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Progressive Skeleton Learning for Effective
Local-to-Global Causal Structure Learning
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Abstract—Causal structure learning (CSL) from observational
data is a crucial objective in various machine learning applica-
tions. Recent advances in CSL have focused on local-to-global
learning, which offers improved efficiency and accuracy. The
local-to-global CSL algorithms first learn the local skeleton of
each variable in a dataset, then construct the global skeleton
by combining these local skeletons, and finally orient edges
to infer causality. However, data quality issues such as noise
and small samples often result in the presence of problematic
asymmetric edges during global skeleton construction, hindering
the creation of a high-quality global skeleton. To address this
challenge, we propose a novel local-to-global CSL algorithm with
a progressive enhancement strategy and make the following novel
contributions: 1) To construct an accurate global skeleton, we
design a novel strategy to iteratively correct asymmetric edges
and progressively improve the accuracy of the global skeleton.
2) Based on the learned accurate global skeleton, we design an
integrated global skeleton orientation strategy to infer the correct
directions of edges for obtaining an accurate and reliable causal
structure. Extensive experiments demonstrate that our method
achieves better performance than the existing CSL methods.

Index Terms—Skeleton learning, Local-to-global causal struc-
ture learning, Asymmetric edges, Progressive learning

I. INTRODUCTION

UNCOVERING causal relations from observational data
(also known as causal discovery) is important for a broad

range of applications, such as Earth system science [1], the de-
velopment of medical treatments [2] and biology [3]. Although
controlled experiments can infer causal relations effectively,
they cannot usually be undertaken due to prohibitive cost, ethi-
cal concerns, or impracticality. For example, to understand the
impact of alcoholism, it would be necessary to force different
individuals to drink. Fortunately, causal graphical modeling
techniques, often based on Directed Acyclic Graphs (DAGs),
can be used to represent causal relationships in complex
systems. In a DAG, a directed edge Xi → Xj is interpreted
as a direct cause (Xi) and direct effect (Xj) relationship [4]–
[7]. The process of learning causal structures (i.e. DAGs) from
observational data has emerged as the primary approach for
inferring causal relationships between variables [8]–[11].

Existing methods for causal structure learning (CSL) [12],
[13] can be mainly divided into global methods and local-
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to-global methods. Global methods, such as PC [14] and
its variant algorithms [15]–[17]; GES [18] and its vari-
ant algorithms [19], [20]; NOTEARS [21] and its deriva-
tive algorithms [22]–[25], use conditional independence (CI)
tests, score-and-search strategies, and continuous optimization
strategies to learn the causal structure over all variables in
a dataset, respectively. However, global CSL is either an
NP-hard problem [26] or requires the utilization of complex
optimization techniques [21] (also intricate neural network
models [22]), resulting in a significant decrease in its scalabil-
ity. Particularly, when the number of variables in a dataset is
large, most existing global CSL algorithms would suffer from
the computational problem. In addition, when a global CSL
algorithm makes mistakes in learning the edges (i.e., missing,
adding or reversing edges), the errors are permanent in the
structure, and escalated in the follow-up learning process,
leading to unsatisfactory accuracy.

To alleviate these two issues (scalability and accuracy),
local-to-global CSL methods have been designed, such as
GSBN [27], SLL+C/G [28], GGSL [29] and F2SL-c/s [30],
which usually consist of three steps: 1) learning the local
skeleton of each variable independently. A local skeleton
often refers to the set of parents and children (PC) of a
target variable in a DAG; 2) constructing the global skeleton
(undirected graph) by merging all local skeletons; 3) orienting
edges in the global skeleton using independence tests [31]–
[33] or score-and-search strategies [18], [34], [35].

Although existing local-to-global CSL methods have made
landmark advances in both efficiency and accuracy, their
performance is still unsatisfactory due to the inevitable data
quality issues (e.g. noise and small sample). Specifically,
the data problems often make CI tests unreliable, yielding
some asymmetric local skeletons. For instance, in Figure 1,
we assume that the true causal structure behind the data is
X1 → X2 → X3 ← X4. The true local skeletons of X2 and
X3 are symmetric, i.e., there is an edge between X2 and X3

in both X2’s local skeleton (X1 −X2 −X3) and X3’s local
skeleton (X2−X3−X4). However, owing to data issues, the
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X3 X4

the learned local skeleton of X2

the learned local skeleton of X3

the true causal structure the constructed global skeleton

Fig. 1. An example to illustrate why existing local-to-global CSL methods
may encounter asymmetric edges.
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Bayesian network Child Child3 Child5 Child10
The total number of edges 25 79 126 257

Number of asymmetric edges 7 25 37 90
Asymmetric proportion 28.00% 31.65% 29.37% 35.02%

Bayesian network Insurance Insurance3 Insurance5 Insurance10
The total number of edges 52 163 284 556

Number of asymmetric edges 14 35 59 130
Asymmetric proportion 26.92% 21.47% 20.77% 23.38%

Bayesian network Alarm Alarm3 Alarm5 Alarm10
The total number of edges 46 149 265 570

Number of asymmetric edges 10 46 76 203
Asymmetric proportion 21.74% 30.87% 28.68% 35.61%

(a) The number of asymmetric edges learned on different datasets.
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(b) Proportions of asymmetric edges that exist and do not exist in the
true causal structure. Ee denotes the proportion of edges that actually
exist in the true causal structure among all the asymmetric edges;
whereas NotEe denotes the proportion of edges that do not actually
exist in the true causal structure. Clearly, Ee+NotEe = 100%.

Fig. 2. The prevalence of asymmetric edges learned by the existing local-to-
global causal structure learning algorithms.

learned local skeletons of X2 and X3 by existing methods
might be asymmetric, as illustrated in Figure 1, where the
learned local skeleton of X2 is X1−X2−X3, but the learned
local skeleton of X3 is X3−X4, which yields an asymmetric
edge X2 ↮ X3. In practice, this situation is ubiquitous and
seriously affects the construction of the global skeleton.

To illustrate the prevalence of asymmetric edges learned
by the existing local-to-global CSL algorithms, we perform
experiments on several commonly used benchmark Bayesian
networks (BNs), including Child, Child3, Child5, Child10, In-
surance, Insurance3, Insurance5, Insurance10, Alarm, Alarm3,
Alarm5 and Alarm101. Specifically, we first utilize these 12
BNs to generate 12 benchmark datasets, each containing 500
samples. Then, using these datasets, we run a classical local
skeleton learning algorithm, HITON-PC [36], to learn the
local skeleton of each variable. Finally, we record the number
of asymmetric edges learned by HINTON-PC on these 12
datasets, and the results are reported in Figure 2(a).

From Figure 2(a), we can observe that the number of
asymmetric edges in each dataset accounts for about 21%
to 36% of the total edges. Further, in Figure 2(b), we also
report the proportion of the asymmetric edges that exist and
do not exist in the true causal structure. Intuitively, both Ee
(the proportion of edges that actually exist in the true DAG
among all the asymmetric edges) and NotEe (the proportion
of edges that do not actually exist in the true DAG among all
the asymmetric edges) fluctuate around 50%.

