) F1 metric of each algorithm on synthetic dataset.
CD=2.01

7 6 5 4 3 2 1

1.13 FedPC

2.63 PC-Best

2.7 FedPC-Simple-I

3.9 PC-Avg

NOTEARS-Avg 5.2

NOTEARS-ADMM 6.43
FedPC-Simple-II 6.03

(b) SHD metric of each algorithm on synthetic dataset.
CD=2.01

7 6 5 4 3 2 1

1.5 FedPC

2.25 FedPC-Simple-I

2.9 PC-Best

3.8 FedPC-Simple-II

PC-Avg 4.85

NOTEARS-Avg 7
NOTEARS-ADMM 5.7

(c) F1 metric of each algorithm on benchmark datasets.
CD=2.01

7 6 5 4 3 2 1

1.43 FedPC

2.42 FedPC-Simple-I

3.18 PC-Best

3.43 FedPC-Simple-II

NOTEARS-Avg 6.35
NOTEARS-ADMM 5.75

PC-Avg 5.45

(d) SHD metric of each algorithm on benchmark datasets.

Fig. 5. Comparison of FedPC against its rivals with the Nemenyi test.
(the lower the rank value, the better the performance.)

0 1 2 3 4 5 6 7
`

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

lg
(N

um
be

r o
f e

dg
es

)

alarm
insurance

win95pts
andes

pigs
10 nodes

20 nodes
50 nodes

100 nodes
300 nodes

Fig. 7. The value of ` and the convergence of FedPC

using min-max normalization to scale them to a range of
(0, 1). The normalized values of SHD with different ratios
are shown in Figure 8.

Empirical results showed that, in general, the SHD value
first decreases and then increases as the ratio of clients in-
creases. However, the minimum value of SHD was reached
on most of the datasets when the ratio was up to 30%. This
suggests that a threshold ratio of 30% is an appropriate
value for achieving good performance in FedSkele.

10

3 5 10 15
Number of clients

10

20

30

40
SH

D
(

)

Sachs

3 5 10 15
Number of clients

0.2

0.3

0.4

0.5

0.6

F1
(

)

Sachs

FedPC
PC-All

PC-Avg
PC-Best

FedPC-Simple-I
FedPC-Simple-II

NOTEARS-Avg
NOTEARS-ADMM

FedDAG

Fig. 6. Results of the real dataset

20% 30% 40% 50% 60% 70% 80% 90%
Ratio of clients

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 S
H

D

alarm
insurance

win95pts
andes

pigs
10 nodes

20 nodes
50 nodes

100 nodes
300 nodes

Fig. 8. Normalized SHD and the ratio of clients

5 CONCLUSION AND FUTURE WORK

Learning causal structures while preserving data privacy
brings many challenges to traditional causal structure learn-
ing methods. In this paper, we have studied the privacy-
aware causal structure learning problem in the federated
learning setting and have developed a novel FedPC algo-
rithm that seamlessly have the classic PC algorithm into
the federated learning paradigm. Compared to 8 competing
algorithms, FedPC achieves promising performance using
various datasets. Furthermore, the idea of FedPC can be
applied to existing PC-derived algorithms for designing
new algorithms for tackling data privacy.

Meanwhile, we briefly discuss a few possible research
directions for future work. Firstly, it is interesting to sys-
tematically analyze the different strategies for identifying
separation sets for identifying v structures in the FedOrien
subroutine. One strategy is to calculate the p-value for all
possible separation sets of two variables in an unshielded
triple and send them to the server to compute the average
p-value (across different clients) for each separation set, then
select the separation set with the highest p-value. Another
strategy is that we find all separation sets at each client that
meets a given threshold, and send these separation sets to
the server to perform a voting across these separation sets

collected for getting a suitable separation set. Secondly, in
the practical setting, multiple privacy-preserving datasets
may contain hidden variables or heterogeneous, we plan
to extend FedPC to deal with either hidden variables or
heterogeneous data. Thirdly, we will combine FedPC with
IDA [37] for studying privacy-aware cause effect estimation
for robust machine learning. Finally, in practical scenarios,
the variables may differ across clients. It is worth studying
that each client has a different set of variables but all clients
share a common set of variables in federated setting.

ACKNOWLEDGMENTS

This work was supported by the National Key Re-
search and Development Program of China (under grant
2021ZD0111801) and the National Natural Science Founda-
tion of China (under grant 62176082).

REFERENCES

[1] J. Pearl, Causality. Cambridge university press, 2009.
[2] S. Yang, K. Yu, F. Cao, L. Liu, H. Wang, and J. Li, “Learning causal

representations for robust domain adaptation,” IEEE Transactions
on Knowledge and Data Engineering, vol. 35, no. 3, pp. 2750–2764,
2023.

