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Abstract—Directed acyclic graph (DAG) learning plays a fun-
damental role in causal inference and other scientific scenes,
which aims to uncover the relationships between variables.
However, identifying a DAG from observational data has al-
ways been a challenging task. Recently, gradient-based DAG
learning algorithms that convert a combination-optimization
DAG learning problem into a continuous-optimization problem
have achieved emerging successes. These algorithms are easy
to optimize and able to deal with both parametric and non-
parametric data but suffer from many reversed edges learnt by
these algorithms. In this paper, we propose a framework named
Residual Independence Test (RIT) to correct those reversed edges
by leveraging the structural asymmetry reflected in the depen-
dence between regression residual and direct cause. We conduct
extensive experiments on both synthetic and benchmark datasets,
the results show that the RIT framework significantly improve
the performance of gradient-based DAG learning algorithms.

Index Terms—Directed acyclic graph, Structural asymmetry,
Gradient-based structure learning

I. INTRODUCTION

Directed Acyclic Graph (DAG) learning plays an essential

role in causal inference [1], [2], machine learning [3]–[5], [6]

and explainable model [7], [8]. Observational DAG learning

aims to learn DAGs from purely observational data. Traditional

DAG learning methods can be divided into constraint-based

and score-based categories. Constraint-based methods [9],

[10], [11] firstly learn the skeleton of a DAG by performing

conditional independence tests and then orient the edges using

certain rules. Meanwhile, score-based methods [12], [13] use

score functions to evaluate the quality of candidate DAGs and

discover the DAG with the highest score. Recently, a new class

of DAG learning algorithms based on gradient descent has

been proposed, which adopts numerical optimization methods

or exploits the powerful modeling ability of neural networks

to learn DAGs. The core idea of these approaches is min-

imizing the least square loss between original samples and

reconstructed samples or promoting the value of maximum

likelihood estimation.

Fig. 1: (a), (b) and (c) show the results of NOTEARS, DAG-

GNN, and NOTEARS-MLP, respectively (black lines denote

the correct edges and red lines represent the reversed edges

learnt by the three algorithms)

However, the DAG learnt by gradient-based methods is

not so accurate as expected. Several methods do not satisfy

the important assumptions for identifiability [14], [15], hence

they cannot learn an accurate DAG. In other words, these

methods can discover potential causal relationships between

variables, but cannot effectively distinguish direct causes and

direct effects, resulting in that there exist many reversed

edges in the learnt DAG. For example, we run three state-of-

the-art gradient-based methods, NOTEARS [16], NOREARS-

MLP [17], and DAG-GNN [18] on the chain network [19], a

benchmark Bayesian network with 7 nodes and 6 edges. We

use black lines and red ones to denote the correct edges and

the reversed edges learnt by the three algorithms, respectively.

From the results shown in Fig. 1, we find that the DAGs learnt

by NOTEARS, DAG-GNN and NOTEARS-MLP have three,

three, and four reversed edges, respectively. Therefore, the

presence of reversed edges is a serious problem in gradient-

based methods.

Methods for determining the causal directions between pair-

wise variables mainly rely on structural asymmetry. Regression
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Error based Causal Inference (RECI) [20] fits regression mod-

els in both possible directions, and hence the true causal direc-

tion has a smaller least-squares error. Information-Geometric

Causal Inference (IGCI) [21] uses entropy to discover the

asymmetry between the direct cause and the direct effect,

further determines the direction and iteratively learns the

global structure. However, this method may fail under the large

noise regime.

In this paper, we propose a framework named Residual

Independence Test (RIT) for gradient-based DAG learning al-

gorithms. Our work relies on the structure asymmetry, between

pairing variables under proper conditions. We perform regres-

sions on both directions between pairing variables, then test the

dependence of regression residual and potential direct cause.