1These benchmark BNs are publicly available at http://www.bnlearn.com/
bnrepository/

In practice, the problem is that we do not have a suitable
strategy to determine whether an asymmetric edge really
exists in the true causal structure since we do not know the
true structure. Existing local-to-global CSL algorithms usually
adopt either of the following correction methods: 1) the final
global skeleton retains all asymmetric edges (such that, e.g. in
Figure 1, X2 and X3 are considered adjacent in the constructed
global skeleton), or 2) the final global skeleton removes all
asymmetric edges (such that, e.g. in Figure 1, X2 and X3

are considered nonadjacent in the constructed global skeleton).
However, the first method will cause false edges to be added
to the final global skeleton if NotEe ̸= 0; whereas, the second
method will delete true edges from the final global skeleton
if Ee ̸= 0. Further, from the empirical evidence shown in
Figure 2, both Ee and NotEe are around 50%, so any of the
above correction methods can at most fix around 50% of the
wrongly learned edges due to the asymmetric edge issue.

To alleviate the problem of asymmetric edges more effec-
tively, this paper proposes a novel local-to-global CSL algo-
rithm with a progressive strategy, called PCSL (Progressive
Causal Structure Learning by interleaving skeleton learning
and data sampling), which can progressively improve the
correction accuracy of asymmetric edges. Our contributions
can be summarized as follows.

• We design a progressive global skeleton construction
strategy to iteratively correct asymmetric edges. In each
iteration, this strategy utilizes data sampling procedure
combined with a novel weighted scoring function to
correct asymmetric edges so that a more accurate global
structure is learned, and in turn, a more accurate global
skeleton guides the generation of higher quality sampled
sub-datasets. As a result, this strategy achieves progres-
sive enhancement by continuously improving the correc-
tion accuracy of asymmetric edges. We also theoretically
analyze the effectiveness of this progressive strategy.

• Based on the best global skeleton and the best sampled
sub-datasets, we design the integrated global skeleton
orientation strategy, using the ideas of dispersion and
aggregation, to learn an accurate causal structure.

• Building upon the aforementioned novel strategies, we
introduce PCSL, a highly effective and efficient local-to-
global causal structure learning algorithm.

• Using benchmark BN datasets and real-world datasets,
we have conducted extensive experiments to demonstrate
the superiority of our proposed method.

II. RELATED WORK

CSL methods are mainly divided into global methods [14],
[18], [21] and local-to-global methods [27]–[29].

A. Global causal structure learning

Global CSL methods formulate the CSL problem as a com-
binatorial optimization problem or continuous optimization
problem. In the combinatorial optimization problem, existing
global CSL methods are subdivided into two types: score-
based and constraint-based approaches. Score-based algo-
rithms, such as GES [18] and its variant algorithms [19], [20],
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generally use a scoring function to measure the goodness of fit
of different graphs over data, and then use a search procedure
to find the best graph [37]. In contrast, constraint-based
methods, such as PC [14] and its variant algorithms [15]–
[17], adopt conditional independence (CI) tests to first assess
whether there is an edge between two variables for learning
an undirected graph, and then orient the edges [33].

To avoid the combinatorial constraint, Zheng et al. trans-
formed global CSL problem to a continuous optimization
problem, and proposed the NOTEARS [21] algorithm which
formulates the acyclic constraint as a smooth term and
solves the problem using gradient-based numerical methods.
NOTEARS is specifically developed for linear structures,
and has been extended to handle nonlinear cases via neural
networks. For example, DAG-GNN [22] reconstructs data
using variational auto-encoder and uses an Evidence Lower
Bound (ELBO) loss as its loss function. GAE [38] abandons
the variational part in DAG-GNN. Instead, it takes graph auto-
encoder as its generative model and adopts least square loss.
Different from previous methods, aiming at leveraging all the
parameters of the neural network in representing the weighted
adjacency matrix, GraN-DAG [23] uses path products of the
weights of its multilayer perceptrons (MLP) generative model
to represent the matrix coefficients. Additionally, the authors
of [24] studied the asymptotic role of the sparsity and DAG
constraints in the general linear Gaussian case and other spe-
cific cases, and developed a likelihood-based structure learning
method with continuous unconstrained optimization, called
GOLEM [24]. Compared with GOLEM, DAG-NoCurl [25] is
an efficient algorithm, since it is developed based on the graph
Hodge theory [39] and can solve the resultant unconstrained
optimization problem in the DAG space.

However, these global CSL algorithms attempt to learn an
entire causal structure at once, and they would face computa-
tional issues when the number of variables is large. In addition,
if these global CSL methods learn false edges (e.g., missing
edges, extra edges and reverse edges) in the early learning
stage, the learning and orientation of the edges around these
false edges will be seriously affected, resulting in more errors.

B. Local-to-global causal structure learning

To improve the efficiency and effectiveness of CSL, local-
to-global CSL approaches are developed, which first learn the
local structure of each variable independently instead of learn-
ing the global causal structure at once. In the past two decades,
several local-to-global CSL methods have been proposed. For
example, GSBN [27] first utilizes the GSMB [27] algorithm
to learn the local skeleton of each variable, then constructs
the global skeleton, and finally uses CI tests to orient edges.
Compared with GSBN, MMHC [40] learns the local skeleton
of each variable using the MMPC [41] algorithm and uses
a score-and-search strategy to orient edges. SLL+C/G [28]
first finds the local skeleton of each variable using a score-
based local CSL algorithm (called SLL [28]), then constructs
the global skeleton by combining all local skeletons, and
finally SLL+C uses CI tests to orient edges in the global
skeleton whereas SLL+G employs a score-and-search strategy

to orient edges. Instead of finding the local skeleton of each
variable in advance, the GGSL algorithm [29] first randomly
selects a variable and learns the local causal structure around
the variable, then gradually expands the learned structure
until the entire causal structure is learned. Recently, Yu et
al. point out that existing local skeleton learning algorithms
adopted by the local-to-global methods are often computation-
ally expensive, especially with a large-sized networks [30].
To further improve the efficiency of the local-to-global CSL
algorithms, they linked feature selection methods to CSL, and
proposed two efficient local-to-global CSL algorithms, F2SL-c
and F2SL-s [30], which employ different orientation strategies
(constraint-based or score-based).

However, in many real-world settings, due to data issues
(e.g. noise and small sample), existing local-to-global CSL
methods may produce many asymmetric edges (Definition 2).
To resolve these asymmetric edges, existing local-to-global
methods either assume that all asymmetric edges exist in the
global skeleton or do not exist. In practice, the solution above
may result in the loss of many true edges or the addition of
many false edges in the constructed global skeleton, further
leading to unsatisfactory CSL performance. In this paper, we
alleviate the impact of data problems on the local-to-global
CSL by data sampling technique combined with progressive
learning strategy.

III. PRELIMINARIES

A. Notations and definitions

Let V={X1, X2, ..., Xm} denote a set of random variables.
The (global) causal structure over V is often represented
using a causal graph. The most commonly used graphical
representation of a causal structure over V is a causal directed
acyclic graph (DAG) [42], denoted as G = (V,E), where
E ⊆ V × V is the set of directed edges each representing
potential causal relationships between a pair of variables in
V, and G contains no cycles. Specifically, an edge Xi → Xj

in a DAG represents that Xi is a direct cause (i.e. parent) of
Xj and Xj is a direct effect (i.e. child) of Xi. The (global)
skeleton of a causal structure over V, denoted as S in this
paper, is represented as an undirected graph containing V
and undirected edges between variables in V. When using a
DAG to represent a causal structure, causal structure learning
(CSL) is to learn a DAG over a set of variables V from
observational data. The conditional independence/dependence
of two variables is defined as follows.

Definition 1 (Conditional Independence). Two variables Xi

and Xj are conditionally independent given a variable set
Z⊆ V \ {Xi, Xj} if P (Xi, Xj |Z) = P (Xi|Z)P (Xj |Z) holds;
otherwise, Xi and Xj are conditionally dependent given Z.

