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S-1: PROOF FOR THEOREM 1

Theorem 1. Let L denote the number of iterations in Phase
2. In each iteration i ∈ 1, 2, ..., L, Si denotes the constructed
global skeleton, and Di represents the set of sampled sub-
datasets used. Assuming that Eq. (3) accurately measures the
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quality of each sub-dataset, the progressive strategy employed
by PCSL is effective, satisfying the following properties:

1) The accuracy of the global skeleton Si+1 is higher than
that of Si for all i ∈ 1, 2, ..., L− 1.

2) The quality of the sub-datasets Di+1 is better than that
of Di for all i ∈ 1, 2, ..., L− 1.

Proof. Let Acc(Si) denote the accuracy of Si, and Qua(Di)
denote the quality of Di. When i = 1, PCSL generates the
1-st batch of sub-datasets D1 by Bootstrap sampling. Based
on the PC learning results obtained on D1, PCSL applies
Criterion 1 to construct a global skeleton S1 that corrects
all asymmetric edges in S0 for the first time, although some
asymmetric edges may be incorrectly corrected. Subsequently,
based on Bootstrap sampling and Eq. (10), PCSL uses the
latest global skeleton S1 (instead of S0) as a reference to
generate a batch of higher quality sub-datasets D2. Here,
since the new batch of generated sub-datasets will be retained
only if the condition “DE(Di+1|Si) > DE(Di|Si−1)” in
Fig. 4 holds, Qua(D2) > Qua(D1). Similarly, based on
the PC learning results obtained on D2 and Criterion 1,
PCSL corrects each asymmetric edge in S0 again for further
improving the accuracy of the global skeleton and obtaining
S2. Since the core of calculating DE(Di|Si−1) (Eq. (10))
is to calculate Q(Di

j , k,Xd) (Eq. (3)) with implicit structural
accuracy information, the higher the quality of the sampled
sub-datasets, the higher the correction accuracy of asymmetric
edges. Here, since DE(D2|S1) > DE(D1|S0) holds (i.e.,
Qua(D2) > Qua(D1)), Acc(S2) > Acc(S1). Thus, when
i = 1, Theorem 1 holds.

Assume that when i = c (c ∈ {1, 2, ..., (L−2)}), Theorem 1
holds. Then, we can obtain Acc(Sc+1) > Acc(Sc) and
Qua(Dc+1) > Qua(Dc). In the (c+1)-th iteration, based on
Bootstrap sampling and Eq. (10), PCSL uses the latest global
skeleton Sc+1 as a reference to generate a new batch of sub-
datasets Dc+2. Here, since c+ 1 ≤ L− 1 < L (i.e., c+ 1 <
L), PCSL will execute the next iteration. In other words,
DE(Dc+2|Sc+1) > DE(Dc+1|Sc) holds, and Qua(Dc+2) >
Qua(Dc+1). Subsequently, based on the PC learning results
obtained on Dc+2 and Criterion 1, PCSL corrects each asym-
metric edge in S0 again, and then constructs a new global
skeleton Sc+2. Here, since Qua(Dc+2) > Qua(Dc+1), the
correction accuracy of asymmetric edges in Sc+2 is higher
than that in Sc+1, and Acc(Sc+2) > Acc(Sc+1). Thus, when
i = c+ 1, Theorem 1 also holds.

Based on mathematical induction, for ∀ i ∈ {1, 2, ..., (L −
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1)}, Acc(Si+1) > Acc(Si) (progressive skeleton learning)
and Qua(Di+1) > Qua(Di) (progressive data sampling).
Summarizing: Theorem 1 is true. (Q.E.D)

S-2: PROOF FOR THEOREM 2

Theorem 2. Let Aj (j ∈ [1, N ]) be an adjacency matrix used
to represent a causal structure (DAG), A∗ = (

∑N
j=1Aj)/N

and A∗(a, b) ≥ 0.5 (a, b ∈ [1,m]) means that there is an
edge from Xa to Xb. If N is an odd number, then there are
no bidirectional edges in A∗.

Proof. We prove the theorem by contradiction, and we assume
that there is a bidirectional edge Xa ↔ Xb (i.e., both Xa →
Xb and Xa ← Xb exist) in A∗, then A∗ needs to satisfy:

A∗(a, b) ≥ 0.5 and A∗(b, a) ≥ 0.5. (1)

Since A∗ = (
∑N

j=1Aj)/N , we have:

N ∗ A∗(a, b) =

N∑
j=1

Aj(a, b), and (2)

N ∗ A∗(b, a) =

N∑
j=1

Aj(b, a). (3)

Combining Eq. (2) and Eq. (3), we can obtain:

N ∗ (A∗(a, b) +A∗(b, a)) =

N∑
j=1

(Aj(a, b) +Aj(b, a)). (4)

Since Aj (j ∈ [1, N ]) is a DAG, we have:

Aj(a, b) +Aj(b, a) = 0 or 1, and (5)

N∑
j=1

(Aj(a, b) +Aj(b, a)) ≤ N. (6)

Substitute Eq. (4) into the left side of Formula (6), thus,

N ∗ (A∗(a, b) +A∗(b, a)) ≤ N. (7)

Simplify Formula (7), then:

A∗(a, b) +A∗(b, a) ≤ 1. (8)

Thus, the conditions of Formula (1) can be satisfied if and
only if A∗(a, b) = 0.5 and A∗(b, a) = 0.5, i.e.,

1

N
∗

N∑
j=1

Aj(a, b) =
1

2
and

1

N
∗

N∑
j=1

Aj(a, b) =
1

2
. (9)

Or equivalently,

N∑
j=1

Aj(a, b) =
N

2
and

N∑
j=1

Aj(a, b) =
N

2
. (10)

Since N is an odd number, N/2 cannot be an integer. But
Aj(a, b) (j ∈ [1, N ]; a, b ∈ [1,m]) is an integer (0 or 1), thus
two equations in (10) must not hold, i.e., the assumption that
there is a bidirectional edge Xa ↔ Xb in A∗ does not hold
and the theorem is proved.