Based on structure asymmetry, the residual and direct cause

are independent for the true direction but not for the opposite

direction. Hilbert Schmidt Independence Criterion (HSIC) is

used as the statistics test metric [22], which is suitable for

parametric and non-parametric distribution. Our framework is

flexible for both continuous optimization and neural network

model for DAG learning. We conduct extensive experiments on

both synthetic and benchmark Bayesian network datasets. The

results show that our framework has significantly improved the

performance of the state-of-the-art gradient-based approaches

for DAG learning.

The remaining part of this paper is structured as follows.

Section 2 reviews existing work of DAG learning. Section 3

gives a problem definition and preliminary knowledge. Section

4 presents our proposed framework. Section 5 shows the

experiment results. In Section 6, we conclude our work.

II. RELATED WORK

In this section, we briefly review work relevant to DAG

learning. Traditional algorithms of DAG learning can be

roughly divided into two categories: constraint-based and

score-based methods. Based on Markov and faithful assump-

tions, classical constraint methods such as Peter-Clark (PC)

and Fast Causal Inference (FCI) [23], firstly employ condition-

al independence tests to determine the skeleton of underlying

causal structure, then extend it to a Completed Partially Di-

rected Acyclic Graph (CPDAG) by three orientation rules [23].

Differently, FCI can tolerate and even discover the existence of

agnostic confounding variables. However, conditional indepen-

dence tests for constraint-based methods would be intractable

if the distribution of data is unknown. And the faithfulness

is a so strong assumption that conditional independence tests

would easily introduce errors to the recovered DAG in the case

of limited samples.

Score-based methods assign a score to each candidate DAG

according to some predefined score functions and adopt a

greedy search strategy to identify a high-scoring one. For

example, given a predefined score function called Bayesian

Dirichlet equivalence uniform (BDeu) [24], Greedy Equiv-

alence Search (GES) [25] begins with a completely empty

graph and searches the optimal DAG by adding, removing

or reversing edges. Though score-based methods generally

learn the optimal DAG in the case of infinite variables, the

time complexity increases exponentially with the number of

variables. Subsequently, the score-based algorithm has pro-

duced some variants such as Greedy Interventional Equiva-

lence Search (GIES) [26] and bnlearn [27]. However, when

faced with large-scale practical problems, these score-based

methods usually need to add extra structural assumptions.

To overcome this issue, a hybrid algorithm named MMHC

[19] has been proposed, which firstly performs conditional

independence tests to build an initial skeleton and then adopts

a score function to identify the direction of each edge in the

learnt skeleton.

As discussed above, constraint-based and score-based meth-

ods obtain only the Markov equivalence class of the true DAG.

In contrast, a series of algorithms based on the Functional

Causal Model (FCM) or Structural Equation Model (SEM)

can learn a complete causal graph. For example, LiNGAM

[28] has shown that the underlying DAG can be fully identified

under the condition of non-Gaussian noise, linearity and causal

sufficiency assumptions. Additive Noise Model (ANM) [29]

proves that the linear-non-Gaussian FCM can be generalized

to admit nonlinear dependencies as long as the noise remains

additive.

Considering combinatorial explosion problem, traditional

DAG learning methods usually deal with discrete data [30].

Recently, NOTEARS [16] converts the combinational opti-

mization problem into a continuous optimization program

with an acyclicity constraint. NOTEARS utilizes gradient

descent to determine the DAG in the form of a weighted

adjacency matrix and achieves good structure recovery results

in the case of linear FCM. Further, to avoid the noise of

variables be absorbed into the causal graph reconstruction

model, DARING [31] adds an extra adversarial network to

implement residual independence constraint. NOTEARS-MLP

[17] adopts neural network and orthogonal basis expansion

to fit the generative process of separative variable so that

it can handle more complex nonlinear causal mechanisms.

DAG-GNN [18] combines variational autoencoder [32] with

DAG learning and adopts Evidence Lower Bound (ELBO)

as the objective function. GAE [33] uses a model frame

like DAG-GNN but abandons variation inference, ultimately

increases the accuracy while shortening the time, particularly

in large-scale variables. SAM [34] learns causal graph by a

generative adversarial network [35], which defines a causal

graph as binary structure gates of the generative network and

adds a smooth acyclicity constraint to the objective function.