Proposition 1. [42] In a causal DAG, if there is a direct
edge between variables Xi and Xj , ∀Z ⊆ V \ {Xi, Xj}, Xi

and Xj are conditionally dependent given Z.

Proposition 1 states that if Xi is a parent or a child of Xj ,
Xi and Xj are not conditionally independent conditioning on
any subsets of the other variables. Proposition 1 is the ratio-
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nale for all existing constraint-based local skeleton learning
methods to learn the local skeleton of a variable.

To enhance the effectiveness and efficiency of global CSL
approaches, local-to-global CSL approaches have been devel-
oped. However, as illustrated in Figure 1 and Figure 2, when
these methods utilize learned local skeletons to construct a
global skeleton, asymmetric edges arise, defined as follows.

Definition 2 (Asymmetric Edge). With a local skeleton learn-
ing algorithm, when learning the local skeletons of two
variables Xd and Xf , if Xd’s local skeleton contains Xf but
Xf ’s local skeleton does not contain Xd (or vice versa), we
say that an asymmetric edge Xd ↮ Xf is formed between Xd

and Xf .

B. Bootstrap method

In this paper, we propose to use the Bootstrap method (also
called Bootstrapping) [43] to overcome the quality issue of the
original dataset. Thus, in this section, we provide the necessary
background of the Bootstrap method.

Bootstrapping is a sampling method often used in the
field of machine learning. Given an original dataset Dorig,
the process of sampling through the Bootstrap method for
generating a sub-dataset Dj is as follows:

• Randomly select an instance from Dorig each time and
put it into Dj , and then put the instance back into the
original dataset Dorig, so that the instance may still be
sampled in the next sampling.

• Repeat the above procedure n times to create a sub-
dataset Dj that contains n instances, where n is equal
to the number of instances in Dorig.

According to the sampling process of the Bootstrap method,
we can get Proposition 2.

Proposition 2 ( [43]). Given an original dataset Dorig with
n instances for generating a sampled dataset Dj by the
Bootstrap method, if n→∞, roughly 36.8% of the instances
in Dorig do not appear in Dj .

In this paper, we use D to denote a single dataset with
m variables and n samples, and D to represent a set/batch of
datasets with the same dimensionality and number of samples.

IV. THE PROPOSED PCSL ALGORITHM

To alleviate the adverse effects of asymmetric edges (Defi-
nition 2) on the local-to-global causal structure learning meth-
ods, in this section, we present our proposed PCSL method
for local-to-global causal structure learning.

As shown in Figure 3, PCSL consists of three phases. First,
in Phase 1, PCSL discovers the initial local skeleton (i.e.
parents and children (PC) set) of each variable in a dataset.

Initial local 

skeleton learning

Progressive global 

skeleton construction

Integrated global 

skeleton orientation

Phase 1 Phase 2 Phase 3

Fig. 3. The framework of our proposed PCSL method.

Then, based on the local skeletons obtained in Phase 1, Phase
2 applies a progressive enhancement method to continuously
correct asymmetric edges for constructing the best global
skeleton. Finally, Phase 3 uses an integrated strategy to orient
the undirected edges in the global skeleton, and obtains the
best causal structure. The novel contribution of PCSL is the
progressive global skeleton construction strategy (i.e. Phase
2) and the integrated global skeleton orientation strategy (i.e.
Phase 3). In the following, we describe the three phases in
detail in Sections IV-A, IV-B, and IV-C, respectively.

A. Initial local skeleton learning

Learning the local skeleton of each variable independently
can make PCSL not only scalable to high-dimensional data
(please refer to the time complexity analysis in Section S-
10 of the Supplementary Material), but also avoid cascading
errors encountered in structure learning as much as possible.

Given an original dataset Dorig with the variable set
V={X1, X2, ..., Xm} and n samples, in Phase 1, PCSL uses
an existing PC (Parent-Child) learning algorithm to discover
the PC set of each variable on Dorig. In our implementation,
we employ HITON-PC [36], one widely used PC learning
algorithm, for this phase, and the rationale of the HITON-PC
algorithm has been presented in Proposition 1.

Let PC(Xd) denote the learned PC set of variable Xd

(d ∈ [1,m]), and at the end of Phase 1, we obtain the local
skeleton of all variables, i.e., PC(X1),PC(X2), · · · ,PC(Xm).
According to Proposition 1, a PC learning algorithm can
discover the true PC set of a target variable theoretically.
Hence in theory, there is the following property.

Property 1 (Symmetry). If Xd is in the learned PC set of
Xf , Xf must be in the learned PC set of Xd.

However, as shown in Figure 2(a), the HITON-PC algorithm
(or other existing local skeleton learning methods) often yields
some asymmetric edges (Definition 2) due to data quality
issues (e.g., data insufficiency for CI tests and noises). To de-
termine whether each asymmetric edge exists in the true global
skeleton, we design a progressive global skeleton construction
strategy as follows.

B. Progressive global skeleton construction

In this section, we focus on describing the progressive
global skeleton construction strategy of PCSL (see Figure 4
for details). Using the local skeletons (i.e. PC sets) obtained at
Phase 1, Phase 2 is to construct the global skeleton by splicing
all local skeletons.

Specifically, if local skeletons between variables are sym-
metric, such as Xd ∈ PC(Xf ) and Xf ∈ PC(Xd) (or
Xd /∈ PC(Xf ) and Xf /∈ PC(Xd)), we believe that there is
(not) an edge between Xd and Xf ; otherwise, an asymmetric
edge Xd ↮ Xf is formed between Xd and Xf . According
to the learned PC set of each variable in V, PCSL records all
asymmetric edges, and we use K to denote the total number
of asymmetric edges. To deal with these asymmetric edges,
we design a progressive global skeleton construction strategy
with the following three iterative steps, illustrated in Figure 4.
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Fig. 4. The progressive global skeleton construction strategy of PCSL.

Step 1: Relearn the local skeleton of variables on each
asymmetric edge. In this step, we first generate a batch of sub-
datasets by sampling from the original dataset Dorig and then
learn the local skeletons of the variables on each asymmetric
edge again on each of the sampled datasets.

In reality, the available (original) datasets often contain
a limited number of samples and may include some noise,
leading to that the local-to-global CSL algorithms often find
some extra edges and lose some true edges during global skele-
ton construction. To overcome the quality limitation of the
original dataset, the Bootstrap method [43] (see Section III-B
for details) is a good choice to achieve effective CSL.

Based on Bootstrap, the original dataset Dorig containing n
samples and m variables can be sampled into multiple batch
sub-datasets. Let the number of batches be L, and the number
of datasets in each batch of sub-datasets be N . Further, the i-
th batch of sub-datasets is marked as Di = {Di

1, D
i
2, ..., D

i
N}

(i = 1, 2, ..., L). Following the Bootstrap method, each sub-
dataset in Di contains n samples and m variables. Note that
the existing Bootstrap-based methods usually need to generate
hundreds of sub-datasets (i.e., N is large) to train a large
number of models for achieving stable performance, and this
is a very time-consuming process. In contrast, on each batch
of sub-datasets2, our method only needs a small N to achieve
reliable performance by adopting a novel weighting strategy,
see Step 2 for details).

According to Proposition 2, for causal structure learning,
generating sub-datasets through the Bootstrap method has the

2Even the total number of sub-datasets (N × L) required for our method
would not exceed 105, since N is set to 15 and L ≤ 7 in our experiments,
see Section V for details.

following advantages:
• 36.8% of the samples between Dorig and a sampled sub-

dataset are different. The sample difference increases the
diversity of the causal structures learned from different
sub-datasets to a certain extent.