S-3: IMPLEMENTATION DETAILS

All experiments were conducted on a computer with In-
tel Core i9-10900 3.70-GHz CPU, NVIDIA GeForce RTX
3060 GPU and 64-GB memory. The significance level for
conditional independence tests is set to 0.01. For continuous-
optimization-based DAG learning methods (i.e., NOTEARS,
DAG-GNN and DAG-NoCurl), we adopt 0.3 as the threshold
to prune the obtained DAGs [1]. Based on the sensitivity anal-
ysis of parameter N in [2], in our experiments, the parameter
N for both BCSL and our method is set to 15. GSBN, PC-
stable, F2SL-c/s1, BCSL and our algorithm are implemented in
MATLAB, GGSL is implemented in C/C++, and NOTEARS2,
DAG-GNN3 and DAG-NoCurl4 are implemented in PYTHON.

S-4: EXPERIMENTAL RESULTS ON MORE METRICS

Let TP be the number of true positives (edges in both the
true structure and learned structure); FP the number of false
positives (edges in the learned structure but not in the true
causal structure; TN the number of true negatives (edges not
in either the true or learned structure); and FN the number of
false negatives (edges in the true structure but missing from
the learned structure). We evaluate the performance of PCSL
and its rivals using the following metrics.

• False Discovery Rate (FDR). FDR is the ratio of false
edges in the learned causal structure to the edges in the
learned causal structure. That is, FDR = FP

TP+FP .
• True Positive Rate (TPR). TPR is the ratio of correct

edges in the learned causal structure to total edges in
the true causal structure. That is, TPR = FP

TP+FN .
• Time. We report running time (in seconds) as the effi-

ciency measure of different algorithms.
In all figures and tables, (↑) means the higher the better, (↓)
means the lower the better, and the best results are highlighted
in bold face.

Figures 1-2 report the quality of the causal structures learned
by PCSL and its rivals in terms of FDR and TPR metrics.
From the experimental results, we can see that PCSL always
maintains a low FDR (as shown in Figure 1) and a high TPR
(as shown in Figure 2) on almost all datasets.

As a combinatorial-optimization-based global CSL method,
PC-stable is competitive with our method in TPR, but signifi-
cantly inferior to our method in FDR, especially on the Child,
Child3, Child5, Child10, Alarm, Alarm3, Alarm5 and Alarm10
BNs. This indicates that PC-stable learns many extra edges.
On almost all datasets, our method is significantly superior to
GSBN on FDR and TPR metrics, since compared with the true
structure, the size of the local skeletons learned by GSBN is
much small, so the causal structures learned by GSBN misses
many true edges. On some BNs (e.g., Insurance, Insurance3,
Insurance5 and Insurance10), GGSL achieves a comparable
performance against our method probably since they all use

1The source codes of GSBN, PC-stable, F2SL-c and F2SL-s are available
at https://github.com/kuiy/CausalLearner.

2The implementation is publicly available at https://github.com/xunzheng/
notears.

3The code is available at https://github.com/fishmoon1234/DAG-GNN.
4The code is available at https://github.com/fishmoon1234/DAG-NoCurl.
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Fig. 1. FDRs of PCSL and its rivals on all benchmark datasets with 500, 1,000 and 5,000 samples.

BDeu as a scoring function to orient the undirected edges.
However, on most BNs, our method still outperforms GGSL,
especially in terms of the FDR metric. On most datasets, the
values of TPR of F2SL-c and F2SL-s are lower than those
of other local-to-global CSL algorithms (i.e., GGSL, BCSL
and PCSL), since both F2SL-c and F2SL-s employ a mutual-
information-based feature selection method to learn the local
skeleton of a target variable, and this mutual-information-
based method focuses on discovering the correlation between
variables rather than causality, resulting in that the learned
local skeletons may lose many true edges.

Table I provides the running time (CPU or GPU) for
each algorithm on each dataset in the above experiments.

We conclude from Table I that, PCSL is slower than most
local-to-global CSL algorithms but faster than most global
CSL algorithms. In practice, to achieve scalability in high-
dimensional BNs (e.g., Child10, Insurance10 and Alarm10),
continuous-optimization-based CSL methods (i.e., NOTEARS,
DAG-GNN and DAG-NoCurl) must be accelerated using GPU.

Note that, both PCSL and BCSL need to learn the local
causal skeleton on multiple sampled sub-datasets for achieving
higher accuracy of causal structure learning. Hence, the loss of
time efficiency is unsurprising. Compared with BCSL, PCSL
needs to iteratively correct asymmetric edges on multiple
batches of sub-datasets, but the running time of PCSL is
not much slower than that of BCSL since PCSL usually has
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Fig. 2. TPRs of PCSL and its rivals on all benchmark datasets with 500, 1,000 and 5,000 samples.

less than or equal to 7 iterations during global skeleton con-
struction, see Section V-B2 for details. Although PCSL needs
to repeatedly learn the local causal skeleton of variables on
asymmetric edges on multiple batches of sub-datasets during
the global skeleton construction, it is still faster than, the local-
to-global CSL method, GGSL. Since DAG-NoCurl is designed
to solve the resultant unconstrained optimization problem, it is
more efficient than other continuous-optimization-based CSL
methods (i.e., NOTEARS and DAG-GNN).