Gran-DAG [14] and MaskedNN [15] use neural networks

to approximate the underlying data generating functions and

equivalently define the weighted adjacency matrix by path

products of neural network. For all these methods, the causal

structure is defined as a weighted adjacency matrix optimized

by the variations of gradient descent.
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III. BACKGROUND

A. Problem Definition

Let G ∈ Rd×d be a DAG with d variables X ={X1,X2, ...,Xd}.
For Xi ∈ X , we define Xpa(i) to denote the parent set of

variable Xi so that there is an edge from Xj ∈ Xpa(i) to Xi. A

commonly used causal mechanism model in DAG learning is

the Functional Causal Model (FCM) [36], which makes each

node can be generated from a function of its parent nodes and

a unique noise. If the noise variables are jointly independent

and satisfy the additive condition, such model is also called

ANM [29], that is,

Xi = fi(Xpa(i))+Zi (1)

where fi is the data generative function for variable Xi and Zi
is an external noise.

In this paper, we suppose that the data generative process

follows ANM, our purpose is to identify the true graph from

observational data X = {X(i)}n
i=1 under proper conditions.

B. Structural Asymmetry

In practice, there is no way to eliminate local uncertainties

that joint distribution allows the corresponding FCM to indi-

cate either Xi → Xj or Xj → Xi in the causal graph [37]. This

problem becomes more troublesome when discovering DAG

through gradient-based approaches. From a global perspective,

gradient-based methods including continuous optimization and

neural network, estimate the weighted adjacency matrix in

the form of parameters, which are easy to overlook the

local details. Beyond that, these methods mainly focus on

reducing the least square loss between real samples and

reconstructed samples or the maximum likelihood estimation

of reconstructed samples. This idea is beautiful in theory, but

its practical effect is subject to many factors like the structures

and parameters of the neural network.

Actually, given some proper assumptions about the func-

tional and parametric form of the data generative process,

one can adopt structural asymmetry to determine the correct

direction of an edge [36] [37]. Reviewing the ANM, we

assuming that the data generative process follows the linear

causal mechanism X =UX , Y = X +UY and UY is independent

of X . We expect the regression residual of the true direction

reflects the property UY � X . Actually, in the linear, non-

Gaussian and acyclic model (LiNGAM), if at most one of

the noise term UY and the cause X is Gaussian, the direction

X →Y is identifiable [36].

We show this property in Fig. 2: the true structural equation

is X =UX and Y = X +UY , the left column shows the scatters

of X , Y and the regression residual of Y given X . The

column on the right is corresponding to regressing X on Y .

And the top two figures indicate that both cause and noise

are uniformly distributed, while the pictures on the bottom

represent the noise and cause follow Gaussian distribution.

Obviously, the real causal direction follows the structural

asymmetry but the reverse one rejects it. Although residuals

exhibit significant asymmetry in the linear case, the conditions
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Fig. 2: Example of structural asymmetry with different noises.

are too rigorous. Recently, a more universal model with mild

conditions has been proposed. The post-non-linear additive

noise model (PNL) [38] supposes that the data generative

process taking the form of X =UX and Y = f (X)+UY where f
is a sufficiently non-linear function and does not require either

the cause X or noise UY to be non-Gaussian. Similar to the

ANM, the PNL model also reveals structural asymmetry by

the (in)dependence of regression residuals and direct causes.

However, methods exploiting the structural asymmetry only

can test edges respectively and result in intractable search s-

paces expanding superexponentially with the number of nodes.

IV. OUR PROPOSED FRAMEWORK

Our proposed Residual Independence Test (RIT) framework

utilizes the advantages of both gradient-based DAG learning

methods and structural asymmetry to tackle the drawbacks of

gradient-based DAG learning methods. The main idea of the

RIT framework is as follows.