• Bootstrap keeps a sampled sub-dataset have the same
sample size as the original dataset Dorig. Therefore,
the sampled sub-datasets will not significantly reduce
the reliability of the statistical tests, such as conditional
independence (CI) tests. Specifically, to perform a reliable
CI test between variables Xd and Xf conditioning on a
variable set S (S ⊂ V\{Xd, Xf}), the average number of
samples per cell of the contingency table of {Xd, Xf}∪S
must be at least t [44]:

n

CXd
× CXf

× CS
≥ t, (1)

where n denotes the number of samples in a dataset, and
t is a constant; given a discrete dataset, CXd

, CXf
and

CS denote the number of categories of values that Xd,
Xf and the variables in S (jointly) take, respectively.
Compared with Dorig, (CXd

× CXf
× CS) in a sampled

sub-dataset often remains unchanged.
Subsequently, given the datasets in Di (initially i = 1),

PCSL relearns the local skeleton (i.e., PC set) of variables
on each asymmetric edge again. For example, as shown in
Figure 4, “Xa ↮ Xb” is an asymmetric edge, thus PCSL needs
to discover the local skeleton of Xa and the local skeleton of
Xb again on all sub-datasets (i.e., Di

1, D
i
2, ..., D

i
N ).

Step 2: Correct each asymmetric edge. We design a
scoring function to determine whether an asymmetric edge
should be in the global skeleton, and then construct a more
accurate global skeleton by excluding those erroneous asym-
metric edges. The global skeleton constructed by correcting
the asymmetric edges on the i-th batch of sub-datasets (i.e.,
Di) is marked as Si. In particular, S0 denotes the initial local
skeleton set of all variables learned on Dorig.

For each asymmetric edge, through combining the local
skeleton learning results from all sub-datasets at Step 1,
PCSL designs a scoring function, AEE (Asymmetric Edge
Evaluation), to determine whether this edge exists.

Specifically, given the k-th asymmetric edge (k =
1, 2, ...,K) containing variables Xd and Xf (d, f ∈ [1,m]
and d ̸= f ), the score of the k-th asymmetric edge on the j-th
sub-dataset is formalized as

AEE(j, k)
j=1,2,...,N
k=1,2,...,K

=


1 + 1 = 2 if Xf ∈ PC(Xd) and Xd ∈ PC(Xf )

−1− 1 = −2 if Xf /∈ PC(Xd) and Xd /∈ PC(Xf )
1− 1 = 0 if Xf ∈ PC(Xd) and Xd /∈ PC(Xf )
−1 + 1 = 0 if Xf /∈ PC(Xd) and Xd ∈ PC(Xf ).

(2)
That is, if the learned local skeleton of Xd contains Xf , then
AEE(j, k) plus one point; otherwise AEE(j, k) minus one
point. Similarly, if the learned local skeleton of Xf contains
Xd, then AEE(j, k) plus one point; otherwise AEE(j, k)
minus one point.

However, due to the randomness of the sampling, the quality
of the sampled sub-datasets in Di is different. For example,
for the PC learning of Xd, the quality of the learned PC set
using Di

2 may be higher than that using Di
1. Further, the
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parameter N in our method usually takes a small value for
maintaining efficiency. Therefore, to obtain stable performance
with a small N , we should adjust (weight) the score of an
asymmetric edge on each sub-dataset according to the quality
of this sub-dataset. For a variable Xd on the k-th asymmetric
edge, our method uses the F1 score [45] of the PC set of
Xd learned on the generated sub-dataset Di

j to measure the
reliability of the result of PC learning for Xd on Di

j , i.e., the
higher the value of F1 score, the higher the reliability of PC
learning for Xd on Di

j . Unfortunately, the true PC set of Di
j

is unknown. Instead, we regard the PC set of Xd in Si−1,
the global skeleton obtained at the end of iteration i-1, as a
reference for the calculation of F1 score, and the reasons for
this are as follows.

From Figure 4, it is not difficult to see that Phase 2 of
PCSL is a progressive iterative process. Before the end of
Step 2 of the i-th iteration, Si−1 is the latest global skeleton,
and the accuracy of Si−1 is higher than that of Si−2 (A
detailed analysis will be provided at the end of this subsection).
Thus, we measure the reliability (stability) of PC learning
result for Xd on Di

j by comparing the PC set of Xd learned
on Di

j with the PC set of Xd in Si−1. Let Q(Di
j , k,Xd)

denote the reliability of PC learning result for Xd (on the
k-th asymmetric edge) on Di

j . Based on the definition of F1
score, Q(Di

j , k,Xd) is formalized as

Q(Di
j , k,Xd) =

2 ∗ TP
TP+FP

∗ TP
TP+FN

TP
TP+FP

+ TP
TP+FN

=
2 ∗ |PC(Xd|Di

j)∩PC(Xd|Si−1)|
|PC(Xd|Di

j)|
∗ |PC(Xd|Di

j)∩PC(Xd|Si−1)|
|PC(Xd|Si−1)|

|PC(Xd|Di
j)∩PC(Xd|Si−1)|

|PC(Xd|Di
j)|

+
|PC(Xd|Di

j)∩PC(Xd|Si−1)|
|PC(Xd|Si−1)|

,

(3)

where TP , FP , and FN denote the number of true positives,
false positives, and false negatives, respectively; further, | · |
denotes the size of a set, and PC(Xd|Di

j) and PC(Xd|Si−1)
(i ∈ [1, L], j ∈ [1, N ], d ∈ [1,m]) represent the PC set of
Xd learned from Di

j and the PC set of Xd in the skeleton
Si−1, respectively. Here we regard the PC set of Xd in Si−1

as a reference PC set of Xd. In particular, when i = 1, we
take the PC sets learned on Dorig as the reference PC sets.
On the one hand, we are eager to generate the sub-datasets
that deviate from the original data distribution for alleviating
the quality issue of Dorig; on the other hand, we should not
generate sub-datasets that deviate too much from the original
data distribution.

Thus, when i = 1, the greater the difference between the
distribution of the generated sub-datasets and that of Dorig,
the lower the reliability of the PC learning results on these
sub-datasets. Further, our method assumes that the symmetric
edges learned are correct, and in fact, the majority edges
learned are symmetric. Therefore, the better the quality of
PC learning on Di

j is, the more symmetric edges should be
kept in the PC learned from Di

j . It means if PC(Xd|Di
j) and

PC(Xd|Dorig) are more similar, i.e., Q(Di
j , k,Xd) is larger,

the reliability of PC learning result for Xd on Di
j is higher.

When Q(Di
j , k,Xd) is considered, the score of the k-th

asymmetric edge on the j-th sub-dataset can be reformulated

as Eq. (4).

AEE(j, k)
j=1,2,...,N
k=1,2,...,K

=



1 ∗ Q(Di
j , k,Xd)

+1 ∗ Q(Di
j , k,Xf ). if Xf ∈ PC(Xd) ∧ Xd ∈ PC(Xf )

(−1) ∗ Q(Di
j , k,Xd)

+(−1) ∗ Q(Di
j , k,Xf ). if Xf /∈ PC(Xd) ∧ Xd /∈ PC(Xf )

1 ∗ Q(Di
j , k,Xd)

+(−1) ∗ Q(Di
j , k,Xf ). if Xf ∈ PC(Xd) ∧ Xd /∈ PC(Xf )

(−1) ∗ Q(Di
j , k,Xd)

+1 ∗ Q(Di
j , k,Xf ). if Xf /∈ PC(Xd) ∧ Xd ∈ PC(Xf ).