From Table I, we also find that the running time of an algo-
rithm is not always positively correlated with the sample size
of a dataset. For example, 1) the running time of NOTEARS
and DAG-NoCurl on Alarm10 with 1,000 samples is less than

that on Alarm10 with 500 samples since the running time of
these two algorithms depends only on the number of iterations;
2) the running time of GGSL on Insurance10 with 1,000
samples is less than that on Insurance10 with 500 samples
since GGSL randomly selects a variable as the initial variable
each time, and its running time is very unstable.

Overall, since PCSL only needs to repeatedly learn the
local skeleton of the variables on the asymmetric edges rather
than the local skeleton of all variables, the time cost of
PCSL is reasonable. Moreover, according to the analysis of
the time complexity of PCSL in Section IV-D of the main
text, if the sample size of a dataset is large, the number of
asymmetric edges learned on this dataset is small, i.e., the
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TABLE I
EXPERIMENT TIME (lg(T ime)) OF EACH ALGORITHM.

#Sample Network GSBN PC-stable GGSL NOTEARS DAG-GNN DAG-NoCurl F2SL-c F2SL-s BCSL PCSL

500

Child 0.018 0.024 0.316 0.928 1.982 0.212 0.012 0.021 0.085 0.313
Child3 0.082 0.119 1.298 1.334 2.450 0.571 0.066 0.078 0.519 1.017
Child5 0.174 0.299 1.722 2.052 2.025 0.869 0.135 0.182 0.755 1.197
Child10 0.460 0.626 2.375 2.962 2.276 1.636 0.370 0.423 1.361 2.007

Insurance 0.027 0.044 0.470 0.984 1.842 0.346 0.018 0.040 0.295 0.621
Insurance3 0.113 0.216 2.048 1.852 1.897 0.936 0.118 0.177 0.693 1.402
Insurance5 0.242 0.421 2.516 2.608 2.812 1.686 0.223 0.257 1.055 1.708

Insurance10 0.579 0.831 3.469 3.363 3.143 2.395 0.576 0.610 1.592 2.271
Alarm 0.039 0.114 0.869 1.303 2.288 0.633 0.171 0.185 0.286 0.424

Alarm3 0.200 0.317 2.087 1.917 2.760 1.328 0.162 0.231 0.864 1.318
Alarm5 0.404 0.544 3.000 2.608 2.929 1.998 0.340 0.366 1.217 1.702
Alarm10 0.985 1.136 3.858 3.489 3.279 3.036 0.742 0.799 1.802 2.305

1000

Child 0.022 0.039 0.491 0.899 2.324 0.212 0.014 0.026 0.098 0.310
Child3 0.104 0.211 1.294 1.427 2.756 0.633 0.084 0.123 0.454 0.838
Child5 0.216 0.315 1.813 1.934 2.170 0.859 0.214 0.227 0.787 1.236
Child10 0.546 0.662 2.438 2.749 2.423 1.559 0.536 0.577 1.320 1.805

Insurance 0.030 0.067 0.664 0.939 2.015 0.318 0.028 0.045 0.359 0.724
Insurance3 0.144 0.307 2.127 1.735 2.183 0.975 0.163 0.226 0.964 1.585
Insurance5 0.295 0.520 2.648 2.332 3.110 1.617 0.394 0.411 1.276 1.993

Insurance10 0.665 0.900 3.240 3.087 3.383 2.303 0.739 0.727 1.888 2.484
Alarm 0.051 0.119 0.970 1.156 2.559 0.818 0.050 0.073 0.226 0.482

Alarm3 0.256 0.372 2.067 1.951 3.015 1.324 0.264 0.270 0.798 1.250
Alarm5 0.485 0.583 2.782 2.523 3.235 1.796 0.477 0.479 1.194 1.674
Alarm10 1.098 1.136 3.821 3.255 3.548 2.729 1.062 0.923 1.839 2.343

5000

Child 0.058 0.153 0.962 1.127 2.969 0.231 0.074 0.068 1.156 1.659
Child3 0.264 0.422 2.074 1.587 3.501 0.809 0.292 0.391 1.528 2.034
Child5 0.469 0.568 2.176 1.936 2.822 1.048 0.586 0.623 1.257 1.760
Child10 0.854 0.926 3.168 2.581 3.162 1.617 1.020 1.085 2.620 3.247

Insurance 0.083 0.322 1.268 1.277 2.707 0.613 0.096 0.126 1.019 1.519
Insurance3 0.366 0.800 2.661 1.684 2.787 1.150 0.476 0.495 1.980 2.714
Insurance5 0.591 0.996 3.211 2.164 3.774 1.627 0.764 0.798 2.752 3.362

Insurance10 1.027 1.317 3.803 2.634 4.091 2.197 1.291 1.337 3.127 3.838
Alarm 0.140 0.315 1.472 1.489 3.256 0.758 0.161 0.193 0.484 0.966

Alarm3 0.511 0.582 2.558 2.337 3.657 1.502 0.595 0.716 1.361 1.862
Alarm5 0.829 0.842 3.116 2.604 3.900 1.980 0.950 1.024 1.995 2.475
Alarm10 1.357 1.374 3.860 3.435 4.159 2.512 1.564 1.584 2.780 3.240

time complexity of Phase 2 of PCSL is low. Thus, when the
sample size increases, the efficiency gap between PCSL and
other algorithms decreases.