[3] K. Kuang, L. Li, Z. Geng, L. Xu, K. Zhang, B. Liao, H. Huang,
P. Ding, W. Miao, and Z. Jiang, “Causal inference,” Engineering,
vol. 6, no. 3, pp. 253–263, 2020.

[4] X. Guo, K. Yu, L. Liu, F. Cao, and J. Li, “Causal feature
selection with dual correction,” IEEE Transactions on Neural
Networks and Learning Systems, 2022. [Online]. Available:
https://doi.org/10.1109/TNNLS.2022.3178075

[5] P. Spirtes, C. N. Glymour, R. Scheines, and D. Heckerman, Causa-
tion, prediction, and search. MIT press, 2000.

[6] R. Cai, J. Qiao, Z. Zhang, and Z. Hao, “Self: structural equational
likelihood framework for causal discovery,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[7] S. Nie, C. de Campos, and Q. Ji, “Learning bayesian networks with
bounded tree-width via guided search,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 30, no. 1, 2016.

[8] J. M. Mooij, S. Magliacane, and T. Claassen, “Joint causal infer-
ence from multiple contexts,” Journal of Machine Learning Research,
vol. 21, pp. 1–108, 2020.

[9] S. Yang, H. Wang, K. Yu, F. Cao, and X. Wu, “Towards efficient
local causal structure learning,” IEEE Transactions on Big Data,
vol. 8, no. 6, pp. 1592–1609, 2021.

11

[10] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learn-
ing: Concept and applications,” ACM Transactions on Intelligent
Systems and Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[11] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Ar-
cas, “Communication-efficient learning of deep networks from
decentralized data,” in Artificial Intelligence and Statistics. PMLR,
2017, pp. 1273–1282.

[12] D. Colombo, M. H. Maathuis et al., “Order-independent
constraint-based causal structure learning.” Journal of Machine
Learning Research, vol. 15, no. 1, pp. 3741–3782, 2014.

[13] M. J. Vowels, N. C. Camgoz, and R. Bowden, “Dya like dags? a
survey on structure learning and causal discovery,” ACM Comput-
ing Surveys, vol. 55, no. 4, pp. 1–36, 2022.

[14] D. M. Chickering, “Optimal structure identification with greedy
search,” Journal of Machine Learning Research, vol. 3, no. Nov, pp.
507–554, 2002.

[15] T. Gao, K. Fadnis, and M. Campbell, “Local-to-global bayesian net-
work structure learning,” in Proceedings of International Conference
on Machine Learning. PMLR, 2017, pp. 1193–1202.

[16] I. Tsamardinos, L. E. Brown, and C. F. Aliferis, “The max-min hill-
climbing bayesian network structure learning algorithm,” Machine
Learning, vol. 65, no. 1, pp. 31–78, 2006.

[17] X. Guo, Y. Wang, X. Huang, S. Yang, and K. Yu, “Bootstrap-
based causal structure learning,” in Proceedings of the 31st ACM
International Conference on Information & Knowledge Management,
2022, pp. 656–665.

[18] X. Guo, K. Yu, L. Liu, P. Li, and J. Li, “Adaptive skeleton
construction for accurate DAG learning,” IEEE Transactions
on Knowledge and Data Engineering, 2023. [Online]. Available:
https://doi.org/10.1109/TKDE.2023.3265015

[19] X. Zheng, B. Aragam, P. K. Ravikumar, and E. P. Xing, “DAGs
with no tears: Continuous optimization for structure learning,”
Advances in Neural Information Processing Systems, vol. 31, 2018.

[20] I. Ng, A. Ghassami, and K. Zhang, “On the role of sparsity and
dag constraints for learning linear DAGs,” Advances in Neural
Information Processing Systems, vol. 33, pp. 17 943–17 954, 2020.

[21] Y. Yu, T. Gao, N. Yin, and Q. Ji, “DAGs with no curl: An efficient
dag structure learning approach,” in Proceedings of International
Conference on Machine Learning. PMLR, 2021, pp. 12 156–12 166.

[22] Y. Yu, J. Chen, T. Gao, and M. Yu, “Dag-gnn: DAG structure learn-
ing with graph neural networks,” in Proceedings of International
Conference on Machine Learning. PMLR, 2019, pp. 7154–7163.

[23] S. Lachapelle, P. Brouillard, T. Deleu, and S. Lacoste-Julien,
“Gradient-based neural DAG learning,” in International Conference
on Learning Representations. OpenReview.net, 2020. [Online].
Available: https://openreview.net/forum?id=rklbKA4YDS

[24] X. Zheng, C. Dan, B. Aragam, P. Ravikumar, and E. Xing, “Learn-
ing sparse nonparametric dags,” in International Conference on
Artificial Intelligence and Statistics. PMLR, 2020, pp. 3414–3425.