(4)

Finally, based on Eq. (4), we can obtain the total score of the
k-th asymmetric edge on N sub-datasets as

AEE(:, k)
k=1,2,...,K

=

N∑
j=1

AEE(j, k). (5)

According to Eq. (5), we propose the following Criterion 1 to
determine whether an asymmetric edge should be in the final
global skeleton.

Criterion 1: if AEE(:, k) > 0, the k-th asymmetric edge
will be retained in the global skeleton; otherwise, this edge
will be removed.

By applying Criterion 1, PCSL can assess whether K asym-
metric edges exist in the underlying causal structure behind the
original dataset Dorig and construct a more accurate global
skeleton Si.

However, in rare cases, AEE(:, k) may be equal to 0,
which makes it difficult to determine whether an asymmetric
edge exists in the global skeleton. To further avoid the case
that AEE(:, k) = 0, PCSL introduces a weight factor w to
enlarge the influence of the reliability of learning results (i.e.,
Q(Di

j , k,Xd)) on the score AEE(·) and have reliability score
Q̂(Di

j , k,Xd) as follows:

Q̂(Di
j , k,Xd)

=

{
Q(Di

j , k,Xd) ∗ w if Q(Di
j , k,Xd) > Q(Di

j , k,Xf )

Q(Di
j , k,Xd) otherwise

(6)

Q̂(Di
j , k,Xf )

=

{
Q(Di

j , k,Xf ) ∗ w if Q(Di
j , k,Xf ) > Q(Di

j , k,Xd)

Q(Di
j , k,Xf ) otherwise

(7)

In Eq. (6) and Eq. (7), “w > 1.0” means that the score gap
of two variables on an asymmetric edge is further enlarged.
Specifically, given a sub-dataset Di

j and the k-th asymmetric
edge containing Xd and Xf , in Eq. (6), the reliability of PC
learning result for Xd on Di

j will be further enlarged if the
reliability of PC learning result for Xd on Di

j is higher than
that for Xf on Di

j . Similarly, in Eq. (7), the reliability of
PC learning result for Xf on Di

j will be further enlarged if
the reliability of PC learning result for Xf on Di

j is higher
than that for Xd on Di

j . The weight factor w is initially set
to 1.0. When AEE(·) = 0, w will be automatically enlarged
by any multiple (such as 1.5 times) for making AEE(·) = 0
no longer hold. Then, by combining Eq. (6) and Eq. (7) with
Eq. (4), AEE(j, k) can be reformulated as Eq. (8).

Step 3: Generate higher quality sub-datasets guided by
the newly learned skeleton. After obtaining a more accurate
global skeleton, the reference skeleton used in Eq. (3) should
be replaced with the newly learned skeleton, since compared
with Si−1 (i ∈ [1, L]), Si is much closer to the true global
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AEE(j, k)
j=1,2,...,N
k=1,2,...,K

=



1 ∗Q(Di
j , k,Xd) ∗ w + 1 ∗Q(Di

j , k,Xf ) if Xf ∈ PC(Xd), Xd ∈ PC(Xf ), and Q(Di
j , k, d) > Q(Di

j , k, f)

1 ∗Q(Di
j , k,Xd) + 1 ∗Q(Di

j , k,Xf ) if Xf ∈ PC(Xd), Xd ∈ PC(Xf ), and Q(Di
j , k, d) = Q(Di

j , k, f)

1 ∗Q(Di
j , k,Xd) + 1 ∗Q(Di

j , k,Xf ) ∗ w if Xf ∈ PC(Xd), Xd ∈ PC(Xf ), and Q(Di
j , k, d) < Q(Di

j , k, f)

(−1) ∗Q(Di
j , k,Xd) ∗ w + (−1) ∗Q(Di

j , k,Xf ) if Xf /∈ PC(Xd), Xd /∈ PC(Xf ), and Q(Di
j , k, d) > Q(Di

j , k, f)

(−1) ∗Q(Di
j , k,Xd) + (−1) ∗Q(Di

j , k,Xf ) if Xf /∈ PC(Xd), Xd /∈ PC(Xf ), and Q(Di
j , k, d) = Q(Di

j , k, f)

(−1) ∗Q(Di
j , k,Xd) + (−1) ∗Q(Di

j , k,Xf ) ∗ w if Xf /∈ PC(Xd), Xd /∈ PC(Xf ), and Q(Di
j , k, d) < Q(Di

j , k, f)

1 ∗Q(Di
j , k,Xd) ∗ w + (−1) ∗Q(Di

j , k,Xf ) if Xf ∈ PC(Xd), Xd /∈ PC(Xf ), and Q(Di
j , k, d) > Q(Di

j , k, f)

1 ∗Q(Di
j , k,Xd) + (−1) ∗Q(Di

j , k,Xf ) if Xf ∈ PC(Xd), Xd /∈ PC(Xf ), and Q(Di
j , k, d) = Q(Di

j , k, f)

1 ∗Q(Di
j , k,Xd) + (−1) ∗Q(Di

j , k,Xf ) ∗ w if Xf ∈ PC(Xd), Xd /∈ PC(Xf ), and Q(Di
j , k, d) < Q(Di

j , k, f)

(−1) ∗Q(Di
j , k,Xd) ∗ w + 1 ∗Q(Di

j , k,Xf ) if Xf /∈ PC(Xd), Xd ∈ PC(Xf ), and Q(Di
j , k, d) > Q(Di

j , k, f)

(−1) ∗Q(Di
j , k,Xd) + 1 ∗Q(Di

j , k,Xf ) if Xf /∈ PC(Xd), Xd ∈ PC(Xf ), and Q(Di
j , k, d) = Q(Di

j , k, f)

(−1) ∗Q(Di
j , k,Xd) + 1 ∗Q(Di

j , k,Xf ) ∗ w if Xf /∈ PC(Xd), Xd ∈ PC(Xf ), and Q(Di
j , k, d) < Q(Di

j , k, f).

(8)

skeleton. Thus, the reliability of PC learning results calculated
by Eq. (3) is more faithful when Si is considered the reference
skeleton rather than Si−1. This step aims to generate a batch
of sub-datasets with higher quality based on the current most
accurate skeleton Si.

To this end, PCSL designs a scoring function, DE (Dataset
Evaluation), to calculate the average quality of each batch
of sub-datasets. Firstly, based on Eq. (3), we can calculate
the quality of a single sub-dataset. Specifically, given a sub-
dataset Di

j , the quality of Di
j can be expressed as the average

reliability of all PC learning results (for all variables on all
asymmetric edges) obtained on Di

j . Let AvgQ(Di
j) denote

the average reliability of all PC learning results on Di
j , and it

is formalized as

AvgQ(Di
j)

i=1,2,...;j=1,2,...,N

=

∑K
k=1(Q(Di

j , k,Xd) +Q(Di
j , k,Xf ))

2 ∗K , (9)

where Xd and Xf (d, f ∈ [1,m] and d ̸= f ) are the two
variables on the k-th asymmetric edge (k = 1, 2, ...,K).

Since the calculation of Q(Di
j , k,Xd) in Eq. (3) and

AvgQ(Di
j) in Eq. (9) takes Si−1 as the reference skeleton,

we let DE(Di|Si−1) denote the average quality of all sub-
datasets in Di = {Di

1, D
i
2, ..., D

i
N} with Si−1 as the reference

skeleton, and its formulation is as follows:

DE(Di|Si−1)
i=1,2,...

=

∑N
j=1 AvgQ(Di

j)

N

=

∑K
k=1

∑N
j=1(Q(Di

j , k,Xd) +Q(Di
j , k,Xf ))

2 ∗K ∗N
.