S-5: QUALITY ASSESSMENT OF SAMPLED SUB-DATASETS

In our method, it is crucial to generate a batch
of high-quality sampled sub-datasets. The constraint of
“DE(Di+1|Si) > DE(Di|Si−1)” in Fig. 4 can only theoreti-
cally promote PCSL to generate higher quality sub-datasets. In
this section, we visualize the distribution of the sampled sub-
datasets for showing whether the quality of the sub-datasets
will be improved by the progressive strategy.

Specifically, we first set the number of datasets in each batch
of sub-datasets to 3, i.e., N = 3. Then, we run PCSL on the
Child with 500 samples, and record the sub-datasets generated
in the first batch and the final batch. Finally, we visualize the
distribution of these sub-datasets and the original dataset in
Fig. 3, where (a) shows the distribution of the original dataset,
(b)-(d) and (f)-(h) show the distributions of the sub-datasets
generated in the first batch and the final batch, respectively.
Further, to quantify the difference in distributions between
datasets, we use the maximum mean discrepancy (MMD) [3]
to measure the distribution divergence, and the measurement
results are shown in Fig. 3(e), where the smaller the value of

MMD(·,·), the smaller the distribution difference between two
datasets.

From Fig. 3, we can see that the distribution of the first
batch of generated sub-datasets differs greatly from that of
the original dataset. In contrast, the distribution difference
between the final batch of generated sub-datasets and the
original dataset is small. As described in Eq. (3), PCSL aims
to generate the sub-datasets that deviate from the original data
distribution for alleviating the quality issue of the original
dataset, but avoids generating the sub-datasets that deviate too
much from the original data distribution. Thus, based on the
results in Fig. 3, PCSL can improve the quality of the sub-
datasets by the progressive strategy.

S-6: STATISTICAL TESTS FOR EXPERIMENTAL RESULTS

In this section, we employ the Friedman test [4] and
Nemenyi test [4] to evaluate whether PCSL demonstrates
statistically significant superiority over other methods across
12 benchmark datasets.

We begin with the Friedman test [4], conducted at a 0.05
significance level. The null hypothesis posits that all algo-
rithms perform equivalently across all datasets, implying equal
average rankings. Table II summarizes the average rankings
of PCSL and the baseline algorithms for various metrics,
based on experimental results from all benchmark datasets.
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TABLE II
THE AVERAGE RANKINGS OF PCSL AND THE BASELINES ON THE BENCHMARK DATASETS USING SHD, AR F1, FDR AND TPR METRICS.

Algorithm GSBN PC-stable GGSL NOTEARS DAG-GNN DAG-NoCurl F2SL-c F2SL-s BCSL PCSL

Avg rank

SHD 6.07 5.11 4.64 7.94 8.46 10 5.21 4.17 2.28 1.13
Ar F1 6.33 5.96 4.03 8.06 8.61 9.58 4.92 3.92 2.38 1.22
FDR 5.81 7.24 5.11 7.06 7.94 10 4.14 3.19 2.78 1.74
TPR 6.67 5.29 3.72 8.67 8.97 8.39 5.36 4.18 2.42 1.33

Notably, the null hypothesis is rejected for all metrics, indicat-
ing significant performance differences among the algorithms.
Furthermore, PCSL consistently outperforms the baselines
across all metrics. (Note: In Table II, lower ranking values
indicate superior performance.)

To further elucidate the significant differences between
PCSL and the baselines, we conduct the Nemenyi test [4].
This test stipulates that the performance of two algorithms is
significantly different if their corresponding average rankings
differ by at least one critical difference (CD). The CD for the
Nemenyi test is calculated as follows (i.e., Eq. (11)).

CD = qα,θ

√
θ(θ + 1)

6η
, (11)

where α is the significance level, θ is the number of com-
parison algorithms, and η denotes the number of datasets. In
our experiments, θ = 10, qα=0.05,θ=10 = 3.164 at significance
level α = 0.05. For the benchmark datasets, η = 12 ∗ 3 = 36
(twelve benchmark datasets with three types of sample sizes),
and thus CD ≈ 2.26.

Figures 4(a)-4(d) present the CD diagrams for four different
metrics. In each diagram, the average ranking of each algo-

rithm is plotted along the axis, with lower rankings positioned
to the right. The results reveal:

• For the SHD, Ar F1, and TPR metrics: PCSL achieves
comparable performance to BCSL and significantly out-
performs other baselines.

• For the FDR metric: PCSL significantly outperforms
F2SL-c, GGSL, GSBN, NOTEARS, PC-stable, DAG-
GNN, and DAG-NoCurl, while achieving comparable
performance to the remaining baselines.

Notably, PCSL consistently achieves the lowest ranking value
across all metrics, underscoring its robust performance.

S-7: SENSITIVITY ANALYSIS OF PARAMETER r

To evaluate the robustness of our PCSL algorithm with
respect to its parameter r, we conducted a comprehensive
sensitivity analysis across three benchmark BN datasets: Child,
Insurance, and Alarm. The experimental procedure was as
follows:

1. Data Generation: For each of the three datasets, we
generated multiple batches of data, each containing 5,000
samples. This approach ensures a diverse and representative
set of instances for our analysis.
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Fig. 3. Visualization of the distribution of the original dataset and the sampled sub-datasets.
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Fig. 4. Crucial difference diagrams from the Nemenyi test for all algorithms across 12 benchmark datasets.
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Fig. 5. Sensitivity analysis for parameter r of PCSL.

2. Algorithm Execution: We ran our PCSL algorithm on
each dataset, systematically varying the parameter r from 1
to 20. This range was chosen to cover a wide spectrum of
possible values for r.