Firstly, we exploit the powerful fitting ability of the neural

network to identify a directed graph as a skeleton. Then, for

each edge in the skeleton, we perform regressions for both

directions and then execute the independence tests between the

regression residuals and the hypothetical causes. The direction

gives an independent regression residual would be considered

as the real causal relationship. Generally, our framework is

suitable for all gradient-based DAG learning methods. Ad-

ditionally, since these methods cannot absolutely guarantee

acyclic, our method has the extra advantage of removing

circles that might be present in the skeleton.

The RIT framework employs the Hilbert Schmidt Inde-

pendence Criterion (HSIC) [22] (a robust non-parametric

independent test statistic) to examine structural asymmetry.

HSIC adopts an injective map to transform the features into

Reproducing Kernel Hilbert Spaces (RKHSs).

Let Pxy be a joint probability distribution on χ × γ and

Px, Py is the corresponding marginal distribution of variables

x and y. Given an injective map φ with a positive kernel
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function k, we can convert the variable x ∈ χ into a RKHS

F , that is, φ ∶ x→ φ(x) ∈ F . Similarly, we define the second

RKHS G on Y with kernel function l and an injective map:

ψ ∶ y → ψ(y) ∈ G. According to [39], a cross-covariance

operator Cxy ∶G→ F is defined as:

Cxy ∶= Exy[(φ(x)−μx)⊗(ψ(y)−μy)] (2)

where μ(x) ∶= Exφ(x), μ(y) ∶= Eyψ(y) and ⊗ is the tensor

product. Cxy is a generalization of the cross-covariance matrix

between random vectors and the largest singular value of

this operator, ∣∣Cxy∣∣, is equal to zero if and only if x � y
[22]. Although the largest singular gives a criterion measuring

dependence between variables, it requires restrictive function

classes. According to [22], a more general description of HSIC

is to define it as the squared Hilbert-Schmidt norm of the cross-

covariance operator:

HSIC(Pxy,F,G) = ∣∣Cxy∣∣2

= Exx′ yy′ [k(x,x
′

)l(y,y
′

)]

+Exx′ [k(x,x
′

)]Eyy′ [l(y,y
′

)]

−2Exy[E
′

x[k(x,x
′

)]E
′

y[l(y,y
′

))]]

(3)

where x
′

denotes an independent copy of x ∈ χ , and the positive

kernel function we used is k(x,x
′
) = exp(− ∣∣x−x

′
∣∣2

σ2 ). Thus,

given m samples (x,y) ={(x1,x2), ...,(xm,ym)} drawn indepen-

dently from Pxy, then Pxy =PxPy if and only HSIC(Pxy,F,G) = 0,

where F and G are two RKHSs related to x and y.

Now, we present the implementation process of our pro-

posed framework. As shown in algorithm 1, our framework

can be divided into Phase 1 and Phase 2.

Phase 1 (lines 2 to 8): we employ existing gradient-based

methods to learn a skeleton of the underlying DAG. Firstly,

we adopt SEM and its variants to generate reconstruction

samples given i.i.d samples X = {X(i)
1 ,X(i)

2 , ...,X(i)
d }

n
i=1. Then

the DAG learning problem is formulated as an optimization

problem with an objective function including the evaluation of

data reconstructions, sparsity, and smooth acyclicity constraint.

Specifically, the model evaluation criterion would be a least

square loss between real samples and reconstructed samples.