(10)

Then, through the Bootstrap method, PCSL iteratively sam-
ples the sub-datasets from Dorig until a batch of the sub-
datasets makes DE(Di+1|Si) > DE(Di|Si−1) hold. We
believe that the average data quality of Di+1 is higher than
that of Di. Subsequently, PCSL selects a batch of sub-
datasets with higher average quality as the next batch of
sub-datasets, i.e., the (i+1)-th batch of sub-datasets Di+1 =
{Di+1

1 , Di+1
2 , ..., Di+1

N }.
When a batch of sub-datasets with higher average quality

cannot be generated, Phase 2 of PCSL will terminate. In
our experiments, if the newly sampled sub-datasets satisfy
DE(Di+1|Si) ≤ DE(Di|Si−1) for r consecutive times3, we

3We utilize a specified constant r to limit the times of tolerance and its
value is set to 3 in our experiments. The sensitivity of parameter r is analyzed
in Section S-7 of the Supplementary Material.

1 2 3 best

1S 2S 3S bestS

high

high

Fig. 5. Progressive data sampling and progressive skeleton learning.

believe that both Di and Si are already the best, and PCSL
outputs the best batch of N sub-datasets Dbest and the best
global skeleton Sbest.

Implement Step 1 to Step 3 as a progressive iterative
process. As shown in Figure 4, after obtaining a batch of
higher quality sub-datasets Di+1, it will be re-entered into Step
1 as a new batch of datasets to further improve the correction
accuracy of asymmetric edges.

With the iteration of Steps 1 to 3, the performance of
PCSL (in global skeleton learning) improves progressively
by interleavingly increasing the quality of the sampled sub-
datasets and learned skeletons, as indicated in Figure 5. In
the following, we will give an effectiveness analysis of this
progressive strategy.

Theorem 1. Let L denote the number of iterations in Phase
2. In each iteration i ∈ 1, 2, ..., L, Si denotes the constructed
global skeleton, and Di represents the set of sampled sub-
datasets used. Assuming that Eq. (3) accurately measures the
quality of each sub-dataset, the progressive strategy employed
by PCSL is effective, satisfying the following properties:

1) The accuracy of the global skeleton Si+1 is higher than
that of Si for all i ∈ 1, 2, ..., L− 1.

2) The quality of the sub-datasets Di+1 is better than that
of Di for all i ∈ 1, 2, ..., L− 1.

The proof of Theorem 1 is given in Section S-1 in the Sup-
plementary Material. According to Theorem 1, a more accurate
global skeleton supervises PCSL to continuously generate the
sampled datasets with higher quality, and meanwhile, a batch
of higher quality sub-datasets supervises PCSL to continuously
construct more accurate global skeletons. Thus, Phase 2 of
PCSL progressively improves the quality of Di, and enhances
the correction accuracy of asymmetric edges for obtaining
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a more accurate global skeleton Si. As the proportion of
asymmetric edges in each iteration becomes lower and lower,
Phase 2 will tend to converge.

C. Integrated global skeleton orientation

After having obtained Sbest and Dbest, PCSL moves to
Phase 3 to orient the edges in Sbest. As shown in Figure 6,
the integrated global skeleton orientation strategy consists of
the following two steps.

Step 1: Orient the global skeleton independently on
each sub-dataset. On each sub-dataset Dbest

j (j ∈ [1, N ])
separately, PCSL uses a Bayesian score criteria, BDeu [46],
and a search procedure, hill-climbing [40] to greedily orient
the undirected edges in Sbest. Here, the BDeu score for the
graph structure Gj learned on dataset Dbest

j is defined as
Eq. (11):

BDeu(Gj , D
best
j ) = logP (Gj)

+

m∑
i=1

qi∑
l=1

[
log

Γ (H
′

qi
)

Γ (Hil +
H′
qi

)
+

ri∑
u=1

log
Γ (Hilu + H′

riqi
)

Γ ( H′
riqi

)

]
,

(11)

where Γ is the Gamma function, i is the index over the m
variables, l is the index over the qi combinations of values of
the parents of variable Xi, and u is the index of the ri possible
values (states) of Xi; further, Hilu is the number of instances
in Dbest

j where Xi has the u-th value, and its parents have
the l-th combination of values, and Hil =

∑ri
u=1 Hilu; H ′

is the equivalent sample size (ESS, also sometimes known as
the imaginary sample size, ISS) representing the confidence
level in the prior parameters; P (Gj) is the prior probability
of a particular graph structure which is generally assumed
to be the same for all graphs and so can be ignored. By
alternately performing the search procedure and the scoring

orientation

the best global 
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Fig. 6. The integrated global skeleton orientation strategy of PCSL.

criteria, finally, PCSL gets a global causal structure with the
highest scoring on Dbest

j . To facilitate the merger of all the
causal structures G1, G2,...,GN with their edges oriented as
described above, we use adjacency matrices to represent them.
Let Aj denote the adjacency matrix of Gj , and “Aj(5, 2) = 1”
denotes that there is an edge from X5 to X2 in Gj .

Step 2: Merge all adjacency matrices to form the final
causal structure. In this step, PCSL aims to integrate all
adjacency matrices (i.e., A1,A2,...,AN ) learned in Step 1
for obtaining the final causal structure (marked as G∗), and
Algorithm 1 describes the details of Step 2.

1) Initialization (Line 1): Create an m×m zero matrix A∗

(an empty graph). Here, m is the number of variables.
2) Integration Process (Line 2): Perform element-wise ad-

dition (denoted by ⊕) of all N adjacency matrices, then
divide by N to obtain the average. This step synthesizes
information from all learned causal structures.

3) Edge Determination (Lines 3-11): Iterate through each
element A∗(a, b) of A∗. If A∗(a, b) ≥ 0.5, add the
edge Xa → Xb to the final graph (set A∗(a, b) = 1);
otherwise, do not add this edge (set A∗(a, b) = 0). This
process determines the existence of each edge based on
a majority voting principle.

4) Acyclicity Constraint (Line 12): Call the function
acyclic constraint(A∗) to ensure the final graph struc-
ture is acyclic. This step may remove some edges to
eliminate cycles.

5) Return Result (Line 13): Return the final acyclic causal
structure G∗.

Note that the causal structure corresponding to A∗, obtained
immediately after executing Lines 3-11, may contain bidirec-
tional edges. To address this, we propose Theorem 2, which
demonstrates that if N is an odd number, there will be no
bidirectional edges in A∗ after completing Lines 3-11.

Theorem 2. Let Aj (j ∈ [1, N ]) be an adjacency matrix used
to represent a causal structure (DAG), A∗ = (

∑N
j=1Aj)/N

and A∗(a, b) ≥ 0.5 (a, b ∈ [1,m]) means that there is an
edge from Xa to Xb. If N is an odd number, then there are
no bidirectional edges in A∗.

The proof of Theorem 2 is given in Section S-2 in the

Algorithm 1: Integration of Causal Structures
Input: A1,A2, ...,AN : N adjacency matrices
Output: G∗: the final causal structure

1 Let A∗ = zeros(m,m) /*an empty graph*/;

2 A∗ =
A1 ⊕A2 ⊕ · · · ⊕ AN

N
/*integration*/;

3 for a=1 to m do
4 for b=1 to m do
5 if A∗(a, b) ≥ 0.5 then
6 A∗(a, b) = 1 /*Xa → Xb*/;
7 else
8 A∗(a, b) = 0 /*Xa ↛ Xb*/;
9 end

10 end
11 end
12 G∗ = acyclic constraint(A∗);
13 return G∗
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Supplementary Material. In our experiments, we set N to an
odd number for avoiding the occurrence of bidirectional edges.
But even then, there may be directed circles in the merged
adjacency matrix A∗. Thus, at Line 12, PCSL imposes acyclic
constraints [47] on A∗ to ensure the acyclicity of G∗. Due
to space limit, the time complexity of PCSL is analyzed in
Section S-10 of the Supplementary Material.