3. Performance Metric: For each value of r, we calcu-
lated the Ar F1 metric, which serves as our primary metric
for assessing the algorithm’s performance.

4. Visualization: The results of this analysis are presented
in Figure 5, which illustrates the relationship between the
parameter r and the Ar F1 metric for each dataset.

As evident from Figure 5, a striking observation emerges:
the performance of our PCSL algorithm demonstrates remark-
able stability across all three datasets, regardless of the value
chosen for parameter r. This consistency is manifested by
the nearly horizontal lines in the graph, indicating minimal

fluctuation in the Ar F1 metric as r varies.
This finding has several important implications:
• The PCSL algorithm exhibits strong robustness to

changes in the parameter r. This characteristic is highly
desirable, as it suggests that the algorithm’s performance
is not overly sensitive to precise parameter tuning.

• The consistent performance across different datasets (i.e.,
Child, Insurance, and Alarm) indicates that the algo-
rithm’s stability is not dataset-specific, but rather a gen-
eral property of the method.

• The low sensitivity to r simplifies the application of the
PCSL algorithm in practice. Users can choose from a
wide range of r values without significantly impacting
the algorithm’s effectiveness.

In conclusion, this sensitivity analysis provides strong evi-
dence for the robustness and reliability of our PCSL algorithm.
The minimal impact of parameter r on performance across
diverse datasets underscores the algorithm’s potential for broad
applicability in various domains without the need for fine-
tuned parameter adjustments.

S-8: DETAILED PSEUDO-CODE FOR PCSL

The pseudo-code of the PCSL algorithm is detailed in
Algorithm 1, and PCSL comprises the following three phases:

• Phase 1: Initial local skeleton learning (Lines 1-9)
• Phase 2: Progressive global skeleton construction (Lines

10-32)
– Step 1: Relearn the local skeleton of variables on

each asymmetric edge (Lines 14-18).
– Step 2: Correct each asymmetric edge (Lines 19-23).
– Step 3: Generate higher quality sub-datasets guided

by the newly learned skeleton (Lines 25-31).
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Fig. 6. An example of tracing the progressive learning strategy of PCSL. Sub-figure (1) shows the true global causal skeleton and Sub-figures (2)-(5) show
the evolution of the global skeleton during the iterative process.

• Phase 3: Integrated global skeleton orientation (Lines 33-
49)

– Step 1: Orient the global skeleton independently on
each sub-dataset (Lines 34-36).

– Step 2: Merge all adjacency matrices to form the
final causal structure (Lines 37-48).

S-9: TRACING THE PROGRESSIVE STRATEGY OF PCSL

In this section, we illustrate the progressive learning strategy
of the PCSL algorithm using a small network example, as
shown in Figure 6. Figure 6(1) displays the true global causal
skeleton, while Figures 6(2)-(5) demonstrate the evolution of
the skeleton during PCSL’s progressive optimization process.

Initially, the HITON-PC algorithm is applied to the original
dataset Dorig to learn the local causal skeleton for each
variable, resulting in the global skeleton S0.

However, according to Definition 2, we can identify four
asymmetric edges (i.e., “X1 ↮ X5”, “X5 ↮ X6”, “X2 ↮
X3”, and “X4 ↮ X8”) in S0. PCSL then employs the Boot-
strap method to resample Dorig, generating a batch of new
sub-datasets D1. PCSL re-learns the local causal skeletons for
each variable involved in the four asymmetric edges on each
sub-dataset in D1. Finally, using Equation (5) and Criterion 1
from the main text, PCSL repairs the asymmetric edges in S0

to obtain a new skeleton S1.
Compared to S0, S1 more closely approximates the true

skeleton. Subsequently, based on Equation (10) from the
main text, PCSL uses the Bootstrap method to generate a
batch of higher-quality sub-datasets D2 (i.e., DE(D2|S1) >
DE(D1|S0)). PCSL then re-learns the local causal skeletons
for each variable involved in the four asymmetric edges
on each sub-dataset in D2. Again, using Equation (5) and
Criterion 1, PCSL repairs the asymmetric edges in S1 to obtain
a new skeleton S2.
S2 is even closer to the true skeleton than S1. At this

point, the PCSL algorithm has successfully removed the edges
between X1 and X5, and between X5 and X6. However, it
has erroneously deleted the edge between X2 and X3.

Next, using S2 as a reference and based on Equation
(10), PCSL generates another batch of higher-quality sub-

datasets D3 through the Bootstrap method (i.e., DE(D3|S2) >
DE(D2|S1)). PCSL re-learns the local causal skeletons for
each variable involved in the four asymmetric edges on each
sub-dataset in D3. Finally, using Equation (5) and Criterion 1,
PCSL repairs the asymmetric edges in S2 to obtain the final
skeleton Sbest.

At this point, PCSL can no longer generate sub-datasets of
higher quality than D3 within the tolerance range. Therefore,
the progressive learning strategy terminates. This example
demonstrates how PCSL iteratively refines the causal skeleton,
progressively improving its accuracy through multiple rounds
of learning on increasingly higher-quality datasets.