[25] I. Ng, S. Zhu, Z. Fang, H. Li, Z. Chen, and J. Wang, “Masked
gradient-based causal structure learning,” in Proceedings of the 2022
SIAM International Conference on Data Mining (SDM). SIAM, 2022,
pp. 424–432.

[26] C. Glymour, K. Zhang, and P. Spirtes, “Review of causal discovery
methods based on graphical models,” Frontiers in Genetics, vol. 10,
p. 524, 2019.

[27] B. Huang, K. Zhang, M. Gong, and C. Glymour, “Causal discov-
ery from multiple data sets with non-identical variable sets,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
no. 06, 2020, pp. 10 153–10 161.

[28] S. Triantafillou and I. Tsamardinos, “Constraint-based causal dis-
covery from multiple interventions over overlapping variable
sets,” Journal of Machine Learning Research, vol. 16, no. 1, pp. 2147–
2205, 2015.

[29] R. Xiong, A. Koenecke, M. Powell, Z. Shen, J. T. Vogelstein, and
S. Athey, “Federated causal inference in heterogeneous observa-
tional data,” arXiv preprint arXiv:2107.11732, 2021.

[30] E. Gao, J. Chen, L. Shen, T. Liu, M. Gong, and H. Bondell,
“FedDAG: Federated DAG structure learning,” Transactions
on Machine Learning Research, 2023. [Online]. Available:
https://openreview.net/forum?id=MzWgBjZ6Le

[31] I. Ng and K. Zhang, “Towards federated bayesian network struc-
ture learning with continuous optimization,” in Proceedings of In-
ternational Conference on Artificial Intelligence and Statistics. PMLR,
2022, pp. 8095–8111.

[32] C. Meek, “Causal inference and causal explanation with back-
ground knowledge,” in Proceedings of Conference on Uncertainty in
Artificial Intelligence, 1995, pp. 403–410.

[33] D. Kalainathan, O. Goudet, and R. Dutta, “Causal discovery
toolbox: Uncovering causal relationships in python,” Journal of
Machine Learning Research, vol. 21, pp. 37:1–37:5, 2020.

[34] K. Zhang, J. Peters, D. Janzing, and B. Schölkopf, “Kernel-based
conditional independence test and application in causal discov-
ery,” arXiv preprint arXiv:1202.3775, 2012.

[35] K. Sachs, O. Perez, D. Pe’er, D. A. Lauffenburger, and G. P. Nolan,
“Causal protein-signaling networks derived from multiparameter
single-cell data,” Science, vol. 308, no. 5721, pp. 523–529, 2005.

[36] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

[37] M. H. Maathuis, M. Kalisch, and P. Bühlmann, “Estimating high-
dimensional intervention effects from observational data,” The
Annals of Statistics, vol. 37, no. 6A, pp. 3133–3164, 2009.

Jianli Huang received the B.S. degree in com-
puter science from Jiangsu University, Zhen-
jiang, China, in 2021. She is currently pursuing
the masters degree with the School of Computer
Science and Information Engineering, Hefei Uni-
versity of Technology, Hefei.

Her current research interests focus on causal
discovery and federated learning.

Xianjie Guo received the B.S. degree from An-
hui Normal University, Wuhu, China, in 2018.
He is currently pursuing the Ph.D. degree with
the School of Computer Science and Informa-
tion Engineering, Hefei University of Technology,
Hefei, China.

His current research interests include causal
discovery and federated learning.

Kui Yu (Member, IEEE) received the Ph.D. de-
gree in computer science from the Hefei Univer-
sity of Technology, Hefei, China, in 2013.

From 2013 to 2018, he was a research fel-
low of computer science with the University of
South Australia, Adelaide, Australia and Simon
Fraser University, Burnaby, Canada. He is a full
Professor with the School of Computer Science
and Information Engineering, Hefei University of
Technology. His main research interests include
causal discovery and machine learning.

Fuyuan Cao received the M.S. and Ph.D. de-
grees in computer science from Shanxi Univer-
sity, Taiyuan, China, in 2004 and 2010, respec-
tively. He is currently a professor with the school
of computer and information technology, Shanxi
University, China.

His current research interests include machine
learning and clustering analysis.

Jiye Liang (Senior Member, IEEE) received the
M.S. and Ph.D. degrees from Xian Jiaotong U-
niversity, Xian, China, in 1990 and 2001, re-
spectively. He is currently a professor with the
School of Computer and Information Technology,
Shanxi University, Taiyuan, China, where he is
also the director of the Key Laboratory of Com-
putational Intelligence and Chinese Information
Processing of the Ministry of Education.

He has authored more than 170 journal pa-
pers in his research fields. His current research

interests include computational intelligence, granular computing, data
mining, and knowledge discovery.