D. Difference with BCSL
As a Bootstrap-sampling-based local-to-global CSL algo-

rithm, it is necessary to state the main difference between
PCSL and BCSL, another Bootstrap-sampling-based method
presented in our conference paper [48]. Compared with BCSL,
the strengths and weakness of PCSL are as follows.

1) Strengths: Although both BCSL and PCSL make use
of Bootstrap sampling, they are two very different algorithms.
The key difference between BCSL and our method lies in
the novel and effective progressive learning strategy of PCSL.
Specifically, in the global skeleton learning phase, BCSL only
samples one single batch of N sub-datasets for the correction
of asymmetric edges. Although BCSL evaluates the quality
of each dataset in this batch of N sub-datasets for adjusting
the score of an asymmetric edge on each dataset, the average
quality of this batch of sub-datasets is constant. Due to the
randomness of Bootstrap sampling, BCSL may generate a
batch of sub-datasets with low average quality to correct asym-
metric edges, which seriously deteriorates the performance of
BCSL. Whereas in this paper, our proposed method designs
a progressive strategy to continuously reform the average
quality of each batch of sub-datasets for obtaining a more and
more accurate global skeleton. Thus, our method compensates
for the performance reduction caused by the randomness of
sampling, and achieves more stable performance than BCSL.

In addition, our method improves the deficiencies of BCSL
in the global skeleton orientation phase. Specifically, BCSL
still orients the global skeleton on the original dataset Dorig

with data quality issues, leading to unsatisfactory orientation
results. In contrast, our method continues to use the best batch
of sub-datasets Dbest obtained in the skeleton construction
phase for the orientation phase, and designs an integrated
strategy to achieve a more stable orientation, thus overcoming
the impact of data quality problems on the orientation phase.

2) Weakness: Since the global skeleton construction phase
of PCSL is an iterative process, PCSL needs to generate
multiple batches of sub-datasets, and learn the local skeleton
of variables on each asymmetric edge multiple times on
those sub-datasets. Therefore, the time complexity of PCSL
is higher than that of BCSL. Despite this, as shown by the
experiments in Section S-4 of the Supplementary Material,
the running time of PCSL is not much slower than that
of BCSL, and it remains a highly practical algorithm and
outperforms numerous existing CSL algorithms across a range
of dimensional datasets in terms of speed.

V. EXPERIMENTS

A. Experiment setting
1) Comparison methods: We compare PCSL with five

representative local-to-global CSL algorithms, including

GSBN [27], GGSL [29], F2SL-c [30], F2SL-s [30] and
the previously proposed BCSL [48], and four state-of-
the-art global CSL algorithms, including PC-stable [15],
NOTEARS [21], DAG-GNN [22] and DAG-NoCurl [25].

2) Evaluation metrics: We use the Structural Hamming
Distance (SHD) and Ar F1 metrics [48] to evaluate the dis-
covered causal structures. We have also done evaluation with
other metrics, please refer to Section S-4 in the Supplementary
Material. In all figures and tables, (↑) means the higher the
better, (↓) means the lower the better, and the best results are
highlighted in bold face.

3) Implementation details: Implementation details of the
PCSL algorithm and the baselines are provided in Section S-3
of the Supplementary Material.

B. Benchmark datasets

In Section V-B1, we first evaluate our method and its
rivals on 12 benchmark BNs, using the datasets provided in
existing work [40]. Each BN contains three datasets with 500,
1,000 and 5,000 data samples, respectively. The details of
these 12 benchmark BNs are presented in Table I. Then, in
Section V-B2, we conduct more experiments on the benchmark
datasets to further verify the effectiveness of the progressive
strategy adopted by PCSL.

1) Performance comparison: Figures 7-8 report the quality
of the causal structures learned by PCSL and its rivals in terms
of SHD and Ar F1 metrics. Specifically, from Figure 7, we
can see that for almost all benchmark datasets with 500, 1,000
and 5,000 samples, the PCSL algorithm achieves a lower SHD
value than the other algorithms, indicating the superiority of
our method. The reason is as follows: firstly, the progressive
global skeleton construction strategy of PCSL reduces the
number of missing edges and extra edges by constructing
an accurate global skeleton; secondly, the integrated global
skeleton orientation strategy of PCSL reduces the number of
reverse edges by combining the learning results on the best
batch of sampled sub-datasets. Figure 8 shows that on almost
all benchmark datasets with 500, 1,000 and 5,000 samples,
PCSL not only achieves fewer structural errors than its rivals in
terms of SHD metric, but also discovers more edges correctly
than other algorithms based on the Ar F1 metric.

(1) Comparison with global CSL algorithms. From Fig-
ures 7-8, we can observe that no matter which metric is
used, our method significantly outperforms the continuous-
optimization-based global CSL methods (i.e., NOTEARS,
DAG-GNN and DAG-NoCurl) on all datasets. The possi-
ble reasons for the poor performance of the continuous-
optimization-based global CSL methods on the benchmark

TABLE I
SUMMARY OF BENCHMARK BNS

Network Child Child3 Insurance Insurance3 Alarm Alarm3
#Variables 20 60 27 81 37 111

#Edges 25 79 52 163 46 149
Network Child5 Child10 Insurance5 Insurance10 Alarm5 Alarm10

#Variables 100 200 135 270 185 370
#Edges 126 257 284 556 265 570
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Fig. 7. SHDs of PCSL and its rivals on all benchmark datasets with 500, 1,000 and 5,000 samples.

datasets are as follows. NOTEARS is specially designed for
linear cases instead of non-linear cases. In addition, the convex
optimization approach adapted by NOTEARS may fall into
local optimal solution, leading to a higher value of SHD
compared to PCSL. Although DAG-GNN and DAG-NoCurl
can be applied to non-linear cases by adopting different types
of neural network models, loss functions and representations
of adjacency matrix, their performance is still poor due to the
strong theoretical assumptions [25].

PC-stable, as a combinatorial-optimization-based global
CSL method, demonstrates competitiveness with our method
on datasets with larger sample sizes (e.g., 5,000 samples),
particularly evident in the Insurance5 and Insurance10 BNs.
However, the performance gap between PC-stable and our

method widens significantly when dealing with small sample
datasets (e.g., 500 samples). This amplification is attributed
to the heightened susceptibility of global CSL methods to
cascading errors in such scenarios.

(2) Comparison with local-to-global CSL algorithms.
Based on the experimental results in Figures 7-8, we make the
following observations. 1) On almost all datasets, our method
is significantly superior to GSBN regardless of the SHD
and Ar F1 metrics, since compared with the true structure,
the size of the local skeletons learned by GSBN is much
small, so the causal structures learned by GSBN misses many
true edges. 2) On some BNs (e.g., Insurance, Insurance3,
Insurance5 and Insurance10), GGSL achieves a comparable
performance against our method probably since they all use
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Fig. 8. Ar F1s of PCSL and its rivals on all benchmark datasets with 500, 1,000 and 5,000 samples.