S-10: TIME COMPLEXITY OF PCSL

Phase 3 of PCSL performs the score-and-search strategy on
the given best global skeleton Sbest rather than on an empty
graph. It means that during the search process, PCSL does not
need to perform adding edges and removing edges operations,
but only needs to perform reversing edges operation to achieve
the highest score, that is, the entire search space is very small.
Thus, the time complexity of PCSL mainly lies in Phase 1
and Phase 2, and the computational cost of these two phases
is measured via the number of CI (conditional independence)
tests. Let p denote the largest size of the learned PC (Parent-
Child) set of any variable in a dataset. For Phase 1 in PCSL,
the time complexity of the PC learning process of any variable
is O(2pm) CI tests, and thus the time complexity of Phase 1
is O(2pm2) CI tests. In Phase 2, let the number of asymmetric
edges with respect to the original dataset be K and the number
of iterations in Phase 2 (or the number of batches of the
sampled sub-datasets) be L, the time complexity of each
iteration is O(2KN2pm) CI tests. Thus, the time complexity
of Phase 2 is O(2KNL2pm) CI tests. Normally, L ≤ 7, and
N is always set to 15 (see Section S-3 in the Supplementary
Material for details). Let v = max{2K,m}, then the overall
time complexity of PCSL is O(2pmv) CI tests.

S-11: CONVERGENCE ANALYSIS OF PCSL

In this section, we present a comprehensive analysis of the
convergence properties of PCSL. We begin with a theoretical
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Algorithm 1: Progressive Causal Structure Learning
Input: Dorig: an original dataset with the variable set

V={X1, X2, ..., Xm} and n samples; N : the
number of datasets in each batch of
sub-datasets; r: tolerance

Output: G∗: the final causal structure
1 {Phase 1: Initial local skeleton learning}
2 for d=1 to m do
3 PC(Xd)=HITON-PC(Dorig, Xd)
4 end
5 for d=1 to m; f=1 to (d-1) do
6 if (Xd ∈ PC(Xf ) ∧Xf /∈ PC(Xd)) ∨ (Xd /∈

PC(Xf ) ∧Xf ∈ PC(Xd)) then
7 Record an asymmetric edge Xd ↮ Xf

8 end
9 end

10 {Phase 2: Progressive global skeleton construction}
11 i = 1 /*batch index of sub-datasets*/
12 Use Bootstrapping to generate the i-th batch of

sub-datasets Di = {Di
1, D

i
2, ..., D

i
N};

13 while r > 0 do
14 for each Xd ↮ Xf do
15 for j=1 to N do
16 PC(Xd)=HITON-PC(Di

j , Xd)
17 PC(Xf )=HITON-PC(Di

j , Xf )
18 end
19 if AEE(:, k) > 0 then
20 Si(d, f) = Si(f, d) = 1
21 else
22 Si(d, f) = Si(f, d) = 0
23 end
24 end
25 Generate the (i+ 1)-th batch of sub-datasets Di+1

26 if DE(Di+1|Si) > DE(Di|Si−1) then
27 Sbest = Si; Dbest = Di+1

28 i = i+ 1
29 else
30 r = r − 1
31 end
32 end
33 {Phase 3: Integrated global skeleton orientation}
34 for j=1 to N do

35 Aj

Dbest
j←−−− Sbest /*greedy search and scoring*/

36 end
37 Let A∗ = zeros(m,m) /*an empty graph*/

38 A∗ =
A1 ⊕A2 ⊕ · · · ⊕ AN

N
/*integration*/

39 for a=1 to m do
40 for b=1 to m do
41 if A∗(a, b) ≥ 0.5 then
42 A∗(a, b) = 1 /*Xa → Xb*/
43 else
44 A∗(a, b) = 0 /*Xa ↛ Xb*/
45 end
46 end
47 end
48 G∗ = acyclic constraint(A∗);
49 return G∗

examination of the convergence in Phase 2 of PCSL, followed
by empirical validation through extensive experiments.

Theoretical Convergence Analysis: Theorem 3 estab-
lishes the theoretical foundation for the convergence of PCSL
in Phase 2. Specifically, it demonstrates that as the number
of iterations L approaches infinity, the probability of Phase
2 in PCSL converging approaches 1. This theoretical result
provides a strong basis for the reliability and stability of our
method.

Theorem 3 (Convergence of Phase 2 in PCSL). Let Pi be the
probability of successfully generating a batch of sub-datasets
Di+1 with higher quality than the current batch Di in the i-th
iteration (i.e., DE(Di+1|Si) > DE(Di|Si−1) holds in Step
3 of Phase 2). Assume that Pi decreases with each iteration,
i.e., Pi > Pi+1 for ∀i ∈ {1, 2, ..., L− 1}, where L (L > r) is
the total number of iterations. This assumption is based on the
increasing difficulty of generating higher quality sub-datasets
as the quality of Di improves with each iteration5.

Then, as L approaches infinity, the probability of Phase 2
in PCSL terminating after L iterations approaches 1, i.e., the
probability of Phase 2 in PCSL converging approaches 1.

Proof. First, let’s clearly define our terms:
• “Failing” or “failure” in an iteration means PCSL is

unable to generate a batch of higher quality sub-datasets
than the previous one in that iteration.

• “Success” means successfully generating a batch of
higher quality sub-datasets in an iteration.

Let EL be the event that PCSL has not converged after L
iterations. We need to prove that

lim
L→∞

P (EL) = 0. (12)

Let X be a random variable representing the number of
failures (as defined above) in L iterations. For PCSL to not
converge after L iterations, it must fail at most (r−1) times in
these L iterations. If it fails r times, PCSL will terminate and
thus converge. Therefore, EL is equivalent to the event X < r.
The probability of failing exactly k times in L iterations is
given by the binomial probability:

P (X = k) =

(
L

k

)
(1− p)kpL−k, (13)

where p = minLi=1 Pi (we use the minimum probability to
get a lower bound on the success probability). Therefore, the
probability of not converging after L iterations is:

P (EL) = P (X < r)

=

r−1∑
k=0

P (X = k)

=

r−1∑
k=0

(
L

k

)
(1− p)kpL−k.