Sparse constraint is generally represented by ∣∣G∣∣1. To ensure

the acyclic characteristic, a smooth acyclic constraint is pro-

posed for continuous optimization [16]:

h(G) = tr(eG⊙G)−d = 0 (4)

where ⊙ denotes the Hadamard product and eM =∑+∞k=0
Mk

k!
is

the power series expansion [16]. Then (Mk)i j is the sum of

weight products along all k-step paths from node j to node

i. Thus, tr(eG⊙G)−d = 0 equivalently represents that there is

no cycle in G. Then, the DAG learning problem is converted

to optimize the following equality-constraint (ECP) program

[33]:

min
A∈R(d×d)

L(G,θ) =
1

2n

n

∑
j=1

∣∣X( j)−GT X( j)∣∣22+λ ∣∣G∣∣1 (5)

Algorithm 1: The RIT framework

Input: i.i.d samples X = {X(i)
1 ,X(i)

2 , ...,X(i)
d }

n
i=1, threshold ε ,

maximum number of iterations T
Output: causal structure G

1: // Phase 1: Learn a skeleton G by gradient-based

methods

2: Initialize G and parameters θ of causal models

3: repeat
4: generate n samples X = {X(i)

1 ,X(i)
2 , ...,X(i)

d }
n
i=1

5: compute the objective function Lc(G,θ ,ρ)
6: update G, θ to optimize Lc(G,θ ,ρ)
7: until arrive maximal iteration number T or trigger

termination conditions;

8: prune the edges less than ε in G
9: // Phase 2: Correct the reverse edges in the skeleton G

10: for each (x,y) in G do
11: regress y on x and compute Rxy = y− f̂y(x)
12: calculate independence criteria Hxy =HSIC(Rxy,x)
13: regress x on y and compute Ryx = x− f̂x(y)
14: calculate independence criteria Hyx =HSIC(Ryx,y)
15: compute the score H =Hyx−Hxy
16: if H > 0 then
17: no operation for the true direction

18: else
19: (x,y) ← (y,x)
20: assert no circle in G
21: end if
22: end for
23: return G

subject to h(G) = tr(eG⊙G)−d = 0

This ECP problem can be solved by augmented lagrangian

method [33]:

Lc(G,θ ,ρ) = L(G,θ)+ρh(G)+
c
2
∣h(G)∣2 (6)

where θ is the parameter of model, ρ is the Lagrange multipier

and c is the penalty parameter. Then we have the following

parameters updating rules [18]:

(Gk,θ k) = argmin
G,θ

Lck(G,θ ,ρk), (7)

ρk+1 = ρk +ckh(GK), (8)

ck+1 =
⎧⎪⎪
⎨
⎪⎪⎩

ηck, i f ∣h(Gk)∣ > γ ∣h(Gk−1)∣,

ck, otherwise.
(9)

where η > 1 and γ < 1 are tuning parameters [18]. After

updating the parameters iteratively, a skeleton G is learnt.

Finally, we prune the entries in the skeleton G where their

absolute value is less than threshold ε = 0.3.

Phase 2 (lines 10 to 22): we correct the reversed edges by

calculating the dependence of regression residuals and directed

causes. For every edge x → y in the graph obtained from

phase 1, we do a regression on direction x → y, y → x and
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TABLE I: Introduction of benchmark BNs.

Network Num. Num. Max In/Out- Min/Max

Vars Edges Degree ∣PCset∣

alarm 37 46 4/5 1/6

barley 48 84 4/5 1/8

carpo 74 81 5/12 0/12

hailfinder 56 66 4/16 1/17

mildew 35 46 3/3 1/5

compute the corresponding residual Rxy and Ryx. Then we

calculate the dependence between the regression residuals and

the hypothetical causes, i.e., Hxy and Hyx, respectively. Finally,

we define a score H = Hyx −Hxy to indicate the direction of

the current edge. For the true direction x→ y, Rxy � x, which

means the value of HSIC(Rxy,x) is approaching to 0. While

Hyx = HSIC(Ryx,y) is a positive real number due to the fact

that Ryx ̸ y means the value of HSIC is greater than 0. We

do no operation for this case. But when H < 0, we reverse the

direction of the current edge and assert this process would not

introduce a circle to G.

V. EXPERIMENTS

In this section, we conduct comprehensive experiments to

evaluate the effectiveness of our proposed framework. The

structure of this section is organized as follows. Section 5.1

introduces the experiment settings. Section 5.2 shows the

results of our proposed methods and three baseline algorithms

on linear datasets. Section 5.3 gives the results on the non-

linear datasets. Section 5.4 compares our proposed method

with other DAG learning algorithms on a real dataset.