BDeu as a scoring function to orient the undirected edges.
However, on most BNs, our method still outperforms GGSL,
especially in terms of the SHD metric. 3) On many datasets,
the values of Ar F1 of F2SL-c and F2SL-s are lower than
those of other local-to-global CSL algorithms (i.e., GGSL,
BCSL and PCSL), since both F2SL-c and F2SL-s employ a
mutual-information-based feature selection method to learn the
local skeleton of a target variable, and this mutual-information-
based method focuses on discovering the correlation between
variables rather than causality, resulting in that the learned
local skeletons may lose many true edges. 4) On most datasets,
our method achieves better performance than BCSL, although
they all utilize the same algorithm to learn the local skeleton
of each variable, which indicates that the progressive global

skeleton construction strategy and the integrated global skele-
ton orientation strategy of our method are effective. We also
note that as the sample size decreases, the performance gap
between our method and BCSL is further widened. This is
because the quality of the sampled sub-datasets obtained from
the small sample datasets is unstable (or poor), whereas our
method can obtain the best batch of the sampled sub-datasets
through the progressive strategy, thus avoiding the drawbacks
caused by the unstable quality of the sampled datasets.

(3) Running Time. In Section S-4 of the Supplementary
Material, we provide the running time for each algorithm on
each dataset in the above experiments.

2) Effectiveness of the progressive strategy: As described
in Theorem 1, the progressive strategy of PCSL is theoretically
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effective. In Section S-14 of the Supplementary Material,
we use the experimental results on the benchmark datasets
to further verify the actual effectiveness of the progressive
strategy of PCSL.

3) Quality assessment of sampled sub-datasets: In our
method, it is crucial to generate a batch of high-quality
sampled sub-datasets. The constraint of “DE(Di+1|Si) >
DE(Di|Si−1)” in Figure 4 can only theoretically promote
PCSL to generate higher quality sub-datasets. In Section S-
5 of the Supplementary Material, we visualize the distribution
of the sampled sub-datasets for showing whether the quality of
the sub-datasets will be improved by the progressive strategy.

C. Applications

1) Estimation of protein signaling network: The inter-
pretability of biology data is of significance. Here we apply
PCSL to a bioinformatics dataset, Sachs [3], for the discov-
ery of a protein signaling network based on the expression
levels of proteins and phospholipids. Sachs is a widely used
dataset for research on graphical models, with experimental
annotations accepted by the biological research community.

The ground truth graph contains 11 nodes and 17 edges. In
the experiments, we use 853 observed samples for training.
Among all methods in the experiments, PCSL achieves the
best performance with an SHD of 13. GSBN, PC-stable, F2SL-
c and BCSL all have an SHD of 14, GGSL has an SHD of
15, and DAG-NoCurl has an SHD of 17, and the detailed
experimental results are summarized in Table II. Besides SHD,
we also report the results of Ar F1, False Discovery Rate
(FDR) and True Positive Rate (TPR), and we find that PCSL
achieves higher values of Ar F1 and TPR than its rivals.
Although GGSL achieves a low FDR, the causal structure
learned by GGSL misses many true edges, leading to a low
TPR. In addition, we also observe that the performance of
continuous optimization approaches is comparable to that of
the traditional methods on the real data, but worse than that
of traditional methods on the benchmark data.

On the whole, by adopting the progressive global skele-
ton construction and integrated global skeleton orientation
strategies, our proposed method not only achieves a good
performance on the benchmark datasets, but also obtains the
best results on the real dataset.

TABLE II
RESULTS ON THE PROTEIN SIGNALING NETWORK: COMPARISON OF THE
PREDICTED GRAPHS WITH RESPECT TO THE GROUND TRUTH. (↓ MEANS

THAT THE LOWER, THE BETTER WHILE ↑ DENOTES THE HIGHER, THE
BETTER.)

Method SHD (↓) Ar F1 (↑) FDR (↓) TPR (↑)
GSBN 14 0.261 0.500 0.176

PC-stable 14 0.261 0.500 0.176
GGSL 15 0.211 0.000 0.118

NOTEARS 15 0.200 0.333 0.118
DAG-GNN 16 0.100 0.667 0.059

DAG-NoCurl 17 0.261 0.500 0.176
F2SL-c 14 0.286 0.250 0.176
F2SL-s 16 0.095 0.750 0.059
BCSL 14 0.261 0.500 0.176
PCSL 13 0.348 0.333 0.235

TABLE III
EXAMPLES OF EXTRACTED EDGES WITH HIGH CONFIDENCE. (THE TWO

SIDES OF =⇒ INDICATE THE CAUSE AND EFFECT OF A RELATION,
RESPECTIVELY.)

Domain Causal relation

Company
organization/has/agent =⇒ worker

organization/hired/person =⇒ subpart/of
organization/terminated/person =⇒ organization/has/person

Sports
agent/competes/with/agent =⇒ team/won/trophy

organization/hired/person =⇒ organization/has/person
located/at =⇒ location/contains/location

City
location/contains/location =⇒ geopolitical/location/contains/city

located/at =⇒ location/contains/location
person/died/in/city =⇒ person/died/in/location

Athlete
team/coach =⇒ organization/has/person

athlete/beat/athlete =⇒ athlete/wins/award/trophy/tournament
top/member/of/organization =⇒ person/leads/organization

Person
person/leads/organization =⇒ ceo/of

has/spouse =⇒ wife/of
person/born/in/location =⇒ person/graduated/school

2) Extraction of causality in KB: Recently, Yu et al.
proposed a new causal inference task over the relations defined
in a knowledge base (KB) schema [22]. The task aims at
learning a causal structure, where the nodes are relations
and the edges indicate whether one relation suggests another.
For example, the relation “person/born/in/location” may imply
“person/graduated/school”, since people usually choose to
attend local schools.

In our experiments, we construct a new dataset from the
triples in NELL-One [49], a large-scale operational knowledge
system that continuously extracts structured knowledge from
web corpora. NELL-One contains approximately 68k entities
and 358 relations. In the constructed dataset, each sample
corresponds to an entity and each variable corresponds to a
relation in this knowledge base. Each sample has on average
2.11 relations (i.e. 2.11 non-zero entries in each row).

Table III gives some causal relationships learned by our
method with highest confidence scores. In Table III, we list the
causal relations learned from the five domains, and for each
effect relation on the right-hand side, we show the highest
ranked relations within the same domain.

The causal relationships learned by our method can have
a practical value, since NELL-One is a small sample dataset
that contains a lot of noise, and the causal structure learned
by our method can help filter out the noise in NELL-One,
making it suitable for few-shot knowledge graph completion.
We plan to conduct a comprehensive study with field experts
to systematically evaluate the learned causal relationships.

VI. CONCLUSION

Researchers are increasingly focusing on the local-to-global
approach due to its effectiveness and efficiency in the field
of causal structure learning. However, existing local-to-global
CSL methods encounter many asymmetric edges during the
global skeleton construction phase, which seriously deteri-
orates the performance of those methods. To correct those
asymmetric edges, we propose a novel local-to-global CSL
algorithm, called PCSL, with two novel strategies. Specifi-
cally, to construct an accurate global skeleton, we design a
progressive strategy to iteratively correct asymmetric edges
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and continuously improve the accuracy of the global skeleton.
Subsequently, based on the learned accurate global skeleton,
we design an integrated global skeleton orientation strategy to
obtain an accurate causal structure. Experiments have shown
that the proposed PCSL method outperforms nine state-of-the-
art CSL algorithms. In addition, the two strategies we pro-
posed can also be integrated into existing local-to-global CSL
algorithms. Therefore, in future, we could consider designing
PCSL as a unified framework to improve the performance of
existing local-to-global CSL algorithms.
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