(14)

5Note that although the accuracy of the global skeleton Si also improves
with each iteration, this improvement in Si accuracy only leads to a more
accurate measurement of dataset quality but does not make it easier to generate
a batch of sub-datasets with higher quality.
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This is equivalent to the cumulative probability of having
fewer than r failures in L trials of a Bernoulli process with
failure probability (1 − p). By the law of large numbers, as
L→∞, the proportion of failures converges in probability to
(1− p):

X

L

P−→ (1− p). (15)

This means that for any ϵ > 0, we have:

lim
L→∞

P

(∣∣∣∣XL − (1− p)

∣∣∣∣ < ϵ

)
= 1. (16)

Choose ϵ = (1− p)− r−1
L for large enough L such that

r − 1

L
< (1− p). (17)

This choice is possible because r is fixed and p < 1, so for
sufficiently large L, r−1

L will be arbitrarily close to 0 and thus
less than (1− p). With this choice of ϵ, we have:

lim
L→∞

P

(
X

L
>

r − 1

L

)
= 1. (18)

This is equivalent to:

lim
L→∞

P (X > r − 1) = 1. (19)

Therefore:

lim
L→∞

P (X < r) = lim
L→∞

(1− P (X > r − 1)) = 0. (20)

Due to P (X < r) = P (EL), we can obtain:

lim
L→∞

P (EL) = lim
L→∞

P (X < r) = 0. (21)

Thus, as the number of iterations L approaches infinity, the
probability of PCSL not converging (i.e., failing fewer than
r times) approaches 0, or equivalently, the probability of
convergence approaches 1.

Empirical Convergence and Consistency Analysis:
To further validate the practical convergence of Phase 2 in
PCSL and analyze its consistency, we conducted a series of
experiments using two benchmark BN datasets: Alarm and
Child. Our experimental procedure was as follows:

• For each dataset, we generated multiple batches of data
with sample sizes ranging from 300 to 15,000.

• We ran PCSL on each dataset, recording two key metrics:
a) Ar F1 metric, representing the accuracy of the learned
causal structure. b) The number of iterations required in
Phase 2 of PCSL.

The results of these experiments are presented in Figures 7
and 8.

Consistency Analysis: Figure 7 illustrates the relationship
between sample size and Ar F1 metric. The results demon-
strate that as the sample size increases, the accuracy of the
causal structure learned by PCSL consistently improves across
both datasets. Specifically, we observe that the Ar F1 metric
steadily approaches 1, indicating that the learned structure
increasingly approximates the true causal structure. This trend
reflects the consistency of our method under finite sample
conditions, highlighting its ability to recover the true causal
relationships given sufficient data.
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Fig. 7. Consistency Analysis of PCSL on Alarm and Child datasets.
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Fig. 8. Convergence analysis of Phase 2 in PCSL on Alarm and Child datasets.

Convergence Analysis: Figure 8 depicts the relationship
between sample size and the number of iterations in Phase 2
of PCSL. Notably, we observe that regardless of the sample
size, the average number of iterations in Phase 2 remains
consistently below 7.5. This finding empirically demonstrates
the rapid convergence of our method in practical applications.

Furthermore, our experimental results align with the impli-
cations of Theorem 3, which suggests that the convergence
speed of Phase 2 in PCSL is independent of sample size. This
theoretical prediction is corroborated by our empirical obser-
vations in Figure 8, where we see no significant correlation
between sample size and the number of iterations required for
convergence.

In conclusion, our theoretical analysis, supported by com-
prehensive empirical evidence, establishes PCSL as a con-
sistent and rapidly converging method for causal structure
learning.
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Fig. 9. Ar F1s of PCSL with different initial skeleton learning algorithms
across three benchmark datasets.

S-12: SENSITIVITY ANALYSIS OF PCSL TO INITIAL
SKELETON ACCURACY

In this section, we analyze our algorithm’s sensitivity to the
accuracy of the initial skeleton through a series of experiments.
This analysis aims to demonstrate the robustness of PCSL
to different initial conditions, addressing concerns about the
algorithm’s dependence on the quality of the initial skeleton.

Specifically, we conducted our experiments using three
benchmark Bayesian networks (BNs): Child, Insurance, and
Alarm6. For each BN, we generated multiple datasets, each
containing 5,000 samples. This sample size was chosen to
ensure reliable results while maintaining computational fea-
sibility. To assess the impact of different initial skeletons on
PCSL’s performance, we employed three distinct local causal
skeleton learning algorithms in Phase 1 of PCSL: MMPC [5],
PC-simple [6] and HITON-PC [7]. For each dataset and each
local causal skeleton learning algorithm, we executed the
entire PCSL to learn the causal structure. Then, we evaluated
the accuracy of the learned structures using the widely-adopted
Ar F1 metric.

The experimental results are presented in Figure 9, and we
can observe that regardless of which local causal skeleton
learning algorithm is employed, the accuracy of the final causal
structure achieved by PCSL remains consistently high. These
findings provide compelling evidence that PCSL is capable
of overcoming potential limitations or biases introduced by
the initial skeleton learning phase. The progressive learning
strategy allows PCSL to iteratively refine the causal structure,
converging towards a high-quality solution.

S-13: DETAILED ANALYSIS OF THE CAUSES OF Asymmetric
Edges

In this section, we provide an in-depth analysis of the factors
contributing to the formation of asymmetric edges in local-to-
global causal structure learning. We focus on two main causes:
limited sample sizes, and violations of causal assumptions.