A. Experiment setting

1) Datasets: Five benchmark Bayesian networks (BNs) are

used to evaluate the performance of our proposed framework.

The details of the benchmark BNs are summarized in Table I.

The synthetic datasets are generated in the manner of

following causal mechanism:

● linear: X are generated from the linear SEM X =AT X +Z,

where the non-zero terms in the coefficient matrix are

sampled from N(0,1) and the noise Z comes from

U(−2,2).
● non-linear: X are generated from sufficiently non-linear

function X = AT cos(X +1)+Z, the parameter settings of

the nonlinear case are consistent with the linear case

except the external noise is a mixture of N(0,1) and

U(−2,2).
For each benchmark BN, 5 samples with sizes of 500, 1000

and 5000 were generated according to the topological order

of the graph, respectively.

2) Implementation Details: Based on NOTEARS [16],

NOTEARS-MLP [17], and DAG-GNN [18], we instanti-

ate the RIT framework and generate three corresponding

methods, NOTEARS+RIT, NOTEARS-MLP+RIT, and DAG-

GNN+RIT. Then we compare these three methods with

NOTEARS, NOTEARS-MLP, and DAG-GNN on synthetic

datasets. For all these original algorithms, we directly used the

source codes provided by the authors. Meanwhile, we compare

our proposed NOTEARS+RIT, NOTEARS-MLP+RIT, and

DAG-GNN+RIT with PC [23], LiNGAM [28], bnlearn [27],

GIES [26], SAM [34] and ANM [29] on a real dataset. The

implementation of these comparative algorithms is available

at https://fentechsolutions.github.io/CausalDiscoveryToolbox.

We adopt 0.3 as the threshold ε to prune the DAGs obtained

from gradient-based methods.
3) Evaluation Metrics: Assuming that T P is the number

of true positive items representing that an edge in the ground

truth DAG is correctly found through the algorithm. And FP is

the number of false positive items indicating that there exiting

an edge in the predicted DAG but not in the true DAG. T N
is the number of edges that do not exist in true DAG and the

predicted DAG. FN is the number of edges existing in the

true DAG but missing in the predicted DAG. We evaluate the

efficiency of our frameworks by the following metrics.

● False Discovery Rate (FDR). FDR is the expected pro-

portion of type I errors. Equivalently, it is the expected

ratio of the number of false positive classifications to the

total number of positive classifications: FDR = FP
T P+FP .

● True Positive Rate (TPR). TPR is also called recall, which

refers to the probability that an actual positive will test

positive. TPR is calculated as: T PR = T P
T P+FN .

● False Positive Rate (FPR). In statistics, FPR is the

probability of falsely rejecting the null hypothesis for

a particular test. FPR is calculated as the ratio between

the number of negative events wrongly categorized as

positive (false positives) and the total number of actual

negative events: FPR = FP
FP+T N .

● Structural Hamming Distance (SHD). SHD is an effective

metric for measuring the difference between the found

graph and the ground truth graph. It is the numbers of

the extra edges, reverse edges and missing edges in the

found graph.

Note that in the following experiments, the lower values of

SHD, FDR, and FPR mean better performance of an algorithm,

while the higher values of TPR means better performance of

an algorithm.

B. Results of DAG learning on linear synthetic data

In this section, we compare the effectiveness of our pro-

posed framework with the original algorithms on five synthetic

datasets. From Fig.3, we can see that:

● For all datasets, NOTEARS and DAG-GNN have similar

performance. But we notice that NOTEARS and DAG-

GNN perform better than NOTEARS-MLP on almost all

datasets, which indicates that NOTEARS-MLP does not

model true causality between variables well.