6These benchmark BNs are publicly available at http://www.bnlearn.com/
bnrepository/

Limited Sample Sizes: When the original dataset has a
small sample size, the conditional independence tests per-
formed in learning each variable’s local causal skeleton may
become unreliable, leading to Type II errors (missing true
causal neighbors of the target variable) in conditional inde-
pendence tests. Specifically, to perform a reliable conditional
independence test between variables Xd and Xf conditioning
on a variable set S (S ⊂ V \ {Xd, Xf}), the average number
of samples per cell of the contingency table of {Xd, Xf} ∪ S
must be at least t [8]:

n

CXd
× CXf

× CS
≥ t, (22)

where n denotes the number of samples in a dataset, and
t is a constant; given a discrete dataset, CXd

, CXf
and

CS denote the number of categories of values that Xd, Xf

and the variables in S (jointly) take, respectively. When the
original dataset has a small sample size, the condition in
Eq. (22) may not be met, leading to the direct omission of true
causal neighbors of the target variable, resulting in asymmetric
edges. Inspired by existing works [9], [10] demonstrating the
practicality of Bootstrapping in small sample scenarios, we
employ Bootstrapping to address the asymmetric edge problem
caused by small sample datasets.

Violations of Causal Assumptions: It is important to
clarify that our proposed PCSL algorithm is built upon the
Faithfulness and causal Markov assumptions [11], which are
common foundations for most existing causal structure learn-
ing algorithms. However, in practical datasets (both simulated
and real-world), these assumptions may not hold perfectly
due to limited sample sizes. This can lead to both Type I
errors (learning extra false causal neighbors for the target
variable) and Type II errors (missing true causal neighbors of
the target variable) in conditional independence tests, result-
ing in asymmetric edges. To address this issue, we employ
Bootstrapping to modify the distribution of generated sub-
datasets (aiming to better satisfy the Faithfulness and causal
Markov assumptions) and combine this with ensemble learning
principles to correct deficiencies in the original dataset, thereby
resolving the problem of asymmetric edges.

S-14: EFFECTIVENESS OF THE PROGRESSIVE STRATEGY

As described in Theorem 1, the progressive strategy of
PCSL is theoretically effective. In this section, we use the
experimental results on the benchmark datasets to further
verify the effectiveness of the progressive strategy of PCSL.
Specifically, we record the correction accuracy7 of asymmetric
edges in each iteration during the progressive learning, as well
as the quality of the sampled sub-datasets in each iteration
during the progressive learning. As shown in Figure 10, we
reports the trends in the correction accuracy of asymmetric
edges and the quality of the sampled sub-datasets as PCSL
learns the causal structures on the benchmark datasets. In
Figure 10, Qsd (marked red) and Caae (marked green) in the
legend represent the quality of the sampled sub-datasets and

7The proportion of correctly preserved or removed asymmetric edges to the
total number of asymmetric edges.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

0 1 2 3 4 5 6 7

iteration

0.5

0.6

0.7

0.8

Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.4

0.5

0.6

0.7

Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.4

0.5

0.6

0.7

0.8 Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.6

0.7

0.8

0.9

1

Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.45

0.5

0.55

0.6

0.65

0.7
Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.45

0.5

0.55

0.6

0.65
Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.45

0.5

0.55

0.6
Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.5

0.6

0.7

0.8
Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.45

0.5

0.55

0.6

0.65

0.7

Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.45

0.5

0.55

0.6

0.65

0.7

0.75
Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.55

0.6

0.65

0.7

0.75 Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.6

0.65

0.7

Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.65

0.7

0.75

0.8

0.85

Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.6

0.65

0.7

0.75

0.8
Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.6

0.65

0.7

0.75

0.8

0.85 Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.55

0.6

0.65
Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.5

0.55

0.6

0.65
Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.45

0.5

0.55

0.6

0.65
Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.5

0.55

0.6

0.65

0.7

0.75

0.8 Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.45

0.5

0.55

0.6

0.65

0.7

0.75
Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.5

0.55

0.6

0.65

0.7

Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.5

0.55

0.6

0.65

Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.5

0.55

0.6

0.65

0.7
Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.45

0.5

0.55

0.6

0.65

Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.45

0.5

0.55

0.6
Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.45

0.5

0.55

0.6

0.65

0.7
Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.45

0.5

0.55

0.6

0.65
Qsd

Caae

0 1 2 3 4 5 6 7

iteration

0.45

0.5

0.55

0.6

0.65

0.7
Qsd

Caae

Fig. 10. Verification of the effectiveness of the progressive strategy on the benchmark datasets. Qsd and Caae in the legend represent the quality of the
sampled sub-datasets and the correction accuracy of asymmetric edges, respectively. The horizontal axis denotes the number of iterations of PCSL in the
progressive global skeleton construction phase.

the correction accuracy of asymmetric edges, respectively, and
the horizontal axis denotes the number of iterations of PCSL
in the progressive global skeleton construction phase. For the
convenience of observation, we only record the experimental
results with more than 2 iterations. From Figure 10, we see
that:

• On all datasets, the number of iterations of the progressive
learning process is less than or equal to 7, which indicates
that the time complexity of PCSL is very acceptable in
practice.

• Based on the constraint of condition “DE(Di+1|Si) >
DE(Di|Si−1)” in Step 3 of Phase 2, the quality of each
batch of the sampled sub-datasets increases monotoni-
cally with the increase of iterations.

• Although the correction accuracy of asymmetric edges
occasionally decreases with the increase of iterations, the
overall trend in the correction accuracy of asymmetric
edges is upward. Moreover, the final correction accuracy
of asymmetric edges on each dataset is greater than 50%.
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