● No matter based on NOTEARS, NOTEARS-MLP or

DAG-GNN, the implementation of our proposed frame-

work consistently improves their performance on four

metrics. And the significant promotion of TPR and reduc-

tion of SHD, FDR implies our framework can accurately
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Fig. 3: Results of DAG learning algorithms on linear datasets.

find the reverse directions and convert them to the true

directions.

● The little improvement on barley can be explained by the

low FDR, which means there exist few reverse edges in

the primal causal graph.

C. Results of DAG learning on nonlinear synthetic data

To demonstrate the effectiveness of our proposed framework

on nonlinear datasets, we conduct the same experiments. From

the empirical results reported in Fig 4, we can see that:

● We notice that NOTEARS and DAG-GNN perform poor-

ly on nonlinear datasets because their models are based

on linear SEM. However, NOTEARS-MLP is specially

designed for nonlinear causal mechanisms so that it is

relatively accurate in the nonlinear case.

● Since we have used a mixture of Gaussian noise and

uniform noise in the nonlinear case, which brings inter-

ference to the data generation processes. At this point, the

performance of NOTEARS, DAG-GNN and NOTEARS-

MLP becomes poor in practice. More specifically, the

TPR is greatly reduced and the FDR is significantly

promoted.

● In the nonlinear case, our framework can also promote

the accuracy of the baseline algorithm NOTEARS, DAG-

GNN, NOTEARS-MLP. This shows that our framework

improves the applicability of the gradient-based structure

learning algorithms in different situations.

D. Results of DAG learning on real data

To compare the performance of our proposed framework

on a real dataset, we consider a real bioinformatics dataset

Sachs [40]. Sachs is a protein signaling network expressing the

level of different proteins and phospholipids in human cells.

It is commonly viewed as a benchmark graphical model with

11 nodes and 17 edges. In our experiments, we adopt the

observational data with 853 samples.

In Table II, we compare our proposed three algorithms

with PC, GIES, ANM, SAM, bnlearn, LiNGAM, NOTEARS,

DAG-GNN, and NOTEARS-MLP. From the results, we can

see that the performance of NOTEARS and DAG-GNN is

poor. It can be explained by their linear SEM, which is not suit-
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Fig. 4: Results of DAG learning algorithms on nonlinear datasets.

TABLE II: Results on the real Sachs dataset (↓ means that the

lower, the better while ↑ represents the higher, the better.)

Algorithms SHD(↓) Reverse edges(↓) FDR(↓) TPR(↑) FPR(↓)

PC 21 1 0.6667 0.3529 0.4473

GIES 25 2 0.7619 0.2941 0.4210

ANM 17 3 0.5882 0.4117 0.2632

SAM 33 3 0.7895 0.4706 0.7894

bnlearn 23 1 0.7391 0.3529 0.3158

LiNGAM 16 3 0.6250 0.1765 0.1316

NOTEARS 19 7 0.8000 0.1764 0.3158

NOTEARS+RIT 15 3 0.5333 0.4118 0.2105

DAG-GNN 22 7 0.8333 0.1764 0.3947

DAG-GNN+RIT 19 4 0.6667 0.3529 0.3158

NOTEARS-MLP 20 4 0.8181 0.1176 0.2380

NOTEARS-MLP+RIT 17 1 0.5454 0.2941 0.1579

able for complex real data. However, our proposed framework

significantly improves the performance of NOTEARS, DAG-

GNN and NOTEARS-MLP and this validates that our methods

can correct the reversed edges. GIES, ANM and LiNGAM

also show competitive results on the metric SHD and reversed

edges. PC, bnlearn and NOTEARS-MLP+RIT achieve the best

performance in terms of the number of reversed edges.

VI. CONCLUSION

In this paper, we propose a framework utilizing the ad-

vantage of both gradient-based DAG learning methods and

structural asymmetry to tackle the shortcomings of exist-

ing gradient-based DAG learning methods. This framework

can uncover the real direction of an edge by testing the

(in)dependence of the regression residual and cause. The

experimental results have demonstrated that our framework

significantly improves the performance of DAG learning on

both synthesis and real datasets.
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